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Abstract. Type soundness is an important property of modern pro-
gramming languages. In this paper we explore the idea that well-typed
languages are sound : the idea that the appropriate typing discipline over
language specifications guarantees that the language is type sound. We
instantiate this idea for a certain class of languages defined using small
step operational semantics by ensuring the progress and preservation
theorems. Our first contribution is a syntactic discipline for organizing
and restricting language specifications so that they automatically satisfy
the progress theorem. This discipline is not novel but makes explicit the
way expert language designers have been organizing a certain class of
languages for long time. We give a formal account of this discipline by
representing the language specification as (higher-order) logic programs
and by giving a meta type system over that collection of formulas. Our
second contribution is an analogous methodology and meta type sys-
tem for guaranteeing that languages satisfy the preservation theorem.
Ultimately, we have proved that language specifications that conform to
our meta type systems are guaranteed to be type sound. We have im-
plemented these ideas in the TypeSoundnessCertifier, a tool that takes
language specifications in the form of logic programs and type checks
them according to our meta type systems. For those languages that have
passed our type checker, our tool could automatically produce a proof of
type soundness that can be machine-checked by the Abella proof assis-
tant. This gives us high confidence on our type systems. For those lan-
guages that fail our type checker, the tool pinpoints the design mistakes
that hinder type soundness. We have applied the TypeSoundnessCerti-
fier tool to a large number of programming languages, including those
with recursive types, polymorphism, letrec, exceptions, lists and other
common types and operators.

1 Introduction

Types and type systems play a fundamental role in programming languages.
They provide programmers with abstractions, documentation, and useful invari-
ants. The run-time behavior of programs is oftentimes a delicate and unpre-
dictable matter. However, through the use of types and good design choices,
programming languages can often ensure that during run-time, desirable prop-
erties are maintained and unpleasant behaviors are eliminated. Of all the prop-
erties that we wish to establish for typed languages, type soundness is one of
the most important. Type soundness can be summarized with Robin Milner’s
slogan that says that well typed programs cannot go wrong : that is, they cannot
get stuck at run-time.



In this paper we explore the idea that well-typed languages are sound : the idea
that the appropriate typing discipline over language specifications guarantees
that the language is type sound.

We instantiate this idea to a certain class of programming languages defined
in small step operational semantics and we follow the approach of Wright and
Felleisen. In their paper A Syntactic Approach to Type Soundness [19], Wright
and Felleisen offered an approach to proving type soundness that has become a
de facto standard and that relies on two key properties: the progress and type
preservation theorems. Progress states that if a program is well-typed then it
is either a value, an error, or it performs a reduction. Type preservation states
that if a program has some type, a reduction step takes it to a program that has
the same type.

Our first contribution is a methodology for organizing and restricting lan-
guage definitions so that they automatically satisfy the progress theorem. An
important aspect of the methodology is the classification of the operators of the
language at hand. For example, some operators are constructors that build val-
ues, such as the functional space constructor λx.e in the simply typed λ-calculus
(STLC). Some other operators are eliminators: e.g., application. Other kinds of
operators are derived operators (such as letrec), errors and error handlers. The
overall discipline is descriptive and simply resembles the way programming lan-
guages have been defined for a long time. For example, among other restrictions,
the discipline imposes that eliminators must have reduction rules for every value
allowed by the type of their argument and that those arguments that need be
evaluated to a value must be set as evaluation contexts.

In our formalization of this descriptive methodology, we represent language
specifications using logic programs. This is a convenient choice since, as has been
argued long ago by Schürmann and Pfenning [15], such specifics are executable,
correspond closely with pen & paper specifications, and have a formal semantics
that can be the subject of proofs. We give a meta type system over language
specifications that directly imposes the mentioned discipline. To make an exam-
ple, the β rule (λx.e) v −→ e[v/x] can be type checked in the following way.
(The application operator is named here as app.)

Γ (app) = elim → Γ (λ) = value → ∅
{1, 2} ⊆ ctx (app)

ctx | Γ ` (app (λx. e) v)→ e[v/x] : app : eliminates λ

That is, the rule is well-typed because the application is an eliminator of the func-
tion type and its eliminating argument, high-lighted, is a value of the function
type. Moreover, the arguments at positions 1 and 2 must be evaluation contexts
for the application. The meta typing rule assigns the type “app : eliminates λ”
so that the type system has a means to check later whether app eliminates all
the values of →, which, in this case, is just the function.

The type preservation theorem is not, generally speaking, ensured by a disci-
pline. However, typing is markedly happening. For the β rule we have to ensure
that the type of (λx.e) v is the same as the type of e[v/x]. However, these are



stlc cbv.mod:

1 module stlc_cbv.
2
3 typeOf (abs T1 E) (arrow T1 T2) :- (pi x\ typeOf x T1 => typeOf (E x) T2).
4 typeOf (app E1 E2) T2 :- typeOf E1 (arrow T1 T2), typeOf E2 T1.
5 typeOf tt bool.
6 typeOf ff bool.
7 typeOf (if E1 E2 E3) T :- typeOf E1 bool , typeOf E2 T, typeOf E3 T.
8 step (app (abs T E) V) (E V) :- value V.
9 step (if tt E1 E2) E1.

10 step (if ff E1 E2) E2.
11 value (abs T1 R2).
12 value tt.
13 value ff.
14
15 % context app E e
16 % context app v E.
17 % context if E e e.

Fig. 1. Example input of the TypeSoundnessCertifier : file stlc cbv.mod. This is the
language specification of STLC with the if operator.

expressions with variables and their types depend on the type assumptions on
their variables: that is, they depend on Γ of typing judgments. Ideally, we need
to check that for all Γ , if Γ ` (λx.e) v : T then Γ ` e[v/x] : T . Such a state-
ment is prohibitive to check due to the quantification over all Γ s. Nonetheless
we are able to offer a methodology for type preservation. The methodology fixes
a symbolic type environment Γ s based on the information extracted from the
typing rules on which the expressions of β rely on. We take a practical approach
by representing Γ s as a conjunction of typing formulae and use entailment for
checking that the types of (λx.e) v and e[v/x] agree. For example, by inspecting
the typing rules for application and abstraction we build and check the formula

` v : T1 ∧ (x : T1 ` e : T2) ⇒ ` e[v/x] : T2.

This approach fits naturally a type system formulation. Analogously to the case
of progress, we devise a meta type system for languages that automatically satisfy
the type preservation theorem.

Ultimately, we have proved that languages that conform to our meta type
systems satisfy both progress and type preservation. This validates the method-
ologies in this paper and, possibly, proves that the invariants that language
designers have been using for a long time are correct. As a consequence of our
results, language specifications that type check successfully are guaranteed to be
type sound: hence the slogan well-typed languages are sound.

Based on our results, we have implemented the TypeSoundnessCertifier tool.
The tool works with language specifications such as that in stlc cbv.mod of Fig-
ure 1. This file contains the formulation of the STLC with the if operator. The
specification language is that of λProlog [9] augmented with convenient context
tags for declaratively specifying evaluation contexts. The TypeSoundnessCerti-
fier tool can input this file and type check the language specification according to
the meta type systems devised in this paper. If type checking succeeds, the tool
automatically generates the theorems and proofs for the progress, type preser-



vation and ultimately type soundness theorems that are machine-checked by the
Abella [2] proof assistant (which can load and reason with such λProlog specifi-
cations). If type checking fails, the tool reports a meaningful error to the user.
Were we to forget the tag at line 15 (% context app E e.), the TypeSoundness-
Certifier would reject the specification and tell the user that the first argument
of the application must be an evaluation context. Were we to forget one of the
reduction rules for if, say line 10, the type checking would fail reporting that
this eliminator for bool does not eliminate all the values of type bool.

In summary, this paper makes the following contributions.

(1) We offer a complete methodology for ensuring the type soundness of
languages (Sections 3, 4 and 5). The target of our methodology is a class of
languages that is based on constructors/eliminators and errors/error handlers,
that is common in programming languages design. This class of languages is
fairly expressive and accommodates modern features such as recursive types,
polymorphism, and exceptions.

(2) We formulate the methodology as a meta type system over language
specifications (Section 6 and 7). We have proved that our meta type system
guarantees the type soundness of languages (Section 8). This validates the com-
mon practice that language designers have been used for long and demonstrates
the idea that well-typed languages are sound.

