
Proof search when equality is a logical
connective:

Extended Abstract

Alexandre Viel and Dale Miller

INRIA-Saclay & LIX/Ecole Polytechnique
Palaiseau, France

Abstract. We explore how one might do proof search in a simple, first-
order logic where equality is treated as a logical connective. That is,
equality over first-order terms has a left and right introduction rule and
the formulation of the left-introduction rule involves unification of eigen-
variables. The usual strategy for implementing proof search also involves
unification, but this time for “existential variables” (not eigenvariables).
In this paper, we show such unification over these two species of variables
can at times be solved by a reduction to a particular subset of second-
order unification problems that we call the argument-constrained subset.
We then show that solving such constrained unification is undecidable.
Finally, we show that solvability of a given second-order unification prob-
lem can be related to solvability of an argument-constrained version of
that unification problem.

1 Introduction

We consider a first-order logic in which equality on first-order terms is interpreted
as the equality on trees. Sequents are written as the triple Σ;Γ −→ ∆ where Σ
is a set of eigenvariables and Γ and ∆ are multisets of formulas all of which can
contain free variable only if they appear in Σ.

The rules for first-order quantification are

x,Σ;Γ −→ B(x),∆
Σ;Γ −→ ∀x.B(x),∆

∀R

Σ;Γ −→ B(t),∆
Σ;Γ −→ ∃x.B(x),∆

∃R

where t is a term built on the signature Σ. In the ∀R rule, the eigenvariable x is
assumed to not be in Σ and, as a consequence, it is not free in the concluding
sequent. The rules for first-order equality are

Σ;Γ −→ t = t,∆
eqR

Σ;Γ, t = t′ −→ ∆
eqL†

θΣ; θΓ −→ θ∆

Σ;Γ, t = t′ −→ ∆
eqL‡

The eqL rule is rewritten as two rules: the proviso † requires that t and t′ are not
unifiable and the proviso ‡ requires that t and t′ are unifiable with most general
unifier θ. The signature denoted by θΣ is the one that results from removing

from Σ all those variables that are in the domain of θ and add all those variables
that are free in some term in the range of θ.

This treatment of equality was proposed by Schroeder-Heister [9] and by
Girard [3]. In this treatment, it is a theorem that equality is, for example, an
equivalence relation. This approach stands in contrast to other approaches where
equality is a non-logical predicate that is axiomatized (see, for example, Gallier’s
textbook [2]). In such a setting, equivalence is proposed as an axiom: additionally,
equality could be extended to allow for much richer identification of terms, such
as that which can be found in, say, reasoning about strings or within various
algebras.

2 Representing unification as a formula

We want to study the first-order mechanics independently from the rest of the
logic: for example, the logic might be linear or classical or intuitionistic. We
shall assume that propositional logical connective (e.g., conjunction, implication,
disjunction) do not interact with the first-order structures. As a consequence,
we shall concentrate our efforts on those connectives that deal directly with
the first-order term structure: in particular, the quantifiers and equality. For
any given proof tree, we can extract a sub-tree (a skeleton) containing all the
information relevant to the first-order logic. Then we can translate that sub-
tree into a formula containing exactly the first-order information that the proof
contains.

The subtree is obtained by erasing all the rules but the ones above, dealing
with the signature and equality of terms. Then, the leaves of the subtree are the
eqR rules, and the void eqL† rules. The eqL‡ rules are unary nodes in the tree.
The ∀ and ∃ rules are kept as unary nodes that may add to the signature. The
other branching will be translated with a conjunction ∧. If a proof subtree has
no use of any first-order rule, (and in particular does not have any eqL† or eqR
leaf),then it uses no first-order information and can be completely omitted in
the extraction.

Thus the first-order information of the proof can be described by a formula
Φ of the following grammar.

Φ ::= t = t′ | (t = t′) ⊃ Φ | Φ ∧ Φ | ∃x.Φ | ∀x.Φ

We use the operator ∧ to represent the branching of the proof tree, it is not
related to any connector of the original logic.

