
A META LANGUAGE FOR

TYPE CHECKING AND INFERENCE

An Extended Abstract

Amy Felty and Dale Miller
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104–6389 USA

Abstract

We present a logic, Lλ, in which terms are the simply typed λ-terms and very restricted,
second-order quantification of functional variables is allowed. This logic can be used to
directly encode the basic type judgments of a wide variety of typed λ-calculi. Judgments
such as “term M is of type A” and “M is a proof of formula A” are represented by
atomic propositions in Lλ while inference rules and axioms for such type judgments
become simple quantified formulas. Theorem proving in Lλ can be described simply
since the necessary unification of λ-terms is decidable and if unifiers exist, most general
unifiers exist. Standard logic programming techniques can turn the specification of
inference rules and axioms in Lλ into implementations of type checkers and inferrers.
Several different typed λ-calculi have been specified in Lλ and these specifications have
been directly executed by a higher-order logic programming language. We illustrate
such encoding into Lλ by presenting type checkers and inferrers for the simply typed
λ-calculus and the calculus of constructions.

This extended abstract will be presented at the 1989 Workshop on Programming
Logic, B̊alstad, Sweden.

Comments are welcome. Address correspondence to the authors at the address
above or at “felty@linc.cis.upenn.edu” or “dale@linc.cis.upenn.edu.”



1 Introduction

The class of higher-order hereditary Harrop (hohh) formulas [MNS87, MNPS] has been
investigated as foundation for a logic programming language. This class of formulas was
initially developed to see how richly first-order Horn clauses could be extended while still
maintaining many of the desirable properties of the logic programming paradigm. This
extension has provided an approach to understanding the nature of such programming
abstractions as higher-order programming, modules, and abstract data types within logic
programming. These formulas have also been used as a meta programming language. For
example, in [HM88a, HM88b, MN87, PE88], hohh was used to specify meta programming
tasks in the manipulation of simple functional programs. In [Fel87, FM88, HM88a, Pfe88],
hohh was used to specify several different theorem provers, type systems, and proof systems
for various object logics. Furthermore, the prototype programming language λProlog [EP89,
MN88, NM88] that has been built using hohh as a foundation was used in each of these
papers to directly implement and test their respective specifications, thereby, providing
program transformers, type checkers, and theorem provers.

Higher-order hereditary Harrop formulas extends first-order Horn clauses in the following
ways:

• Quantification of predicate variables at certain occurrences within formulas is permit-
ted.

• Unrestricted quantification of function variables at all (non-predicate) types is per-
mitted.

• First-order terms are replaced by simply typed λ-terms at all types.

• Equality of λ-terms is determined up to βη-conversion.

• Universal quantifiers and implications are permitted (with certain restrictions) in the
body of clauses and in goals.

While there is a theoretical setting in which all these extensions belong to a well motivated
whole, a complete implementation of this logic yields an interpreter with very many diverse
built in operations. In the case of the meta programming tasks mentioned above, many of
those operations are not needed. In particular, predicate quantification plays a very small
role and the occurrences and type of quantified function variables could often be greatly
restricted.

Constructing a smaller logic programming language in which these features are removed
is of interest for several reasons. First, removing predicate quantification makes the proof
theoretic properties of the logic programming language much simpler to establish. More
importantly, from the point of view of implementing logics, the restriction on occurrences
of quantified functional variables in terms can greatly simplify the unification processes
that need to be implemented. As we shall mention below, in our proposed sublogic of hohh,
unification of simply typed λ-terms will be decidable and have most general unifiers: neither
of these properties are true of unification in the full logic. While the unification of richer
classes of simply typed λ-terms has several important uses [HM88b, HL78, MN87, Pfe88] it
is not necessary for the kinds of implementations we shall describe here. Finally, since the

1



Q∃x `D L

Q `D ∀x L

Q `D L1 Q `D L2

Q `D L1 ∧ L2

Q `G L1 Q `t L2

Q `D L1 ⊃ L2
(1, 2, 3)

Q∀x `G L

Q `G ∀x L

Q `G L1 Q `G L2

Q `G L1 ∧ L2

Q `D L1 Q `G L2

Q `G L1 ⊃ L2
(4, 5, 6)

Q `t L

Q `D L

Q `t L

Q `G L
(7, 8)

Q∀x `t L

Q `t λxL

Q `t t1 · · · Q `t tn
Q `t (yt1 . . . tn)

Q `t (xy1 . . . yn) (9, 10, 11)

Figure 1: Inference Rules for Defining the Syntax of Lλ.

sublanguage is syntactically defined, these restrictions can be used by compilers of the full
language to provide for special compilation of the sublanguage.