(3) We implemented the TypeSoundnessCertifier tool that can certify a lan-
guage as being type sound or it can pinpoint design mistakes (Section 9). We
have applied our tool to the type checking of several languages, including vari-
ants of STLC and its implicitly typed version with the following features: pairs,
if–then–else, lists, sums, unit, tuples, fix, let, letrec, universal types, recur-
sive types and exceptions. We have also considered different evaluation strategies
among call-by-value, call-by-name and a parallel reduction strategy, as well as
lazy pairs, lazy lists and lazy tuples. In total, we have type checked 103 type
sound languages. TypeSoundnessCertifier has automatically generated proof of
progress and preservation for each of the type checked languages and these proofs
have been independently check by an external proof checker. This gives us high
confidence in our type systems.

Our tool has not been made public yet. For the vision of interested reviewers,
the tool will remain available at the link: http://cimini.info/esop2017/.

In the next section, we briefly review some terminology in the context of
typed languages that are defined in small step operational semantics.

2 Typed Languages

Let us consider the language Fpl defined in Figure 2. This language is a fairly
involved programming language with integers, booleans, if–then–else, sums,
lists, universal types, recursive types, fix, letrec and exceptions.

Types and expressions are defined by a BNF grammar. Next, language de-
signers decide which expressions constitute values. These are the possible results



Types T ::= Bool | Int | T → T | List T | T + T
Expressions e ::= true | false | if e then e else e

| z | succ e | pred e | isZero e
| x | λx.e | e e
| inl e | inr e | case (x) e e e
| nil | cons e e |
| head e | tail e | isNil e
| ΛX. e | e [T ]
| fold e | unfold e
| fix e | letrec x = e in e
| raise e | try e with e

Values v ::= true | false | z | succ v | λx.e | nil | cons v v
| inr v | inl v | ΛX. e | fold v
| nil | cons v v | fold v

Errors er ::= raise v
Contexts E ::= if E then e else e

| succ E | pred E | isZero E
| E e | v E
| inl E | inr E | case (x)E e e
| cons E e | cons v E | head E | tail E | isNil E
| e [T ] | fold E | unfold E | fix E | letrec x = E in e
| raise E | try E with e

Error Contexts, F , are just Contexts but without the (try E with e) case.

Fig. 2. The syntax of Fpl contains a number of features that are all handled by our
analysis. This language is not minimal since, for example, recursive types can define
booleans and lists. case (x) e e e is short for case e of inlx⇒ e | inr y ⇒ e.

of successful computations. Similarly, the language designer may define which
expressions constitute errors, which are possible outcomes of computations when
they fail.

The top part of Figure 3 shows the type system for Fpl. The type system is an
inference rule system for judgements that, in this paper, have the form Γ ` e : T .
A term that is constructed with the application of a type constructor to distinct
variables is called a constructed type. For example, List T and T1 → T2 are
constructed types. Int is a constructed type as well because it is simply a type
constructor with arity 0. Expressions like fold e and cons e1 e2 are constructed

expressions. Given a typing rule such as
Γ ` e1 : T Γ ` e2 : List T

Γ ` cons e1 e2 : List T
we say

that the high-lighted List T is the assigned type.

The bottom part of Figure 3 defines the dynamic semantics of Fpl. It is
defined by a series of reduction rules. For a formula e −→ e′, e is the source and
e′ is the target of the reduction. In a reduction rule such as (r-head-cons),
i.e. head (cons v1 v2) −→ v1, we say that the first argument of head is pattern-
matched against the constructed expression (cons v1 v2).

The dynamic semantics of a language is also defined by its evaluation con-
texts, which prescribe within which context we allow reduction to take place.
They are defined with the syntactic category Context of Figure 2. For a context
definition such as cons E e we say that the first argument of cons is contextual.

Error contexts define which contexts are allowed to make the whole compu-
tation fail when we spot an error.

We repeat the statement of type soundness. As usual, −→∗ is the reflexive
and transitive closure of −→.



Type System Γ ` e : T

Γ, x : T `x : T Γ ` true : Bool Γ ` false : Bool

Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 then e2 else e3 : T
(t-if)

(t-z)
Γ ` z : Int

(t-succ)
Γ ` e : Int

Γ ` succ e : Int

(t-pred)
Γ ` e : Int

Γ ` pred e : Int

(t-iszero)
Γ ` e : Int

Γ ` isZero e : Bool

(t-lambda)
Γ, x : T1 ` e : T2

Γ ` λx.e : T1 → T2

(t-app)
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

(t-nil)
Γ ` nil : List T

(t-cons)
Γ ` e1 : T Γ ` e2 : List T

Γ ` cons e1 e2 : List T

(t-head)
Γ ` e : List T

Γ ` head e : T

(t-tail)
Γ ` e : List T

Γ ` tail e : List T

(t-isnil)
Γ ` e : List T

Γ ` isNil e : Bool

Γ ` e : T1

Γ ` inl e : T1 + T2

Γ ` e : T2

Γ ` inr e : T1 + T2

(t-case)
Γ ` e1 : T1 + T2 Γ, x : T1 ` e2 : T Γ, x : T2 ` e3 : T

Γ ` (case e1 of inl x⇒ e2 | inr y ⇒ e3) : T

(t-abst)
Γ,X ` e : T

Γ ` ΛX.e : ∀X.T

(t-appt)
Γ ` e : ∀X.T2

Γ ` (e [T1]) : T2[T1/X]

Γ ` e : T [µX.T/X]

Γ ` fold e : µX.T

Γ ` e : µX.T

Γ ` unfold e : T [µX.T/X]

(t-fix)
Γ ` e : T → T

Γ ` fix e : T

(t-letrec)
Γ, x : T1 ` e1 : T1 Γ, x : T1 ` e2 : T2

Γ ` letrec x = e1 in e2 : T2

(t-raise)
Γ ` e : Int

Γ ` raise e : T

(t-try)
Γ ` e1 : T Γ ` e2 : Int→ T

Γ ` try e1 with e2 : T

Dynamic Semantics e −→ e

if true then e1 else e2 −→ e1 (r-if-true)
if false then e1 else e2 −→ e2 (r-if-false)

pred z −→ raise z (r-pred-zero)
pred (succ e) −→ e (r-pred-succ)

isZero z −→ true (r-isZero-zero)
isZero(succ e) −→ false (r-isZero-succ)

(λx.e) v −→ e[v/x] (r-app-lambda)
head nil −→ raise z (r-head-nil)

head (cons v1 v2) −→ v1 (r-head-cons)
tail nil −→ raise (succ z) (r-tail-nil)

tail (cons v1 v2) −→ v2 (r-tail-cons)
isNil (nil) −→ true (r-isNil-nil)

isNil (cons v1 v2) −→ false (r-isNil-cons)
case (x) (inl v) e2 e3 −→ e2[v/x1] (r-case-inl)
case (x) (inr v) e2 e3 −→ e3[v/x1] (r-case-inr)

unfold (fold v) −→ v (r-unfold-fold)
fix v −→ v (fix v) (r-fix)

letrec x = v in e −→ e[(fix (λx.v))/x] (r-letRec)
try v with e −→ v (r-try)

try (raise v) with e −→ (e v) (r-try-raise)

e −→ e′

E[e] −→ E[e′]
(ctx) F [er ] −→ er (err-ctx)

Fig. 3. The static and dynamic semantics of Fpl.



Type Soundness Theorem:
for all expressions e, e′, and types T ,
if ∅ ` e : T and e −→∗ e′ then either
– e′ is a value,
– e′ is an error, or
– there exists e′′ such that e′ −→ e′′.

Intuitively, when programs are well-typed they end up in a value or an error,
or the computation is simply not finished and continues. A well-typed program
does not get stuck in the middle of a computation, that is, well-typed programs
cannot go wrong (Robin Milner [10]).

3 A Classification of the Operators

A definition of a typed language such as that of Figure 2 does not make important
distinctions between the role of operators. Indeed, cons, unfold and try are
grouped together within the same syntactic category Expressions, even though
they play a very different role within the language. Operators can be classified
in constructors, eliminators, derived operators, and error handlers.

In this section, we show a method for classifying operators into these classes.
This method will be employed in Section 7 to automatically classify operators
for language specifications given as input.

Constructors Some operators of the language build values of a certain type.
Those operators are called constructors. We recognize them by the following
characteristics.