Another way to think of this extraction process is to consider the idealized
interpreter for Lλ given in [6]. That interpreter’s state was encoded using state
formulas that are composed of the logical connectives ∀, ∃, and ∧ and equality
judgments and sequent judgment. The order in which one schedules solving
equality and sequent judgments is flexible, one could, in fact, attempt to solve
all sequent judgments first. If they are all removed, what is left is a formula
involving ∀, ∃, ∧, and equality judgments. The main difference between [6] and

2

this paper is that inequalities and hypothetical equalities appear (equality was
not treated as a logical connective in [6]).

Example. Consider the formula

∀a∀b∃X. ((a = b ⊃ X = b) ∧X = a).

A naive approach to solving this problem could select the first conjunction (a =
b ⊃ X = b) and then substitute b for a, leaving us to prove the (unchanged)
formula X = b. Thus, we could, in essence, be trying to prove X = b ∧X = a,
which fails. This approach failed because in (a = b ⊃ X = b) there are two
solutions for X: either X = a or X = b, and we were unlucky in our choice of
the substitution to apply. Instead, in order to simplify (a = b ⊃ X = b) while
keeping the two solutions, we have to make explicit that a and b can occur in
X. If we replace X with (X ′ a b) (where X ′ is a second-order variable) then it
is correct that (a = b ⊃ (X ′ a b) = b) is equivalent to X b b = b. Thus, we are
trying to prove X b b = b ∧X a b = a, and we find the solution X = λaλb. a.
This example illustrates the usefulness of using second-order variables to study
this class of formulas. End of example.

3 Translation into second-order unification

The proof of such an extracted formula Φ contains all the data needed to solve
the unification problems implied by an attempt to build a proof. To make the
unification problem embedded in such an extracted formula more apparent, we
can transform it directly into a single, second-order unification problem.

First, we transform the formula into a normal form of the shape

∃Y1 . . .∃Ym.[C1 ∧ . . . ∧ Cn], (n,m ≥ 0)

where the formulas Ci are conditional equations (also called clauses): that is,
they are formulas of the form

∀x1 · · · ∀xp[s1 = t1 ⊃ . . . ⊃ sq = tq ⊃ s0 = t0]. (p, q ≥ 0)

The conjunction s1 = t1 ∧ . . . ∧ sq = tq will be called the condition and s0 = t0
the target of this clause. In order to move existential quantifiers to the outermost
location, the type of the existential variables are raised [7]: in particular, in the
original formula, the existentials are quantified over the type of terms ι. In the
resulting formula, their raised type will be ιn → ι where n is the number of
universal quantifiers preceding their introduction.

Within Φ formulas, we note the following restriction on variable occurrences:
if an existential variable, say, Yi : ιq → ι (for some q ≥ 0) appears in the scope
of the quantifiers ∀x1 · · · ∀xp then Yi is applied to exactly the first q variables in
the that list: that is, Yi occurs as (Yi x1 . . . xq).

3

The following equivalences are sufficient to rewrite Φ formulas into those
involving only clauses.

ψ ⊃ (φ1 ∧ φ2) ≡ (ψ ⊃ φ1) ∧ (ψ ⊃ φ2)
ψ ⊃ (∀x φ) ≡ ∀x (ψ ⊃ φ)
ψ ⊃ (∃τx φ) ≡ ∃τx (ψ ⊃ φ)

(∃τx φ1) ∧ φ2 ≡ ∃τx (φ1x ∧ φ2)
∀x (φ1 ∧ φ2) ≡ (∀x φ1) ∧ (∀x φ2)

∀x ∃τy φ ≡ ∃ι→τh ∀x φ[(hx)/y]

Before we proceed, we shall assume that the underlying signature of constants
contains at least two different constructors. Notice that this inserts into our logic
a false formula: that is, if c (of arity, say, 1) and d (of arity, say, 2) are two different
constructors then false is provably equivalent to the formula ∃x∃y.(c x) = (d x y).