2 A Logic for Encoding λ-Calculi

The types of Lλ are the primitive types, among which is the type of propositions o, and
all functional types built from these primitive types. The order of a type is defined as:
ord(τ) = 0 if τ is primitive and ord(τ1 → . . . → τn → τ) = 1 + maxi ord(τi) where n ≥ 1
and τ is primitive.

The logic has the logical connectives ⊃ (implication) and ∧ (conjunction) both of type
o → o → o and, for every type τ not containing o, ∀τ of type (τ → o) → o (universal
quantification). A signature, Σ, is a list 〈c1 : τ1, . . . , cn : τn〉 (n ≥ 1) of non-logical constants
with their type such that whenever ci = cj then τi = τj . The order of Σ is ord(Σ) =
maxi ord(τi). In this abstract we shall assume that ord(Σ) ≤ 2 for all signatures Σ. A
constant of type τ1 → . . . → τn → o (n ≥ 0) is called a predicate constant.

Let Σ be a signature. We define the three binary relations `t,`D,`G that relate a
quantifier prefix Q to a formula or term L in β-normal form such that the nonlogical
constants in L are members of Σ and its free variables are bound in Q. The inference rules
in Figure 1 define the extension of these three relations. The provisos on these inference
rules are listed as follows: in (1, 4, 9) the variable x must not appear in the prefix Q; in
(7, 8) the formula L must be of propositional type o; in (10) y must be either a constant (in
Σ) or a variable universally quantified in Q; and in (11) x must be a variable existentially
quantified in Q and y1, . . . , yn must be distinct universally bound variables of Q such that
they are bound to the right of the binding occurrence of x in Q.

Let ∅ be the empty quantifier prefix. We define Lλ(Σ) := 〈D,G〉 where D is the set
of β-normal formulas L such that ∅ `D L and G is the set of β-normal formulas L such
that ∅ `G L. Members of D are called definite formulas while members of G are called
goals. The provability relation that will interest us with respect to Lλ(Σ) is whether or

2



not P `I G, where P is a finite subset of D, G ∈ G is closed, and `I denotes intuitionistic
provability. Under the assumption that Σ contains “enough constants,” that is, there is a
closed Σ-term of all primitive types mentioned in Σ, then it can be shown that provability
in this sense can be characterized by cut-free sequential proofs such that all occurrences of
sequents contain antecedents that are finite subsets of D and succedents are singleton sets
containing a formula from G. In other words, even though the formulas of Lλ are restricted
in a very strong fashion, it is possible to develop a complete proof system which needs
to only consider formulas within this restricted class. Cut-free proofs can also be further
restricted to being simply the uniform proofs described in [MNPS] and, as a consequence,
Lλ can be viewed as the foundation of a logic programming language.

The force of the restrictions to the Lλ syntax is contained in the inference rule (11) of
Figure 1. Variables that are existentially quantified in the prefixes that are on the left of the
turnstile relations in Figure 1 correspond to those variables that will be substituted for in
the course of building a proof. In other words, they correspond to “logical variables” in the
jargon of logic programming implementations. Rule (11) greatly restricts the occurrences of
such functional variables. The result of this restriction is that in the construction of proofs,
only very simple β-redexes occur: if t is substituted for x into an occurrence of the form
(xy1 . . . yn) the result is simply (ty1 . . . yn). Since x was quantified to the left of where the
variables y1, . . . , yn were universally quantified, the term t contains no free occurrences of
the variables y1, . . . , yn. Thus, t can be taken (via α- and η-conversion) to be of the form
λy1 . . . λyn t′. Thus, the β-reduction of the redex (ty1 . . . yn) would simply yield the term t′.
If t had been normal then this simple operation of essentially dropping the λ-abstractions
on t would immediately yield the β-normal formula t′.

Since β-conversion for this logic is very simple, the unification problems that would arise
in a theorem prover for this logic are also very simple. In particular, we state the following
(these are corollaries of theorems found in [Mil88a, Mil88b]):

1. Unification is decidable: Given two (possibly open) atoms of Lλ(Σ), A1 and A2, it is
decidable whether or not there exists a substitution θ such that θA1 is βη-convertible
to θA2.