Constructors have a typing rule whose assigned type is a constructed type.
Each constructor build one value and each value is built by a constructor.
Also, constructors have no reduction rules.

In Fpl, true and false are constructors for the type Bool. λx.e is constructor
for the type →, and nil and cons e e are constructors for the type List, to
name a few examples for Fpl.

Eliminators Eliminators can manipulate values of some type. For example,
head e extracts the first element of the list e when e is reduced to a value.
Some other operators simply inspect the identity of a value such as if operator.
Eliminators have the following characteristics.

The typing rule of eliminators assigns a constructed type to one of their
arguments: this argument is called the eliminating argument. In all the
reduction rules for eliminators, the eliminating argument is pattern-
matched against a value. For convenience, we say that the rule eliminates
that argument.

For example, the eliminating argument of if is the first and we say that (r-if-
true) eliminates the first argument.



Derived Operators Some operators are not involved in manipulating values at
a primitive level. This is the case of operators such as fix and letrec, for
example. These operators are called derived operators. Derived operators have
the following characteristics.

Derived operators have at least one reduction rule. Also, none of their
reduction rules pattern-matches against a constructed expression.

Error Handlers It is often useful to capture an error produced by a compu-
tation and trigger some remedial computation. To this end, programming lan-
guages with errors are sometimes augmented with operators that can recognize
the occurrence of errors and act accordingly. These latter operators are error
handlers. One of the most notable examples in programming languages, also
present in Fpl, is try. Error handlers have the following characteristics.

Error handlers have at least one reduction rule in which one of its argu-
ments pattern-matches against an error. Analogously to eliminators, we
call this argument the eliminating argument.

Common Patterns Outside of the classification of operators, languages typically
follow some common patterns for the sake of good design and type soundness.

A value definition such as Values ::= . . . | cons v v tells us that the operator
cons can build a value only under some condition: that its two arguments are
evaluated to values. These are valuehood requirements that dictate when the
definition can be applied. Valuehood requirements are used in error definitions
(see Errors ::= raise v), context definitions (for example, Contexts ::= v E) and
also for firing reduction rules (see fix v −→ v (fix v)). We adopt the following

P-Val: Value, error, and context definitions, as well as the firing of
reduction rules can depend only on valuehood requirements.

Also, languages typically conform to the following restrictions

P-NoStep: Values and the error do not have reduction rules.

P-Typ: Each operator has one typing rule and this typing rule assigns
a type to each argument of the operator.

4 A Discipline for the Progress Theorem

In this section we spell out a methodology for ensuring the validity of the progress
theorem. We first repeat its statement below.

An expression e progresses whenever either e is a
value, e is an error, or there exists e′ such that
e −→ e′.

Progress Theorem:
For all expressions e and types T ,

if ∅ ` e : T then e progresses.



We list the items of the methodology below as a convenient reference. Each
item, except for D0 which has been addressed, is described in detail in the
following subsections.

D0 Classify the operators of the language in constructors, eliminators, derived
operators, error handlers and follow the common patterns as described in
Section 3.

D1 Progress-dependent arguments are contextual (this type of arguments is de-
fined in Section 4.1).

D2 Error contexts are evaluation contexts minus the error handler in the elimi-
nating argument.

D3 The context declarations have no circular dependencies.
D4 Each eliminator of a type eliminates all the values of that type.
D5 Error handlers have a reduction rule that is defined for values at their elim-

inating argument.

4.1 D1. Progress-dependent Arguments

Consider the following definitions and reduction rules.

Values ::= cons v v | fold v
Errors ::= raise v

Contexts ::= v E

fix v −→ v (fix v) (r-fix)

(λx.e) v −→ e[v/x] (beta)

try (raise v) with e −→ (v e) (r-try-raise)

In all the cases above some arguments are under the restriction to be values or the
error (with (r-try-raise)). This is true also for (beta) w.r.t. the eliminating
argument, where a value is syntactically pattern-matched.

These arguments need to be evaluated so that they become a value or error
to enable the definition or reduction rule to apply. Therefore, they need to be
in evaluation contexts. For example, since the argument of fix is required to
be a value for (r-fix) to fire, Fpl automatically needs to have the context
Context ::= fix E. Were the language to miss such context, the expression
fix (head (cons λx.x nil)), which is not a value nor an error, would be stuck.

We call these arguments progress-dependent arguments. The way to identify
them is the following.

Arguments that are required to be values in value, error and contexts
definitions are progress-dependent.
Arguments in source of reduction rules that are required to be values are
progress-dependent.
Eliminating arguments are progress-dependent.

D1 Evaluation contexts include all the progress-dependent arguments.



Notice that D1 leaves the possibility of evaluation contexts for arguments
that are not progress-dependent. Consider for example a λ-calculus with contexts
Context ::= (E e) | (e E), that is, the application evaluates its two arguments
in parallel. Also consider the reduction rule β′ = (λx.e1) e2 −→ e1[e2/x]. The
first argument is certainly a progress-dependent argument while the second, not
encountering any restriction, is not. In this case, whether the second argument
is contextual or not does not affect type soundness because a reduction happens
either way thanks to β′ or a contextual step on the first argument.

4.2 D2. Error Contexts

Language designers define the error contexts. However, not every error context
is suitable. The following is a general rule.

D2 Error contexts are evaluation contexts minus the error handler at
the eliminating argument.

Error contexts do not contain the error handler at the eliminating argument
for the sake of good design. Indeed, try (raise e1) with e2 −→ raise e1 should
not take place, as we expect the semantics of try to handle the error.

All other evaluation contexts are error contexts for the sake of good design
and for type soundness. Since the error handler is the only operator expecting
an error, all other progress-dependent arguments expect a value (by P-Val).
Therefore, they have no reduction rule for handling the encounter of the error.
For example, succ (raise v) would be stuck if it were not for the error context
succ F that enables the reduction succ (raise v) −→ (raise v). Evaluation
contexts that are defined for no progress-dependent argument do not strictly
need to be in error contexts. For example, for the parallel λ-calculus of the
previous section the expression e (raise v) does not get stuck because another
reduction rule fires anyway. However, evaluation contexts are chosen as such by
the language designer because those are observable parts of the computation,
hence D2 is the general rule at play.

Finally, error contexts should only be evaluation contexts. For example, the
reduction if true then e else (raise v) −→ (raise v) should not take place.

4.3 D3. Context Declarations

A Problem with Dependencies Consider the bad context declarations Context ::=
cons E v | cons v E. In this case, the expression cons ((λx.x) 5) ((λx.x) nil)
is simply stuck because the first argument ((λx.x) 5) waits for the second to be
evaluated to a value, and in the meantime ((λx.x) nil) is not being evaluated
because it waits for the first argument to be reduced to a value. Circular depen-
dencies in context declarations jeopardize the type soundness of the language.
Therefore,

D3 Evaluation contexts must not have circular dependencies.



An easy way to check for D3 is through a graph representation of the de-
pendencies at play. To be precise, for each declaration we have an edge from
the index position of E to the index position of a v. Fpl has correct context
declarations for cons because the declarations induce the graph {2 7→ 1} which
is acyclic. The bad context declarations above induce the graph {1 7→ 2, 2 7→ 1},
which contains a cycle.

4.4 D4. Eliminators

D4 For each eliminator of a type T , each value of type T is eliminated
by a reduction rule of the eliminator.

As an example, let us consider the example of the head operator.

head nil −→ raise true (r-head-nil)

head (cons v1 v2) −→ v1 (r-head-cons)

Were we to miss the rule (r-head-nil), the expression (head nil) would be
stuck for failing in finding a rule for performing a reduction. As this expression
is not a value nor an error, type soundness would be jeopardized.

4.5 D5. Error Handlers

D5 Error handlers have a reduction rule that is defined for values at
their eliminating argument.

In Fpl, the error handler try cannot afford to define its step only at the
encounter of the error, or an expression such as try z with λx.x would be stuck.
D5 imposes that a reduction rule such as

try v with e −→ v (r-try)

exists. Notice that the rule expects a value. Indeed, we should forbid rules such
as try e1 with e2 −→ e3 which apply unrestricted. As the error is also an
expression, this rule can non-deterministically preempt the application of the
rule that specifically handles the error.

5 Type preservation

We now devise a methodology for checking the validity of the type preservation
theorem. First, we repeat the statement of the theorem.