The problem of solving (proving) some of these clauses can be reduced to
equivalent second-order unification problems. We shall focus on such a subset in
the rest of this paper.

Many conditions can be reduced using provable equivalences. In particular,
the equivalences

c(s1, . . . , sp) = c(t1, . . . , tp) ≡ [s1 = t1 ∧ . . . ∧ sp = tp] and c(s̄) = d(t̄) ≡ ⊥

(where c and d are different constructors) can be used to remove all conditional
equalities in a clause involving two terms with constructors at their heads. Ad-
ditionally, let x be either an existentially or universally quantified variable and
let t be a term containing x strictly: that is, there is an occurrence of x in t
such that the path from the root of t to that occurrence of x contains one or
more constructors and does not contain any existentially (raised) variable. Then
the two equivalences x = x ≡ > and x = t ≡ ⊥ can also be used to simplify
clauses. Repeatedly using the above equivalences essentially attempts to per-
form the computation of first-order most general unifiers. Finally, one can use
the (provable) equivalence (∀x.x = t ⊃ B(x) ≡ B(t), where x is not free in
t, to replace some conditions within a clause with substitution instances. This
additional rewriting phase is then used to apply the computed most general
unifier.

Clauses that remain after this phase of simplification may still have non-
trivial conditions. In particular, these conditions may be of the following form.

– x = t where every occurrence of (the universally quantified variable) x in t
is in the scope of an existential (raised) variable. In this case, it may or may
not be the case that x occurs free in substitution instances of t.

– (X s̄) = (Y t̄) or (X s̄) = (c t̄) whereX and Y are raised existential variables,
c is a constructor, and s̄ and t̄ are lists of terms. There may or may not be
instantiations of X and Y that make these equations true.

We shall treat any clause that remains with such conditions as suspended con-
strains on the search for solutions to Φ-formulas. That is, we shall not explicitly

4

attempt to find unifiers for them. Such suspended clauses may change status
when substitutions are made for existential variables: thus, we can then chose to
reconsider them in an attempt to further simplify them. Here, we only propose
to search for unifiers for clauses without conditions.
Example. Consider the formula

∀a ∃X ∀b ∃Y [(a = b ⊃ X = Y) ∧ (a = s(b) ⊃ X = s(Y))].

After transforming the formula, we get

∃X : ι→ ι ∃Y : ι→ ι→ ι

[
(∀a ∀b. a = b ⊃ X a = Y a b) ∧
(∀a ∀b. a = s(b) ⊃ X a = s(Y a b))

]
(Notice that the type of X and Y have changed between these two formulas.)
These conditional equations can be simplified further but using various equiva-
lences of the form (∀x.x = t ⊃ B x) ≡ (B t) to get

∃X : ι→ ι ∃Y : ι→ ι→ ι[(∀a. X a = Y a a) ∧ (∀a. X (s a) = s(Y (s a) a))]

which is another way to write the the second-order unification problem (for free
variables X : ι→ ι and Y : ι→ ι→ ι)

λa. X a = λa. Y a a
λa. X (s a) = λa. s (Y (s a) a)

The solutions to this unification problem are the pairs (X = λa.sn(a);Y =
λab.sn(b)). We get a bijection between the solutions of this problem and natural
numbers. End of example.