2. When unifiers exist, most general unifiers (mgu) exist and can be effectively computed.

In [MNPS], it was shown that theorem proving for hohh (and thus also for Lλ) with respect
to higher-order intuitionistic logic can be accomplished by a simple goal-directed search,
similar to that considered in logic programming. The choice of a depth-first or breadth-
first interpreter provides either an incomplete or complete theorem prover. As we shall
see, an incomplete theorem prover can still provide complete implementations in several
applications.

The higher-order logic programming language λProlog can be used to implement Lλ.
The LP2.7 and eLP implementations of this language [EP89, MN88] are depth-first inter-
preters. Their unification packages contains extensions to Huet’s unification process [Hue75]
that are necessary to have mgus computed [Mil88b].

3



3 Specifying the Untyped λ-Calculus

In this section we encode both the untyped λ-terms and certain operations on them into
Lλ. For the presentation of our examples in this section and the rest of this abstract, we
shall use the syntax of λProlog to present examples. Fortunately, very little of the λProlog
syntax is needed here. In particular, a signature member, say f : a → b → c, is represented
as simply the line

type f a -> b -> c.

The symbol -> is right associative. As an example, we need the following signature, named
UT , in this section:

type abs (tm -> tm) -> tm.
type app tm -> tm -> tm.
type copy tm -> tm -> o.
type subst tm -> (tm -> tm) -> tm -> o.
type redex tm -> tm -> o.
type red1 tm -> tm -> o.
type conv tm -> tm -> o.

In this signature, only two primitive types appear: tm for the encoding of untyped λ-terms
and o for propositions of Lλ(UT ).

The simply typed terms are represented by having application be juxtaposition (asso-
ciating to the left) and by using a back slash as an infix operator denoting λ-abstractions.
Tokens with initial capital letters will denote either bound or free variables. All other
tokens will denote constants (these generally will also be declared in a signature prior to
their appearing in formulas). Using the two constants, abs and app above, all closed un-
typed λ-terms can be encoded. For example, the combinators I, K, S, Y , are encoded as the
following closed terms of type tm:

(abs X\X)
(abs X\(abs Y\X))
(abs X\(abs Y\(abs Z\(app (app X Z) (app Y Z)))))
(abs X\(app (abs Y\(app X (app Y Y))) (abs Y\(app X (app Y Y)))))

This encoding is essentially the one used by Meyer in [Mey81]: abs corresponds to the
function Ψ, for coercing functions into terms, and app corresponds to the function Φ for
coercing terms into functions.

In representing formulas of Lλ, we use the following syntax. The definite formula G ⊃ D
will be written as D :- G. (the definite formulas G1 ⊃ G2 ⊃ D and (G1 ∧ G2) ⊃ D as
D :- G1, G2.) while the goal formula D ⊃ G will be written as D => G. The goal formula
∀τxG will be written as pi X\G (pi denotes ∀) while the corresponding definite formula
∀τxD will be written as simply D. Here, the free variables of D will be implicitly quantified
around D. In the examples in this abstract, the type τ can always be recovered from context
and, hence, are not inserted into formulas.

4



The specification of the substitution of one term for an abstracted variable of another
term can be easily specified using the following code:

copy (app M N) (app P Q) :- copy M P, copy N Q.
copy (abs M) (abs N) :- pi X\ (copy X X => copy (M X) (N X)).

subst T M N :- pi X\ (copy X T => copy (M X) N).

The closed atom (subst M P N) is provable from these three clauses if and only if M and N
denote closed untyped λ-terms, P is an abstraction over such a term, and N is the result of
substituting M for the abstracted variable in P. In an operational sense, subst performs the
following operation: first, the pi quantifier generates a new constant, say c, then assumes
(copy c T), that is, when recursive calls to copy see c, it should be replaced by T. The goal
(copy (M c) N) is then called. Thus, the bound variable of M is replaced by the constant
c and then the resulting term, that is (M c), is copied into N. The result of this copying
is, of course, the result of substituting T for the bound variable of M into the body of M.
This operational reading of subst over commits to the way information can “flow” in this
program. It is also possible to do generalization, in the sense that given closed terms for
the first and third argument of subst, the second argument can be found. For example,
the open formula

subst (abs X\X) M (abs Y\(app (app Y (abs X\X)) (abs X\X)))

is provable if M is instantiated with any one of the following terms:

X\(abs Y\(app (app Y X) X))
X\(abs Y\(app (app Y X) (abs Z\Z)))
X\(abs Y\(app (app Y (abs Z\Z)) X))
X\(abs Y\(app (app Y (abs Z\Z)) (abs Z\Z))).