Type Preservation Theorem :
for all expressions e, e′ and types T ,

if ∅ ` e : T and e −→ e′ then ∅ ` e′ : T



Given a reduction rule e −→ e′, we have to ensure that the types of e and e′

coincide. However, the rule is defined with variables to be applied to a plurality
of expressions. Ideally, we need to check that

for all Γ, Γ ` e : T implies Γ ` e′ : T.

Of course, checking all possible type environments is prohibitive. Therefore, our
approach approximates such a check with the use of a symbolic type environ-
ment. We form symbolic type environments out of the typing rules of operators.
For convenience, we simply use the typing premises that we encounter in those
rules. This choice accommodates well the fact that typing premises rely on typ-
ing assumptions themselves. Consider for example the premise Γ, x : T1 ` e : T2
of (t-abs) and exp = λx.v. Variables have two levels. Typing exp depends on
v, which is the logical variable of the typing rule and ranges over expressions.
In turn, after v is instantiated, it contains a particular variable x of the object
language, and the type of v depends on this variable. To account for this, the
symbolic type environment employs hypothetical typing formulae. For exam-
ple, the symbolic type environment extracted for exp is (Γ, x : T1 ` v : T2).
The presence of hypothetical typing formulae is axiomatized by the following
equation.

Γ ` e′ : T1
Γ, x : T1 ` e : T2 ≡ Γ ` e[e′/x] : T2

(eq-sub)

Given a reduction rule, we give a means to compute both the symbolic type
environment and its symbolic assigned type. There are two steps for those re-
duction rules that eliminate an argument ((1) and (2) below) and one step for
any other reduction rule (only (1)).

(1) Instantiate the typing rule that types the source of the reduction rule.
(2) Instantiate the typing rule that types the eliminated argument of the
reduction rule, if it is a constructed expression. The symbolic type envi-
ronment contains the typing formulae of the premises of the two rules
combined. The symbolic assigned type is that of (1).

With this main ingredient, we can offer a methodology for type preservation.
For each reduction rule, apply the following.

Construct the symbolic type environment Γ s of the rule and its symbolic
assigned type T . Check whether Γ s entails that the target of the reduction
rule has the same type T .

We shall see a few examples. Consider the case of head and its elimination
rule head (cons v1 v2) −→ v1 . We have given the color blue to the target so that
later it will be clear where a particular occurrence of v1 comes from. Instantiating
the typing rules (t-head) and (t-cons) in the way prescribed by (1) and (2),
respectively, gives us the following rules.



Γ ` (cons v1 v2) : List T

Γ ` head (cons v1 v2) : T

Γ ` v1 : T
Γ ` v2 : List T

Γ ` cons v1 v2 : List T

The assigned type is the red T in the first rule. For the symbolic type as-
signment, we collect the typing premises of the two rules. We can restrict our-
selves to collect only the typing rules for variables. Indeed, the typing premise
of the eliminated argument, such as Γ ` (cons v1 v2) : List T , is always
derivable for it has been unfolded in the second rule. For the case above, we
have Γ s = v1 : T, v2 : List T . Finally, we need to check that Γ s ` v1 : T .
This fact can be trivially established. This means that Γ s, which can type
head (cons v1 v2) at T , can also type v1 at T .

Let us now see the example of (beta): (λx.e) v −→ e[v/x] . The instantia-
tions (1) and (2) give us the following rules.

Γ ` λx.e : T1 → T2
Γ ` v : T1

Γ ` ((λx.e) v) : T2

Γ, x : T1 ` e : T2
Γ ` λx.e : T1 → T2

In this case, the symbolic type environment is (Γ, x : T1 ` e : T2), Γ ` v : T1. We
finally need to check Γ s ` e[v/x] : T2 , which can be established using (eq-sub).

A Requirement for the Error In a language with the error and error contexts,
we enforce that

D-Err The error must be typed at any type.

This is necessary because the error travels through contexts with the rule
F [er ] −→ er , for any context F . For the sake of type preservation, wherever the
error lands it must be prepared to match the type of the expression it replaces.

So far, we have spelled out a descriptive methodology for ensuring both the
progress and preservation theorem. It is easy to check that it applies to Fpl in
full. This is a non-trivial language with modern features such as recursive types,
polymorphism and exceptions. Now that we have described the methodology in
detail we can embark on formalize it as a typing discipline and prove it correct.

6 Typed Languages as Logic Programs

We now proceed to give the methodologies of the previous sections a formal
counterpart. To this aim, we first need a formal representation for language
specifications that can be manipulated and be the subject of proofs. We repre-
sent them as logic programs in the higher-order intuitionistic logic. This logic
has a solid theoretical foundation, is executable and is the basis of the λProlog



programming language. Higher-order logic programs turn out to be a conve-
nient medium for our endeavors because they are in close correspondence to
pen&paper language definitions.

Logic programs are equipped with a signature, which is a set of declarations
for the entities that are involved in the specifications. For example, the following
is a partial signature for Fpl.

exp , type : kind
arrow : type → type → type
abs : type → (exp → exp )→ exp
app : exp → exp → exp

The schema variable Σ ranges over signatures. The constant o is the type of
propositions. To help the presentation, we sometimes shall use symbols rather
than names and have declarations ` : exp → type → o and→ : exp → type → o

for a typing and a reduction predicate, respectively.
When we represent program expressions as types, we shall use the familiar

setting of higher order abstract syntax (HOAS) to encode bindings. That is,
binders in program expressions will be mapped directly to binders in terms. For
example, the declaration of the abstraction abs above takes two parameters, of
which the second is an abstraction of the logic. The identity function λx:Bool. x
is then encoded as (abs Bool λx. x).

The terms of higher-order logic are based on the usual notion of simply typed
λ-terms over a signature. Given a signature Σ, a (higher-order intuitionistic
logic) formula P over Σ is any formula built from implications and universal
quantifier and atomic formulas. We shall represent logic programming rules φ in
the form

P1 . . . Pn
P

In higher-order logic programs, the use of universal and implicational formu-
lae in premises enable generic and hypothetical reasoning. Their role in language
specification can be described with the example of the following typing rule for
the abstraction operator abs .

(∀x.`x T1 ⇒ ` (E x) T2)

` (abs T1 E) (arrow T1 T2)

The universal quantification ∀x introduces a new variable x encoding a program
term and the implication temporarily augment the logic programs with the fact
`x T1 while proving ` (E x) T2. Therefore, the explicit type environment Γ ,
which encodes the typing information assumed along the way, is not necessary.

Our notion of typed languages is based on the following standard definition
of logic programs.

Definition 1 (Logic Programs). A logic program is a pair (Σ,D) where Σ
is a signature and D is a set of rules over Σ. A query q (which can be any logical
formula) follows from a logic program, written (Σ,D) |= P , if P is provable from
D in intuitionistic logic.



As we have seen in the previous sections, typed languages also rely on eval-
uation and error contexts. We define context summaries as a declarative means
for their specification. Intuitively, the contexts: head E | raise E | E e | v E |
cons E e | cons v E are modeled with a function ctx such that

ctx (head ) =ctx (raise ) = {(1, ∅)}
ctx (app ) =ctx (cons ) = {(1, ∅), (2, {1})}.

Here, (2, {1}) means that the second argument is contextual but requires the
first to be a value.

Definition 2 (Context summaries). Given a signature Σ, a context sum-
mary over Σ is a function ctx from constants of Σ to P(N× P(N)).

Typed languages are logic programs augmented with two context summaries
for evaluation and error contexts.

Definition 3 (Typed Languages). A typed language is a tuple (Σ,D, ctx , err–ctx)
such that

– (Σ, D) is a logic program, such that Σ contains kinds exp and type and

` : exp → type → o .
→ : exp → type → o .
→∗ : exp → type → o .
value : exp → type → o .
error : exp → type → o .

– ctx and err–ctx are context summaries over Σ.
– D contains the rules that define →∗ as the reflexive and transitive closure

of → .

We let L range over typed languages. Sometimes we use E for variables of
kind exp , T for those of kind type . Terms of kind exp are ranged over by e
and those of kind type by t . We use the notation D|pred to denote the subset
of rules in D that define the predicate pred . For example, D|` and D|→ are
the typing and the reduction rules in D, respectively. Given a signature Σ, we
denote by Σ(exp ) and Σ(type ) the sets of constant in Σ that define expressions
and types, respectively.