The class of second-order unification problems that arise by normalizing and
simplifying our original Φ-formulas are of a special form. Notice that all argu-
ments to (raised) existential variables in an equality are prefixes of a common list
of arguments. This specific structure arises from the use of raising to flatten the
first-order quantificational structure. Such regularity suggests a new notation:
instead of writing raised variables applied to arguments, such as (X t1 . . . tn), we
shall instead write simply X̂ along with an explicit context [t1, . . . , tn, . . .]. The
type of X is needed to determine which prefix of this context is needed as its
argument list. For example, the unification problem above will be written more
simply as

X̂ = Ŷ [a a]
X̂ = (s Ŷ) [(s a) a]

Reconstructing the second-order unification problem from this notion is straight-
forward: simply replace the hatted variable, say X̂, with X applied to the prefix
of the bracketed context following the equation of length determined from X’s
type. Thus, in the first equation, X̂ is replaced by (X a) but in the second equa-
tion it is replaced by (X (s a)). Also, even though the names of the free variables
in the context could be renamed to anything, we choose to keep them close to
the name of the first-order variables they are replacing.

5

An argument-constrained (second-order) unification problem is a list of con-
strained equalities of the form s = t [r1 . . . rn] such that s, t and r1, . . . , rn are
first-order terms with free hatted variables.

While trying to solve a unification problem, if we have not specified a variable
name for the arguments of existential variables, we allow the use of “projections”
to refer to them in the body of the existential variables: in particular, πi can be
used to denote the ith argument.

4 Cyclic dependencies

Given a set of equations of the form above, we can graph the direct dependencies
between existential variables. If we have an equation X = t (or t = X) where
Y occurs in t, we have an arrow from X to Y in the direct dependencies graph
of the problem. The occasional existential variables appearing in contexts of
equations, and so in the arguments of X form indirect dependencies, and will be
ignored in this section.

Having cycles of dependencies can lead to complex behavior: in the previous
example, we found the simplest cyclic dependencies between X and Y , which
forced the solutions to the problem to have the structure of the natural numbers.

Here we study in more depth what can be done via those cycles. Let p be
a generic binary constructor, and consider the following argument-constrained
unification problem:

V0,W : ιn −→ ι Y, Z : ιn+2 −→ ι

Ŷ = Ẑ [t1 . . . tn ? ?]
Ŷ = p(V̂0, Ẑ) [t′1 . . . t

′
n ? p(Ŵ , ?)]

Here, ? is a variable name that does not appear in the terms ti, t′i. The equality of
second-order terms after application of a context is still an equivalence relation
on second-order terms. Let us denote the equality after applying the first context
with =1 and equality after applying the second context with =2. In this problem,
we have a cycle of dependencies

Z =1 Y =2 p(V,Z)

We can solve this starting in two ways.

– Y can start with the constructor p, and then so does Z: There are second-
order variables W1, V1, Y

′, Z ′ of the same type as Y and Z such that

Y = p(W1, Y
′) Z = p(V1, Z

′)

The equations now become:

V0 =2 W1 =1 V1 and Z ′ =1 Y
′ =2 p(V1, Z)

We have again to solve the same problem, except V0 has changed into a V1.

6

– Y and Z can be one of their arguments. There is only one way to do it:

Y = πn+2 Z = πn+1

The equations now simply become V0 =2 W

Thus the solutions are all of the following form:

Y = p(W1, p(W2, . . . p(Wm, πn+2) . . .))

Z = p(V1, p(V2, . . . p(Vm, πn+1) . . .))

with V0 =2 W1 =1 V1 =2 W2 =1 V2 . . .Wm =1 Vm =2 W

In particular, the problem is solvable if and only if V0(=2=1)∗W .
Note that even though =1 and =2 are equivalence relations by themselves,

they may be different, so their composition may not be one, which is why
(=2=1)∗ can become an interesting relation that can not be described by a
single simple context.

From the fact that =1 and =2 are symmetric and reflexive relations, we can
show that (=1=2)∗ is also symmetric reflexive, so is equivalent to (=2=1)∗. If
we switch the ti with the t′i, the solvability of the problem does not change, only
the solutions for Y and Z will be slightly different.

If we recall how the contexts are related to some normalized conditions γ1

and γ2, V0 is related to W if and only if we can rewrite V0 into W assuming
those conditions, i.e. we have a rewriting proof of (γ1 ∧ γ2) −→ V0 = W , where
the rewrite rules are the equalities in γ1 and γ2.