Given subst, it is easy to specify βη-convertibility of the object-level -terms, that is, of
the untyped λ-terms. The predicate redex specifies to to reduce β-redexes and η-redexes.

redex (app (abs N) M) P :- subst M N P.
redex (abs X\(app M X)) M.

The predicate red1 relates two λ-terms if one arises from the other by replacing exactly
one redex.

red1 M N :- redex M N.
red1 (abs M) (abs N) :- pi X\(copy X X => red1 (M X) (N X)).
red1 (app M N) (app P N) :- red1 M P.
red1 (app M N) (app M P) :- red1 N P.

Finally, conv is the reflexive, symmetric, and transitive closure of red1.

5



conv M M.
conv M N :- conv N M.
conv M N :- conv M P, conv P N.
conv M N :- red1 M N.

These five operations, copy, subst, redex, red1, and conv follow easily from simply
considering the above signature for the untyped λ-terms. In the rest of this abstract, we
consider encoding typed λ-calculi. In each case, the meta logic will contain the types tm
to encode terms and ty to encode types. In some cases, an additional type ki will be
used to encode kinds. Depending on the kinds of term, type, and kind abstractions in a
λ-calculus, it might be necessary to write a subst-style operator for, say terms into terms,
types into types, types into terms, etc. In each case, the necessary substitution operation
on the encoded structures can be written as described above. In general, if a language
contained primitive types a and b, then it would be straightforward to write predicates of
the following kind:

type copy_aa a -> a -> o.
type copy_bb b -> b -> o.
type subst_aa a -> (a -> a) -> a -> o.
type subst_ab a -> (a -> b) -> b -> o.
type subst_ba b -> (b -> a) -> a -> o.
type subst_bb b -> (b -> b) -> b -> o.
type redex_a a -> a -> o.
type redex_b b -> b -> o.
type red1_a a -> a -> o.
type red1_b b -> b -> o.
type conv_a a -> a -> o.
type conv_b b -> b -> o.

Not all of these predicates might be necessary. For example, there might not be any signa-
ture items that allow the construction of a term of type b that contains a subterm of type
a. In such a case, subst_ab would not be needed. The actual formulas to specify these
predicates is easily derived from the signature specifying the enoding of object level terms,
types, and kinds.

4 Encoding Typed λ-Terms and Their Proof Systems

In this section, we show how terms and types, and sometimes kinds, of a λ-calculus can be
encoded as simply typed λ-terms, and illustrate how the axioms and inference rules of a
proof system for type checking and inference in the calculus are specified as formulas of Lλ.
We first consider the simply typed λ-calculus (ST) as an object language. Since the object
language and the terms of the meta language are the same, we distinguish between them
by calling the types and terms of Lλ meta types and meta terms.

We will need the meta types ty and tm to represent the types and terms, respectively,
of ST. The constructors for terms and types are:

6



type --> ty -> ty -> ty.
type abs (tm -> tm) -> ty -> tm.
type app tm -> tm -> tm.

The arrow (-->) will be used to construct functional types in the usual way. As in Section 2,
abstraction in terms will be represented using λ-abstraction in the meta language. Here we
also include the type of the bound variable as an argument to abs. The constant app is the
application operator. For example, using this syntax, the term λf : i → iλn : i.(f(fn)) is
represented as

(abs F\ (abs N\ (app F (app F N)) i) (i --> i)).

To specify type checking and inference for ST in Lλ, we introduce the following has type
predicate that takes an ST term and type as arguments:

type has_type tm -> ty -> o.

with the intended meaning that the atomic proposition (has type M A) is provable when
the term M has type A. We adopt the convention that the letters M and N will denote terms,
and A and B will denote types of the object language.

Let ST be the name of the signature of four constants listed above. Then type checking
and inference in ST is specified by the two Lλ(ST ) formulas below. These formulas can be
considered an encoding of a type assignment proof system for ST similar to those found in
[HS86, DM82].

has_type (abs M A) (A --> B) :-
pi X\(has_type X A => has_type (M X) B).

has_type (app M N) B :-
has_type M (A --> B),
has_type N A.