The semantics of a typed language L is denoted by JLK and it is the straight-
forward counterpart of L as logic program in which the information in the context
summaries is translated into rules. For example, ctx (cons ) = {(1, ∅), (2, {1})}
generates the two rules below.

E1 → E′1

(cons E1 E2)→ (cons E′1 E2)

E → E′

(cons V E)→ (cons V E′)

and err–ctx(head ) = {(1, ∅)} generates error E
(head E)→ E

.

We overload |= to typed languages, with the meaning that typed languages
are first translated to logic programs.



Syntactic Sugar for Representing Languages In the next sections we develop
meta type systems that inspect logic programming based representations of lan-
guage specifications. To our experience, readers may encounter some difficulty
in relating the raw syntax so far introduced with what they are familiar with.
To help our presentation, we employ some syntactic sugar.

Typing rules are augmented with a type environment for replacing generic
and hypothetical occurrences. The symbol for the type environment is fixed and
is Γ . To make some examples, the following rules on the left describe the typing
rules (t-tail) and (t-abs) and (t-abst) as logic programming rules. On the
right, we have the syntax we adopt. The type declared for mu is (type →
type )→ type .

` e : List T
` tail e : List T

≡ Γ ` e : List T
Γ ` tail e : List T

(∀x.`x T1 ⇒ ` (E x) T2)

` (abs T1 E) (arrow T1 T2)
≡ Γ, x : T1 ` E T2

Γ ` (abs T1 E) (arrow T1 T2)

∀x. ` E : (T x)

` absT E : (forall T )
≡ Γ, x. ` E : T

Γ ` absT E : (forall T )

The predicate → is used in infix notation. Also, we adopt the convention that
variables V are treated as value variables and entail that the rule implicitly
contains the premise value V . The reduction rule (beta), for example, is repre-
sented as follows.

value E
(app (abs R) E)→ (R E)

≡ (app (abs R) V ) → (R V )

Value and error definitional rules are rewritten in the following style. Notice,
below we have also applied the convention on value variables.

value E1 value E2

value (cons E1 E2)
≡ value ::= (cons V1 V2)

value E
error (raise E)

≡ error ::= (raise V )

7 A Type System for Type Soundness

In this section, we devise a type system that applies the methodology described
in Section 3 to typed languages. Figure 4 shows the type system. The main
typing judgment is ` L, for a given typed language L. The first line of (t-main)
checks that the contexts are not circularly defined. This covers the D3 item
of the methodology. The second line splits the rules of the languages in three
categories: value and error definitions, typing rules and reduction rules. Each of
these categories is type checked using an appropriate typing judgement. Value
and error definitions are type checked with `def, which produces bindings that
are collected and used by the next type system. Those bindings simply classify



` L

rng(ctx) is a directed acyclic graph

(D|value ∪D|error ) = {φd
1 , . . . , φ

d
n} D|` = {φt

1, . . . , φ
t
m} D|→ = {φr

1, . . . , φ
r
l}

ctx `def φ1 : Bd
1 . . . ctx `def φn : Bd

n Γd = Bd
1 , . . . , B

d
n

D|→ | Γd `typ φt
1 : Bt

1 . . . D|→ | Γd `typ φt
m : Bt

m Γ t = Bt
1, . . . , B

t
m

op : errHandler ∈ Γ t ctx = err–ctx ∪ {op 7→ (1, ∅)}
ctx | Γ1 `red φr

1 : Br
1 . . . ctx | Γl `red φr

l : Br
l Γ t − (Br

1, . . . , B
r
m) = ∅

D|` `Lpre φ
r
1 . . . D|` `Lpre φ

r
l

` (Σ,D, ctx , err–ctx)
(ts-main)

ctx `def φ : Bd

1, . . . , n ∈ ctx(op)

ctx `def value ::= (op V1 . . . Vn Ẽ) : op : value {1, . . . , n}
(value)

1, . . . , n ∈ ctx(op)

ctx `def error ::= (op V1 . . . Vn Ẽ) : op : error {1, . . . , n}
(error)

D | Γd `typ φ : Bt

D
r | Γd

, op : value N ` Γ1 ` E1 t1 . . . Γn ` En tn

Γ ` (op E1 . . . En) (c T̃ )
: op : value c N (t-value)

Dr.rules(op1) = {φ1, . . . , φm}
∀i, 1 ≤ i ≤ m, ∃op2, φi = (op1 (op2 Ẽ′) Ẽ′′)→ e Γd(op2) = value N

Dr | Γd `
Γ1 ` E1 (c T̃ ) . . . Γn ` En tn

Γ ` (op1 E1 . . . En) t
: op1 : elim c

(t-elim)

Dr.rules(op1) = {φ1, φ2}
φ1 = (op1 (op2 Ẽ2) Ẽ3)→ e1 Γd(op2) = error N

φ2 = (op1 V Ẽ4)→ e2

Dr | Γd ` Γ1 ` E1 t1 . . . Γn ` En tn

Γ ` (op1 E1 . . . En) t
: op1 : errHandler

(t-errHandler)

Dr.rules(op) = {φ1, . . . , φm}
∀i, 1 ≤ i ≤ m, φi = (op Ṽi Ẽ′i)→ ei

Dr | Γd ` Γ1 ` E1 t1 . . . Γn ` En tn

Γ ` (op E1 . . . En) t
: op : derived

(t-derived)

T 6∈ vars(t1) ∪ . . . ∪ vars(tn)

Dr | Γd, op : error N ` Γ1 ` E1 t1 . . . Γn ` En tn

Γ ` (op E1 . . . En) T
: op : error N

(t-error)

Fig. 4. Type system for ensuring progress



ctx | Γ t `red φ : Br

Γ t(op1) = elim c Γ t(op2) = value c N

Ṽ = V1 . . . Vn N = {1, . . . n}
Ṽ ′ = V ′2 . . . V ′m {1, . . .m} ⊆ ctx(op1)

ctx | Γ t ` (op1 (op2 Ṽ Ẽ) Ṽ ′ Ẽ′)→ e : op1 : eliminates op2
(r-elim)

Γ t(op1) = errHandler Γ t(op2) = error N

Ṽ = V1 . . . Vn N = {1, . . . n}
Ṽ ′ = V ′2 . . . V ′m {1, . . .m} ⊆ ctx(op1)

ctx | Γ t ` (op1 (op2 Ṽ Ẽ) Ṽ ′ Ẽ′)→ e : op1 : eliminates op2
(r-errHandler)

Ṽ = V2 . . . Vn {1, . . . n} ⊆ ctx(op)

ctx | Γ t, op : errHandler ` (op V1 Ṽ Ẽ)→ e : plain
(r-errHandler-value)

{1, . . . n} ⊆ ctx(op)

ctx | Γ t, op : derived ` (op V1 . . . Vn Ẽ)→ e : plain
(r-derived)

Fig. 5. Type system for ensuring progress, continued: reduction rules

values and errors. Typing rules are type checked by `typ, which again produces
bindings that are collected. This time the bindings fully classify the operators
according to the classes of Section 3. After this classification, we can know about
the error handler, therefore the 5-th line of (t-main) check that error contexts
respect D2, i.e. they are the evaluation contexts minus the error handler at
the eliminating argument. `red type checks the reduction rules and produces
bindings that keep track of the operators that are actually eliminated by other
operator with a reduction rule. We use these bindings against the classification
(in Γ t) with Γ t−(Br

1, . . . , B
r
m) = ∅, which is a slight abuse of notation to denote

the check whether all values are eliminated by all eliminators and also that the
error is. The difference operator that we denote with − is straightforward and
we omit its definition here. Additionally the last line employs the type system
`Lpre for checking whether all the reduction rules are type preserving.

Below, we explain our type systems in detail. The grammar that we employ
in our type systems is the following. Below, Γ s are type environment as usual,
and Bs stand for bindings.

X ∈ {d, t, r}, c ∈ Σ(type ), op ∈ Σ(exp ), N ⊆ N
ΓX ::= ∅ | BX
BX ::= op : roleX

roled ::= value N | error N
rolet ::= value c N | error N | elim c | derived | errorHandler
roler ::= plain | eliminates op

A Type System for Definitions The type system for definitions has a judgement
of the form ctx `def φ : Bd. The context ctx is necessary for checking that
progress-dependent arguments of values and the error are contextual.



(value) processes a value definition and classifies the operator as value.
Notice that at this point, we do not know which type the operator builds a value
of. This information is stored in typing rules and will be added later.