Using a longer cycle, we can mix three or more different contexts or conditions
in the same way.

4.1 Algebraic datatypes

Using this simple scheme, we can force two arbitrary existential variables to be
related in a very precise way. We can for example use it to force a variable to be
of a simple algebraic type.

Suppose you want to force a variable X : ιn −→ ι, to be built on a selection
{Ci} of m constructors, and to use a strict subset S of its n arguments. Let
us denote by the variables (xj) the p arguments of X that are in S, (yk) the q
arguments of X that are not in S.

We pick an additional variable ?. We want to find two contexts, inducing two
equalities =1 and =2 such that their composition allows these rewriting steps:

∀i ∈ {1 . . .m} ? =2=1 Ci(?̄)
∀j ∈ S, ? =2=1 xj

Then, X is of the desired datatype if and only if ?(=2=1)∗X.
To do that, we add another m variables (zi). We pick γ1 = ∀i, zi = Ci(?̄)

and γ2 = ∀i, zi = ? ∧ ∀j, xj = ?. Using this, we have ? =2 zi =1 Ci(?̄), and ? =2

7

xj =1 xj . Putting everything together, we use a cycle between two existential
variables Y, Z : ιp+q+m+3 −→ ι. Assuming that S represents the first p of the
arguments of X, X has the desired structure if and only if there exists solutions
to the following equations:

Ŷ = Ẑ [x1 . . . xp y1 . . . yq C1(?̄) . . . Cm(?̄) ? � �]
Ŷ = p(X̂, Ẑ) [? . . . ? y1 . . . yq ? . . . ? ? � p(?, �)]

5 Undecidability of first-order formulas

We show in this section how to use the cyclic dependencies to embed simple
arithmetic operations, as well as translate any second-order unification problem
into an argument-constrained second-order unification problem

5.1 Embedding of Diophantine equations

Goldfarb [4] encoded natural numbers, addition, and multiplication in second-
order unification problems in order to show its undecidability. The encoding is
as follows:

Suppose we have a unary constructor s and a ternary constructor t.
X : ι −→ ι is the representation of a natural if and only if X (s(a)) = s(X a)
X1 +X2 = X3 if and only if X2 (X1 a) = X3 a
X1X2 = X3 if and only if there exists Y : ι3 −→ ι, such that

Y a b t(X3 a,X2 b, ?) = t(a, b, Y (X1 a) s(b) ?)

In a way, this equation says that one can go from 0 to X3 by adding X1 in
exactly the same number of steps as one goes from 0 to X2 by adding 1.

The translation into argument-constrained second-order unification is as fol-
lows : A natural is a solution (X : ι −→ ι, Y : ι2 −→ ι) to the equations

X̂ = Ŷ [a a]
X̂ = s(Ŷ) [s(a) a]

A solution (X = sn(π1), Y = sn(π2)) = n̄ to this system corresponds to the
natural n.

If n̄i = (Xi, Yi), then n1 + n2 = n3 if and only if

X̂3 = Ŷ2 [a X̂1]

Indeed, after applying the context, X̂3 = X3 a = sn3(a) and Ŷ2 = Y2 a (X1 a) =
Y2 a (sn1(a)) = sn2(sn1(a))

And finally, n1n2 = n3 if and only if there is a solution (Z,Z ′ : ι6 −→ ι) to

Ẑ = Ẑ ′ [a b a b ? ?]
Ẑ = t(X̂3, Ŷ2, Ẑ ′) [a b X̂1 s(b) ? t(a, b, ?)]