The first formula encodes the fact that an abstraction (abs M A) has functional type A
--> B if for arbitrary term X, X has type A implies that (M X) has type B. This clause
would instruct a logic programming interpreter to first extend the current signature with a
new constant, say c, then extend the definition of has_type with the clause (has_type c
A), and then attempt to prove that the β-normal form of (M c), the result of replacing
the bound variable of M with the name c, has type B. The additions to the signature and
program are, of course, local modifications: a correct implemenation of Lλ would need to
reset both the signature and the program when this goal is finished.

The second formula specifies the usual rule for application. An application (app M N)
has type B if M has functional type (A --> B) and N has type A.

The logic program given by these formulas is complete for closed λ-terms in performing
either type checking or type inference, even with respect to a depth-first interpreter. This
fact follows by simple induction on the structure of terms of type tm. If the term is an

7



abstraction or application, one of the two clauses above is chosen, and the type checking or
inference proceeds on the subterms. The only atomic terms are those that are introduced
into the program by the rule for abstraction. It is also possible, in querying this logic
program, to place free variables of type ty into terms. In the process of determining a type
for such a term, the free ty variables will get instantiated appropriately. Even when such
type information is lacking, a depth-first interpretation of these formulas will be complete
for type inference.

Since the terms of Lλ are the simply typed λ-terms, we could have taken advantage
of the meta language more directly in specifying type checking and inference for ST. Our
goal, though, is to present a general method for encoding λ-calculi and their proof systems
in Lλ. The method described above for ST does in fact generalize, and can be applied to
many other systems including much richer λ-calculi. For another example, we show how to
specify type inference and checking for the calculus of constructions (CC) [CH88, Hue87].

Again, the syntactic categories tm and ty are needed. The category tm will be for objects
at the level of proofs or terms in CC and ty will be for CC propositions that specify the
types of proofs. In addition, we introduce the meta type ki for the types of propositions,
obtained by quantifying over the CC constant Prop, which we call kinds.

In our encoding of CC, there are four abstraction operators, four product operators, and
four application operators. These operators are given by the following signature.

type prop ki.
type prod_tyki (ty -> ki) -> ki -> ki.
type prod_tmki (tm -> ki) -> ty -> ki.
type prod_tyty (ty -> ty) -> ki -> ty.
type prod_tmty (tm -> ty) -> ty -> ty.
type abs_tyty (ty -> ty) -> ki -> ty.
type abs_tmty (tm -> ty) -> ty -> ty.
type abs_tytm (ty -> tm) -> ki -> tm.
type abs_tmtm (tm -> tm) -> ty -> tm.
type app_tyty ty -> ty -> ty.
type app_tytm ty -> tm -> ty.
type app_tmty tm -> ty -> tm.
type app_tmtm tm -> tm -> tm.

The abstraction, product, and application operators are named according to the syntactic
category of the objects that are abstracted or applied in each case. The abs tmtm operator is
analogous to abs in ST, and app tmtm is analogous to app. The constant prod tmty is a gen-
eralization of the arrow --> in ST: the ST type A --> B is the CC type (prod_tmty X\B A).
In addition, we introduce the constant prop to denote the CC constant Prop.

Using the above syntax, the polymorphic identity function [A : Prop][x : A]x which has
type (A : Prop)(x : A)A is represented as the term (abs_tytm A\(abs_tmtm X\X A) prop).
The object level type of this term is represented by the term (prod_tyty A\(prod_tmty X\A
A) prop).

We encode the proof system for CC that appears in [Hue87] by introducing the three
predicates:

8



type has_type tm -> ty -> o.
type has_kind ty -> ki -> o.
type is_CCType ki -> o.

As in ST, the atomic proposition (has type M A) encodes the assertion that M has type A.
Similarly (has kind A K) asserts that type A has kind K. We will use the letters K and L
to denote kinds. Finally, by (is CCType K), we mean that K belongs to the class of objects
given by the constant Type, which in CC denotes the “type” of all kinds. We use CCType
here to avoid confusion with the use of the word “type” to mean an object of syntactic
category ty. Let CC denote the signature containing the above 16 constants.