(error) has the same role as (value) for the error definition. Notice that
for both, N keeps track of the argument positions that need to be values for the
definition to apply. This information is needed when type checking the reduction
rules of eliminators, as explained later.

A Type System for Typing Rules The type system for typing rules has a judge-
ment of the form D | Γ d `typ φ : Bt. The argument D is the set of reduction
rules of the language. This argument is needed for distinguishing the role of some
operators. For example, we can distinguish an eliminator from an error handler
by retrieving its reduction rules and checking whether they eliminate values or
the error.

(t-value) applies only for typing rule of operators that Γ d classifies as
values. The shape of the typing rule deserves some attention. This shape im-
poses that the assigned type has the form (c T̃ ), that is, a constructed type. It
also imposes that all the arguments of the operator are the subject of a typ-
ing premise, as prescribed by P-Typ. Throughout this type system, we fix the
convention that Γ1 , . . .Γn are build with Γ and they exclusively can be of the
form Γi ::= Γ | Γ , x | Γ , x : T . This means that (t-value) allows for ordinary
typing premises as well as generic and hypothetical premises.

(t-elim) classifies eliminators at the encounter of their typing rule. The
shape of the typing rule imposes that the type of the eliminating argument has
the form (c T̃ ), that is, a constructed type. Next, we retrieve the reduction
rules of the operator and check that these rules all eliminate some value. This

is done by matching each reduction rule with the form (op1 (op2 Ẽ′) Ẽ′′)→ e .

We check then that op2 is a value for each of these rules.
(t-errHandler) classifies the error handler. We retrieve the reduction rules

for this operator. There must be exactly two such rules: one that eliminates the
error, and the other that fires for values at the eliminating type, as prescribed
by D5.

(t-derived) classifies derived operators. We check that all the reduction

rules for the operator are of the form (op Ṽi Ẽ′i)→ ei . This means that the
arguments of op are variables, whether value or expression variables, and there
is no pattern-matching of constructed expressions.

(t-error) handles the typing rule for the error. We enforce that the assigned
type is a free variable T . This ensures that the error can be typed at any type,
as prescribed by D-Err.

A Type System for Reduction Rules The type system for type checking reduction
rules has a judgement of the form ctx | Γ t `red φ : Br. The binding produced
by this judgement records whenever an operators eliminates another one with a
binding of the form (op1 : eliminates op2). This happens for reduction rules of
eliminators and for the reduction rule that handles the error. All other reduction



rules produce a binding with the label (plain), meaning that no elimination takes
place when firing the rule. We show this type system in Figure 5.

(r-elim) type checks a reduction rule for an eliminator. The shape of this

rule must be of the form (op1 (op2 Ṽ Ẽ) Ṽ ′ Ẽ′)→ e . In particular, notice

the complex expression at the eliminating argument. We check that op1 is an
eliminator for some type constructor c and that op2 is indeed a value for that
type. We impose that the rule fires exactly when op2 forms a value. To this aim,
(op2 Ṽ Ẽ) must be such that Ṽ contains precisely those positions prescribed
by N . With the check {1, . . .m} ⊆ ctx (op1) we impose that the eliminating
argument (index 1) is contextual, and that also its sibling arguments that are
tested for valuehood are. This is prescribed by D1.

(r-errHandler) type checks the reduction rule that handles the error. The
way we handle this case is very similar to that for (r-elim). It differs from (r-
elim) in that it makes sure that op1 is the error handler and that op2 is the
error.

(r-errHandler-value) type checks the reduction rule that defines the step

of the error handler for values. The form of the rule must be (op V1 Ṽ Ẽ)→ e ,
which imposes the eliminating argument to be a value variable. We then check
that the evaluation contexts are properly defined.

(r-derived) type checks the reduction rules for derived operators. The shape
of these rules imposes that no pattern-matching would take place. As for the
previous cases, we then check that evaluation contexts are properly defined.

A Type System for Type Preservation We now explain the type system that en-
sures that reduction rules are type preserving. The judgement for this task takes
the form D `Lpre φ. The argument D is the set of typing rules of the language.
Typing rules are necessary because we build symbolic type environments out of
them. Figure 6 shows the type system for `Lpre. For this type system, we fix the

notation that e[Ẽ] is an expression that can use only variables in Ẽ. Similarly,

in e[Ẽ′, Ẽ′′] we have that e uses only variables in Ẽ′ and Ẽ′′. Since typing rules
are unique for an operator we use the notation Dt(op).output for retrieving the
assigned type of the typing rule for op. For example, Dt(cons ).output = List T .
Similarly, the notation Dt(op).premises retrieves the set of premises of the typing
rule for op.

Rule (pre-main) treats a rule of the form (op1 (e1[Ẽ′]) Ẽ′′)→ e2[Ẽ′, Ẽ′′] .

Recall that, virtually, we need to establish that (op1 (e1[Ẽ′]) Ẽ′′) and e2[Ẽ′, Ẽ′′]
have the same type. To do this, we compute the symbolic type environment
with the call Dt `symb (op1 (e1[Ẽ′]) Ẽ′′) : Γ s. The type judgement `symb takes
an expression and returns a symbolic type environment, that is simply a set
of typing formulae. Rule (symb-one) handles the case where (e1[Ẽ′]) is not a
complex expression. This happens for reduction rules for derived operators, for
example. In this case, we build the symbolic type environment with the premises
of the typing rule for op1. Reduction rules for eliminators and for handling the
error are such that (e1[Ẽ′]) is built with a top level operator op2. This case is
handled by (symb-two), which builds the symbolic type environment with the



typing premises of both op1 and op2. Once we have computed the symbolic type
environment Γ s, we check that the source and the target of the reduction rule
are typed at the same type when Γ s is used. This type is the type assigned by the
typing rule of op1. We check this with `Lent which builds the appropriate query
that we check for entailment. The function (·)∀ simply quantifies universally over
all the variables of the query. Notice that the query is checked in the language
augmented with the axiom for (eq-sub), which translates in our setting as

(eq-sub)
∗

= ∀E1, E2, T1, T2,

(∀x,` x T1 ⇒ ` (E1 x) T2) ∧ ` E2 T1 ⇒ ` (E1 E2) T2.

As E1 is an abstraction, (E1 E2) encodes the substitution E1[E2/x] in HOAS.

D `Lpre φ

Dt `symb (op1 (e1[Ẽ′]) Ẽ′′) : Γ s

Γ s `Lent (op1 (e1[Ẽ′]) Ẽ′′) : Dt(op1).output

Γ s `Lent e2[Ẽ′, Ẽ′′] : Dt(op1).output

Dt `Lpre (op1 (e1[Ẽ′]) Ẽ′′)→ e2[Ẽ′, Ẽ′′]
(pre-main)

Γ
s `Lent e : t ≡ (L ∪ (eq-sub)

∗
) |= (Γ

s ⇒ ` e t) ∀

D `symb e : Γ s

D
t `symb (op1 Ẽ) :

∧
D

t
(op1).premises (symb-one)

Γ s
1 =

∧
Dt(op1).premises

Γ s
2 =

∧
Dt(op2).premises

Dt `symb (op1 (op2 Ẽ1) Ẽ2) : Γ s
1 ∧ Γ

s
2

(symb-two)

Fig. 6. Type System for ensuring Type Preservation

8 Well-typed Languages are Sound

We are now ready to establish our main results. We rely on the type system
of logic programs in the sense of Church (see [9]). This type system is denoted
with `lp and rejects ill-typed logic programs with mistakes such as ` T T and
app arrow arrow. Thanks to this, our type system ` L does not check for those
errors and could focus on its higher level task. Below, we use `lp lifted to typed
languages.

`ts L ≡ `lp L and ` L.

Theorem 1 (Well-typed languages afford progress). For all typed lan-
guages L and for all e and T , if `ts L and L |= ` e T then either L |= value e,
L |= error e, or there exists e′ such that L |= e→ e′.



Theorem 2 (Well-typed languages are type preserving). For all typed
languages L and for all e, e′ and T , if `ts L, L |= ` e T and L |= e → e′ then
L |= ` e′ T .

Type soundness follows from the progress and preservation theorem in the
usual way.

Theorem 3 (Well-typed languages are sound). For all typed languages L
and for all e, e′ and T , if `ts L, L |= ` e T and L |= e→∗ e′ then either

– L |= value e′,
– L |= error e′, or
– there exists e′′ such that L |= e′ → e′′.