8

with the additional constraint that Z is built with the constructors t(), s(),
but must not use arguments 1 and 2, while Z ′ is built with the same constructors,
and must not use arguments 3 and 4. So there must be solutions (V, V ′,W,W ′ :
ι11 −→ ι) to

V̂ = V̂ ′ [a b c d e f s(?) t(?, ?, ?) ? � �]
V̂ = p(Ẑ, V̂ ′) [a b ? ? ? ? ? ? ? � p(?, �)]
Ŵ = Ŵ ′ [a b c d e f s(?) t(?, ?, ?) ? � �]
Ŵ = p(Ẑ ′, Ŵ ′) [? ? c d ? ? ? ? ? � p(?, �)]

These added constraints force the rewriting steps a −→ X1a and b −→ s(b)
to always happen in the computation seen in the variables Z and Z ′, so they are
always done synchronously.

For example, the Z and Z ′ encoding the statement 3 ∗ 2 = 6 are:

Z = t(s3(π3), s(π4), t(π3, π4, π6))
Z ′ = t(s3(π1), s(π2), t(π1, π2, π5))

Those two terms are solutions of the system:
Applying the context [a b a b ? ?] gives

Ẑ = Ẑ ′ = t(s3(a), s(b), t(a, b, ?))

Applying the context [a b s3(a) s(b) ? t(a, b, ?)] gives

Ẑ = t(s6(a), s2(b), Ẑ ′) = t(s6(a), s2(b), t(s3(a), s(b), t(a, b, ?)))

If we do not restrain the arguments of Z and Z ′, we get all kinds of wrong
computations, since the rewriting is no longer synchronous, such as 3 ∗ 0 = 6:

Z = t(s3(π3), π2, t(π3, π2, π6))
Z ′ = t(s3(π1), π2, t(π1, π2, π5))

Applying the context [a b s3(a) s(b) ? t(a, b, ?)] gives

Ẑ = t(s6(a), b, Ẑ ′) = t(s6(a), b, t(s3(a), s(b), t(a, b, ?)))

which would be valid if not for the type constraints on Z and Z ′.
Using these embeddings, one can embed any Diophantine problem into an

argument-constrained second-order unification problem. In particular, this is
enough to show using the undecidability of Hilbert’s tenth Problem, that this
class of problems is undecidable.

In our construction, we had problematic cycles put on top of each other.
There are cycles between the variables V, V ′,W,W ′, which constrains the vari-
ables Z,Z ′. In turn, there is a cycle between Z,Z ′ that constrains the variables
Xi, Yi. And lastly, there are cycles between Xi, Yi that forces them to be natural
numbers.

So one could try to define a notion of cycle height describing the complexity
of the problem. A cycle height of three is enough to embed undecidable problems.
But it is not known whether less complex problems with cycle height one or two
are decidable.

9

5.2 Embedding second-order unification problems

Using these structure-enforcing cycles, one can also translate a standard second-
order unification problem into an argument-constrained second-order unification
problem, and if one wishes, into the satisfiability of a Φ-formula.

We want to translate a single equation t = t′, solving for existential variables
Yi : ιni −→ ι. We will need to declare the set S of constructors Ci appearing
in the equation. If there is a solution to the original problem using constructors
that do not explicitly appear in the problem, then those constructors can be
uniformly changed into anything else, so we do not lose completeness if we are
only searching for solutions using only this selection S of constructors.

If necessary, we eta-expand the terms t and t′ in the equation so that every
occurrence of a Yi does come with all its ni arguments. We will need to make
distinct variables for each occurrence of Yi in the problem. If the jth occurrence
of Yi is Yi t1 . . . tni

, we create one existential variable Y j
i and ni variables

xj
(i,1) . . . x

j
(i,ni)

, and we name tj(i,k) = tk.

We have to order all the xj
(i,k) and the Y j

i so that the dependency order is

compatible with the sub-term ordering: If there is an occurrence Y j′

i′ in tj(i,k),

then we want to have Y j′

i′ < xj
(i,k). We also need to have xj

(i,k) < Y j
i in order for

Y j
i to be able to depend on its intended arguments.