The abstraction rule for terms in CC is given by the Lλ(CC) formula:

has_type (abs_tmtm M A) (prod_tmty B A) :-
pi X\(has_type X A => has_type (M X) (B X)),
pi X\(has_type X A => has_kind (B X) prop),
has_kind A prop.

In the first subgoal of this formula, as in the abstraction rule for ST, pi and => are used to
introduce a new constant and assumption. Since abstractions are allowed in types, the new
constant c may appear in (B c) as well as in (M c). The last two subgoals insure that A
and B are well-formed types. The other three abstraction rules are similar:

has_type (abs_tytm M K) (prod_tyty A K) :-
pi X\(has_kind X K => has_type (M X) (A X)),
pi X\(has_kind X K => has_kind (A X) prop),
is_CCType K.

has_kind (abs_tmty A B) (prod_tmki K B) :-
pi X\(has_type X B => has_kind (A X) (K X)).
pi X\(has_type X B => is_CCType (K X)),
has_kind B prop.

has_kind (abs_tyty A K) (prod_tyki L K) :-
pi X\(has_kind X K => has_kind (A X) (L X)),
pi X\(has_kind X K => is_CCType (L X)),
is_CCType K.

There are also four rules for application. These rules will make use of a substitu-
tion operation as described in Section 3. For CC, we need the six substitution predicates
subst tyki, subst tmki, subst tyty, subst tmty, subst tytm, and subst tmtm defined
over the signature of CC. The application rule for CC terms is:

has_type (app_tmtm M N) C :-
subst_tmty N B C,
has_type M (prod_tmty B A),
has_type N A.

9



The use of subst_tmty here determines that C is the type obtained by substituting the term
N for the bound variable in B, an abstraction from terms to types. Operationally, there may
be many solutions for B. In a depth-first interpreter, backtracking may be necessary to find
the one such that M has type (prod tmty B A). Also, as in ST, N must have type A. The
other three application rules are similar:

has_type (app_tmty M A) C :-
subst_tyty A B C, has_type M (prod_tyty B K), has_kind A K.

has_kind (app_tytm A M) L :-
subst_tmki M K L, has_kind A (prod_tmki K B), has_type M B.

has_kind (app_tyty A B) L :-
subst_tyki B K L, has_kind A (prod_tyki K P), has_kind B P.

The remaining CC rules involve kind and type formation. They are:

is_CCType prop.

is_CCType (prod_tyki K L) :-
pi X\(has_kind X L => is_CCType (K X)), is_CCType L.

is_CCType (prod_tmki K A) :-
pi X\(has_type X A => is_CCType (K X)), has_kind A prop.

has_kind (prod_tyty A K) prop :-
pi X\(has_kind X K => has_kind (A X) prop), is_CCType K.

has_kind (prod_tmty A B) prop :-
pi X\(has_type X B => has_kind (A X) prop), has_kind B prop.

Various subsystems of CC are obtained by allowing rules of equality between types and
kinds. For example, if types and kinds are to be considered equal up to βη-conversion, we
can use a convertibility operation as presented in Section 2. For CC, this operation requires
three conv predicates for the three syntactic categories: conv_ki, conv_ty, and conv_tm.
We will also need three red1 and two redex predicates. (There are no redexes for kinds.)
All of these operations will be defined by recursion over the signature of CC. Below are the
inference rules for type and kind equality that make use of the conversion operation.

has_kind A K :- has_kind A L, conv_ki K L.
has_type M A :- has_type M B, conv_ty A B.

This completes the specification for CC.

In general, a type judgment in CC has the form Γ ` M : A where Γ is an initial context.
We can encode such contexts in several equivalent ways. One way is to add assumptions
in the form of Lλ formulas. For example, let Γ be [B : Prop][f : B → B]. This context
corresponds to the assumptions:

10



has_kind b prop.
has_type f (prod_tmty X\b b).

Another possibility would be to encode the entire judgment Γ ` M : A as the Lλ(CC)
formula:

pi B\(has_kind B prop => pi F\(has_type F (prod_tmty X\B B) => has_type M A)).

where M and A are the encoding of M and A into the Lλ abstract syntax for CC. In proving
this formula, pi and => are used to generate two new signature items for B and F, and
assumptions are added about their types before attempting to prove (has type M A). A
depth-first logic program interperter would not be able to handle the the last two rules above
involving conversion: those two clauses are “left recursive” and cause any such interpreter
to loop immediately. Hence, type checking and type inference would be incomplete with
such rules. Alternatively, we could write this program to always convert CC objects to
normal form before applying rules for kind and type checking. In such a program, the last
two rules would not be needed, and using an inductive argument similar to the one used
for ST, the program would be complete for type checking.