The proofs of the theorems above can be found in the appendix.

9 Implementation: the TypeSoundnessCertifier

Based on the work of this paper, we have implemented a tool that we have
called TypeSoundnessCertifier. The tool is written in Ocaml and reads Abella
specifications (basically λProlog specifications) augmented with special tags for
declaratively specifying evaluation contexts. The tool implements a type-checker
based on the type system of Sections 7. We have realized the type system for type
preservation by automatically generating queries to the Abella theorem prover.

We have applied our tool to several variants of the simply typed lambda
calculus with various subsets of the following features: pairs, if–then–else,
lists, sums, unit, tuples, fix, let, letrec, universal types, recursive types and
exceptions. We have also considered different strategies such as call-by-value,
call-by-name and a parallel reduction strategy as well as lazy pairs, lazy lists
and lazy tuples. We have type checked a total of 103 type sound languages,
including a rich language such as Fpl.

Remarkably, TypeSoundnessCertifier spots design mistakes that hinder type
soundness. Among other kind of errors, the tool reports an error whenever

– Some eliminator does not eliminate all the values it is supposed to eliminate.
– Some relevant evaluation context is not declared.
– Context declarations have circular dependencies such as cons E v | cons v E,

mentioned in Section 4.3.
– Some reduction rules are not type preserving. For example, If we mistake the

operational semantics of fst and define it to return the second component
of a pair, the type-checker points out the bad rule.

In general, thanks to our type system setting the tool can algorithmically detect
departures from the methodology of Section 4 and report them to the user.

Certified languages: For those language specifications that we have type
checked, TypeSoundnessCertifier can automatically produce a formal proof of
type soundness and related theorems that can be checked by the Abella theorem
prover [2]. In this paper, we simply report on this aspect of the tool: In addition



to our proofs in the appendix, these machine-checked proofs give us strong con-
fidence that our type system does guarantee the type soundness of languages. A
serious investigation on the automatic certification algorithms of the tool is part
of our future work.

10 Related Work

The meta-theory set forth in this paper is inspired by a line of research on
the meta-theory of operational semantics, and especially on results on rule for-
mats [12]. These results typically offer templates and restrictions to operational
semantics specifications that can guarantee that some property holds. Typical
work from this line of research have been used for establishing various results
for process algebras and mostly in the context of equations modulo bisimilarity
and congruence [3, 5, 11, 1]. This paper shares the same spirit with those results,
though it targets programming languages with types, ensures type soundness,
and aims at offering a typing discipline rather than syntactic restrictions.

A close work to ours is that of Schwaab and Siek [16], and that of Delaware et
al [6]. In both, the authors offer a solution to the expression problem [18]. These
results offer two (very different) solutions to the safe composition of already
existing proofs. In this regard, their results are orthogonal to ours and we plan
to accommodate their insights in our context.

The specific use of logic programs for encoding operational semantics and
typing rules dates back to Kahn’s natural semantics [8] and its machine im-
plementation [4]. The particular use of higher-order logic programming as a
specification language dates back to Schürmann and Pfenning [15].

Finally, there are several tools that are tailored to particular specification of
languages, such as Ott [17], Lem [13], the K framework [14], and PLT Redex [7],
among others. In many ways, TypeSoundnessCertifier shares the same spirit in
assisting language designers with their designs. To our knowledge, the way our
tool ensures type soundness and the way it informs language designers of design
mistakes is a novelty in tools for language design since TypeSoundnessCertifier
presents features that are orthogonal to those of the mentioned tools. Of course,
these other mature tools offer remarkable help to language designers in multi-
ple aspects, including features for executing, evaluating, testing and exporting
language specifications.

11 Conclusions and Future Work

In this paper, we somehow treated language specifications as expressions and we
have demonstrated that the appropriate typing discipline over these specifica-
tions guarantees that the language is type sound: that is, well-typed languages
are sound.

We have demonstrated this idea with a class of languages based on construc-
tors, eliminators and errors: features that are common in programming language



design. This class is fairly expressive and comprises languages with modern fea-
tures such as recursive types, polymorphism and exceptions.

Are there programming languages that are out of the reach of our method-
ology? Yes, definitely many. This is our first paper on the topic and we have
only scratched the surface of this research area. Perhaps, the two most natural
extensions to the present work are to languages with stores/references and lan-
guages with subtyping. These extensions are not as trivial as they might seem.
For example, languages with stores/reference carry a heap, and a notion of safety
must be systematically derived for the heap. These languages also impose ad-
justments to the preservation theorem statement for accommodating a location
environment, that might grow over time.

Similarly, languages with subtyping bring their own difficulties. For example,
as both the language and the subtyping relation are provided by the language de-
signer, we would need principled ways to enforce that object subtyping is rejected
when it is covariant in calculi with updates (unsound), and when references are
covariant (unsound), and all similar scenarios. We leave an investigation of these
classes of languages as future work.

Other classes of languages, such as linear types, dependent types, type-effect
systems and typestate, to name a few, are out of the scope of our applicability
and they seem to come with their own specific research challenges. We leave
these extensions to future work. Similarly, we plan to investigate whether we
can translate our results to the style of big step operational semantics.

In this paper, we conjecture that well-typed languages are sound is a perspec-
tive that, just like well-typed programs cannot go wrong, applies across several
classes of languages. We will be eager to work with the community to explore
this research area further.
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A Progress Theorem

The Main Progress Theorem Assume `ts L and L |= ` e T . The proof is by
induction on L |= ` e T . Being L |= ` e T provable, it means that there

exist a typing rule φ that of them form
p1, . . . pn

` (op Ẽ) : t
that is ’is satisfied’.

The rule ’is satisfied’ in the sense that there exists a substitution γ from logical
variables (of the rule) to logical terms such that L |= piγ for {1, . . . , n} and

` (op Ẽ)γ : tγ = ` e T .
Since φ ∈ L and φ is a typing rule, then it has been type checked with `typ.

This means that all variables in Ẽ are the subject to a typing premise (P-Typ

common pattern), i.e. L |= ` Eiγ Tγ for Ei ∈ Ẽ. This means that we can apply



the inductive hypothesis to each Ei if we wish. Of course, it matters to apply
the inductive hypothesis to progress-dependent arguments only, if we were to be
optimal. The paper does not set a notation for extracting progress-depending
arguments, we simply apply the inductive hypothesis to contextual arguments
of op. This is suboptimal (only slightly) but correct.

Notice also that in HOAS some variables might be abstractions and might
be subject to typing premises pi that might be hypothetical or generic. How-
ever, the shape of the value premises, value definitions and error definitions is
simple, for example value V : this implicitly forbids evaluation under a binder
because for that we need another generic premise, but we use simple premises.
(evaluation under binders is not common in programming languages). In short,
the contextual variables are of simple expression variables and we can apply IH
as usual. We retrieve the contextual in the following way.

By definition of L, L has the function ctx for contexts. Given the operator op
above, and given {i1, . . . , in} ∈ fst(ctx (op )), we apply the inductive hypothesis
to L |= ` Eijγ Tγ, for all 1 ≤ j ≤ n. Now we have that those Eijγ progress. We
call the Progress Lemma for op (defined below) passing the assumptions that
Eijγ progress. Notice that such lemma expects exactly those progress assump-
tions and in that number (the number of contextual arguments), as explained
below.

Progress Lemma for all op Given an operator op of kind (. . .→ term ) in L, we
prove the following theorem.

Theorem 4. if ``, it holds that for all op ∈ Σ(exps), for all {i1, . . . , in} ∈
fst(ctx (op )), if progress e1, . . . progress en, then progress (op e1 . . . en ẽ) for
all e1, . . ., en and ẽ (here ẽ are the rest of the arguments, respecting the arity of
op , that are not contextual).

The proof is by case analysis on all progress e1, . . . progress en, but in a
suitable order. Since `` we have that ctx (op) is acyclic, therefore we can choose
an order such that (invariant:) we do case analysis on progress ei before the case
analysis on progress ej if the context for i-th argument of op does not depend
on the valuehood of the argument j of op.

After the series of cases analysis on progress ei, we are at the leftmost child
of the leftmost tree of the cases.

Before continuing: an example. If we have two arguments, after the first case
analysis on progress e1 we open three cases: value e1 and progress e2, step e1
and progress e2, error e1 and progress e2. And we are at the left child. We
now do case analysis on progress e2 and we open other three cases only on the
left child: the leftmost subtree is value e1 and value e2, value e1 and step e2,
value e1 and error e2. And we are at the leftmost child: value e1 and value e2.