We pose the constraint that Y j
i are terms depending on the xj

(i,k) only, and
using the finite set of constructors S. In order to do this, we need two extra
existential variables and a cycle between two contexts that describe all the type
of all the Y j

i .
We pose the constraint that every Y j

i represents the same variable Yi : ιni −→
ι: (∧

xj
(i,k) = xj′

(i,k)

)
−→

∧
Y j

i = Y j′

i

Then we properly translate the equation t = t′:(∧
xj

(i,k) = t̃j(i,k)

)
−→ t = t′

where t̃j(i,k) is the term tj(i,k) with each occurrence of an old existential variable

Yi replaced with its corresponding new existential variable Y j
i .

If we ordered the variables and existential variables in an order compatible
with the subterm ordering, it ensures that the conditions of these two equa-
tions admit a context (they have a most general unifier whatever Y j

i may be
instantiated into).

Then this new unification problem can be translated as a first-order formula,
and has a solution if and only if the original second-order unification problem
has one.

Thus we only need four distinct contexts to have a simulation of arbitrary
second-order unification problem. It is not known if a problem with three or less
distinct contexts is decidable.

10

Example. Consider the second-order unification problem Y a = Y b where
Y : ι → ι and a and b are two constant constructors. The solutions to this
problem are those substitutions for Y that involve a top-level vacuous binder.
We have two occurrences of Y , so we will need two existential variables Y1, Y2

and two variables as their arguments, x1, x2. When ordering the variables, the
only constraints are xi < Yi, so we can choose the following ordering in the
prefix:

∀x1∃Y1∀x2∃Y2

meaning we have the types Y1 : ι→ ι, Y2 : ι2 → ι.
The type constraints are simple. Y1 can only depend on x1 so we do not need

to add any constraint on Y1. On the other hand, we have to make sure Y2 does
not use x1. In fact, Y2 can only be x2, a, or b. We do not need to use a cycle to
force this, instead we say that there exists Z2 : ι4 → ι such that

Ŷ2 = Ẑ2 [x1 x2 a b]
Ẑ2 = x2 [x1 x2 x2 x2]

The rest of the translation is

Ŷ1 = Ŷ2 [x x]
Ŷ1 = Ŷ2 [a b]

The solutions to the translated problems are the solutions of the original prob-
lems that only use the constructors a and b, so there are two of them. For
example, the whole solution corresponding to Y = a is:

Y1 = λx1. a
Y2 = λx1x2. a
Z2 = λx1x2x3x4. x3

End of example.

6 Related work and conclusions

There has, of course, been a lot of work already done with solving inequalities
within, say, a logic programming setting, under the topics “disunification” and
“term-complementation”: see, for example, the early papers by Barbuti et. al. [1]
and Maher [5]. This problem has also been studied in the setting of higher-order
logic by Momigliano and Pfenning [8]. Most of these papers consider reasoning
about exact nature of the signature of constants over which unification and
disunification is carried out. Here, this is less important since we are simply
considering the reduction of one kind of unification problem to another and not
with the listing of their complete set of solutions.

Acknowledgments. We thank Gopalan Nadathur for his comments on the first
part of an earlier draft of this abstract.

11

References

1. R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of logic
programs: Examples and implementation techniques. In Proc. of the TAPSOFT ’87,
number 250 in LNCS, pages 96–110. Springer, 1987.

2. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row, 1986.

3. J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, Feb. 1992.

4. W. Goldfarb. The undecidability of the second-order unification problem. Theoret-
ical Computer Science, 13:225–230, 1981.

5. M. J. Maher. Complete axiomatizations of the algebras of finite rational and infinite
trees. In Proceedings of LICS, pages 348–357, 1988.

6. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. of Logic and Computation, 1(4):497–536, 1991.

7. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

8. A. Momigliano and F. Pfenning. Higher-order pattern complement and strict λ-
calculus. ACM Trans. on Computational Logic, 4(4):493–529, Oct. 2003.

9. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, IEEE, June 1993.

12