For CC, where terms are equated with proofs and types with formulas, in addition to
type checking and type inference, we may want to do theorem proving, where the type
or formula is specified and the proof or term must be discovered. For this task, a depth-
first interpreter is of very limited use. Alternatively, we could implement inference rules as
named tactics and then, using the tactic interpreter specified in [FM88], we could develop
a tactic theorem prover for CC. Only a modest extension to Lλ would allow such tactic
implementations.

5 Conclusion

We have illustrated the use of the language Lλ as a meta language for specifying type
checking and inference for the object languages ST and CC. Of course, the techniques
described here are very general and can be applied to many other typed λ-calculi. In
particular, we have specified in Lλ and implemented in λProlog the second-order poly-
morphic λ-calculus, the ω-order polymorphic λ-calculus as presented in [Pfe88], and the
logical framework [HHP87]. The specifications for these type systems are easily seen as
simplifications of the implementation for CC given above.

For calculi with no abstractions over types, a more direct encoding of type judgments
into Lλ is possible. For example, it is possible to translate typing judgments of ST and the
logical framework directly into goal formulas of Lλ in such a way that the type judgment
is valid if and only if the goal formula is intuitionistically provable. In such logics, it is not
necessary to code the inference rules for has_type, for example, since the effects of these
rules are already present in Lλ [Fel87].

Acknowledgements The authors would like to thank Thierry Coquand, Elsa Gunter,
John Hannan, and Frank Pfenning for discussions regarding the work in this abstract. The

11



authors are supported in part by ARO grant DAA29-84-9-0027, NSF grant CCR-87-05596,
DARPA grant N000-14-85-K-0018, and ONR grant N00014-88-K-0633.

References

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2/3):95–120, February/March 1988.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional programs.
In Proceedings of the ACM Conference on Principles of Programming Languages,
pages 207–212, 1982.

[EP89] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of
λProlog. May 1989.

[Fel87] Amy Felty. Implementing theorem provers in logic programming. November 1987.
Dissertation Proposal, University of Pennsylvania, Technical Report MS-CIS-87-
109.

[FM88] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-
gramming language. In Ninth International Conference on Automated Deduction,
Argonne Ill., May 1988.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Symposium on Logic in Computer Science, pages 194–204, Ithaca, NY,
June 1987.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[HM88a] John Hannan and Dale Miller. Enriching a meta-language with higher-order fea-
tures. In Workshop on Meta-Programming in Logic Programming, Bristol, June
1988.

[HM88b] John Hannan and Dale Miller. Uses of higher-order unification for implementing
program transformers. In K. Bowen and R. Kowalski, editors, Fifth International
Conference and Symposium on Logic Programming, MIT Press, 1988.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and
Lambda Calculus. Cambridge University Press, 1986.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

[Hue87] Gérard Huet. A uniform approach to type theory. In Proceedings of the Institute
on Logical Foundations of Functional Programming, Austin, Texas, June 1987. To
appear.

[Mey81] Albert Meyer. What is a model of the lambda calculus? Information and Control,
52(1):87–122, 1981.

12



[Mil88a] Dale Miller. Solutions to λ-term equations under a mixed prefix. September 1988.
Unpublished draft.

[Mil88b] Dale Miller. Unification under a mixed prefix. September 1988. Unpublished
draft.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach to manipu-
lating formulas and programs. In IEEE Symposium on Logic Programming, San
Francisco, September 1987.

[MN88] Dale Miller and Gopalan Nadathur. λProlog Version 2.7. July 1988. Distribution
in C-Prolog and Quintus sources.

[MNPS] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. To appear in the Annals of Pure
and Applied Logic.

[MNS87] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop formu-
las and uniform proof systems. In Symposium on Logic in Computer Science,
pages 98–105, Ithaca, NY, June 1987.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In K. Bowen and
R. Kowalski, editors, Fifth International Conference and Symposium on Logic
Programming, MIT Press, 1988.

[PE88] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, 1988.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-order unification.
In Proceedings of the ACM Lisp and Functional Programming Conference, 1988.

13