Now we continue the proof. After the series of cases analysis on progress ei,
we are at the leftmost child of the leftmost tree of the cases. In this cases, all
arguments are values.

The proof is by case analysis on how op has been classified with `typ.



– op : value c N : We dismiss the leftmost child in the following way: Since
the typing rule φ has been typed, then Γdef contains op : value N . Which
means that there exists a value definition φd for op. Since φd has been typed
with Γdef, it means that the shape of the value deifinition is such that it
is restricted only by value premises, i.e. by the valuehood of its arguments
(this realizes the common pattern P-Val). As we are in the case where all
the arguments are values, the definition applies and this case progresses.
Now, we are left with two cases step e1 and error e1. However, notice that
once we dismiss them we have dismissed the whole case value of the subtree
immediately above. Therefore, we go straight to prove the cases step and
error of the subtree immediately above. Thanks to the invariants on the
dependency on the valuehood, we can do a uniform proof for all the level of
the tree. We have
• STEP: step ej i.e. for some j. As j ∈ ctx (op ) by the semantics of L

(translation to logic programs), this means that there exists a rule
value E1 . . . Ej → E′j

(op . . . Ej . . .)→ (op . . . E′j . . .)
. Notice that we have ordered the

arguments by dependency on valuehood, therefore value premises can
be applied, if any, only to E1 . . . previous to Ej . However, we deal with
the case → ej only when the previous arguments are values. So we can
instantiate and prove a step

L |= (op . . . ej . . .)→ (op . . . e′j . . .)

So (op Ẽ) progresses.
• ERR: error ej for some j, i.e. ej is an error. Since j ∈ ctx (op ) and since

op is not an error-handler then j ∈ err–ctx (op ). By by the semantics
of L (translation to logic programs) this means that there exists a rule
value E1 . . . error Ej

(op . . . Ej . . .)→ Ei
. Again, as we have ordered the argument by

dependency on valuehood, the arguments e1 . . . are values and the rule
can be applied to prove the step L |= (op . . . ej . . .) → ej . So (op Ẽ)
progresses.

– op : elim c: As φ is a typing rule of L and ` L, we have that φ has been type
checked by `typ. This means that φ is of the following shape.

r =
` E1 (c T̃ )

` (op Ẽ)

Since rule r has been satisfied, so are its premises. Then, we have L |=
` e1 (c T̃ ). Since we are in the leftmost case, where all arguments are values,
we have L |= value e1. Therefore, we apply the Canonical Forms Lemma for
c (described in the following paragraph). This means that e1 = {(t1,V1) ∨
. . . ∨ (tm,Vm)} (this is notation from the next paragraph). Let us fix one

such pair (tk,Vk). By ` L, we have tk = (op2 Ẽ′). This means that `typ has
type checked op2 as op2 : value c Vk. Since ` L succeded also `red succeded,



which means that the exhaustiveness check Γ t− (Br
1, . . . , B

r
m) = ∅ succeded,

and means that since op2 : value c Vk ∈ Γtyp then we had a reduction rule
rstep such that has been type checked by `red as op : eliminates op2, because
op : elim c.
Since rstep has been type checked by `red with (r-elim) it is of them form:

rstep =
ps

→ (op (op2 Ẽ′) Ẽ′′ t)
. Therefore we could apply this rule, only

provided that premises ps are satisfied. The shape of the rule also imposes
that ps are only value premises. These premises are of two kind:
• value Eu where Eu ∈ Ẽ′′. Then we are in the case where all of those Es

are values. Indeed, those arguments are progress-depending arguments
for needing valuehood. Also, we are in the leftmost case of the case
analysis on all progresses ej on progress-depending arguments. Thus, we
have L |= value eu for each of them, which satisfies the premise.

• value Eu where Eu ∈ Ẽ′. Then `prg L imposes that the index u ∈ Vk,
which means L |= value eu (as defined in the next paragraph), therefore
also this premise is satisfied.

We can therefore apply the rule rstep above and prove L |= (op . . . ej . . .)→ e′

for some e′. So this cases progresses.
Cases STEP and ERR are proved as in the previous case for constructors.

The other operators are easier to handle.
– op : error N : The leftmost leaf of errors is handled similarly as to values and

so are STEP and ERR.
– op : derived: Then φ is typed by `typ by (t-derived). Therefore, it exists a

rule (op Ṽi Ẽ′i)→ ei . As those Vi are tested for valuehood they are progress-
dependent arguments, so we are in the case analysis of their progress and in
particular, they are all values because we are in the leftmost case. Therefore
that reduction rule applies and this case progresses. For derived operators,
STEP and ERR also follow the same line as in the previous cases.

– op1 : errHandler: Then φ is typed by `typ by (t-errHandler). Therefore,

it exists a rule φ2 = (op1 V Ẽ4)→ e2 . As we are in the leftmost case, the
eliminating argument, i.e. the first argument, is a value and thus we can apply
the reduction rule. So this case progresses. For error handlers, STEP follows
the line as in the other case, while ERR is different: since φ is typed by `typ
by (t-errHandler), it means it exists a rule φ1 = (op1 (op2 Ẽ2) Ẽ3)→ e1
and Γ d(op2) = error N .Also, φ1 has been typechecked by `red which ensures
that it fires when the first argument is an error. Therefore we can apply this
rule. So this case progresses.

Canonical Forms Lemma for c

Theorem 5. For all e, c, if ` L and L |= ` e (c T̃ ) and L |= value e then
e = {(t1,V1) ∨ . . . ∨ (tm,Vm)} where for all 1 ≤ j ≤ m, tj = op ẽ and

– (Part 1) op : value c Vj ∈ Γtyp.



– (Part 2) L |= value ei when i ∈ Vj.

Proof. Assume the hypothesis. As L |= ` e (c T̃ ) and ` L, then it means

that e is typed with a typing rule r whose input is (op Ẽ), that is, e = (op ẽ).
Part 1: Since L |= value e, op : value Vj ∈ Γdef, therefore t-elim finds

op : value Vj ∈ Γdef and the typing rule r and classifies op : value c , which
means op : value Vj ∈ Γtyp.

Part 2: Since we have L |= value e (recall e = tj = op ẽ), we have a rule

of form
value E1 . . . value En

value (op E1 . . . En . . .)
. Therefore, all ei, ..., en ∈ ẽ are such that

L |= value ei for 1 ≤ j ≤ n. Now, by (value), all indexes in Vj are exactly
those indexes of the arguments tested for valuehood in that rule.

B Type Preservation

The proof is by induction on L |= e→ e′.
As the formula L |= e → e′ is provable, it means that there exists a rule of

L that is satisfied and proves the conclusion e → e′. This rule can have three
different shapes:

– contextual rule: e = (op ẽ) and the rule is of the form

Ei → E′i
(op . . . Ei . . .)→ (op . . . E′i . . .)

By the assumptions of the preservation theorem, we have L |= ` (op ẽ) T ,
and so we have typing rule φ in T that proves this typeability fact. Also,
since ` L, we have that φ is typed by `typ. This means that the shape of the
rule is such that all arguments ẽ are typed, including ei, that is L |= ` ei T ′.
As in the proof for progress, since Ei is a contextual argument it cannot be
an abstraction but is a simple expression variable. Then we can apply the
inductive hypothesis on it and obtain that L |= ` e′i : T ′. It is easy to see
that if L |= ` (op ẽ) T then L |= ` (op ẽ[e′i/ei]) T . That is, the reduction is
type preserving.

– error steps: e = (op ẽ), i ∈ err–ctx (op ) and the step has been proved with

a rule of the form
error Ei

(op Ẽ)→ Ei
The fact that ` L imposes that there

exists a typing rule that types the error. This is because op : errHandler ∈ Γ t

and ctx = err–ctx ∪ {op 7→ (1, ∅)}. And successively, we have that `red
imposes that the a reduction rule for op : errHandler is well-typed and that
consumes the error in Γtyp, which exists only when a typing rule for the error
has been type checked. Now, as this rule has been type checked by Γtyp and
by (t-error), we have that the shape of the rule is such that the assigned
type is a fresh new variable. So we can prove L |= ` ei : T . That is, The
reduction is type preserving.



– by reduction rules: We see solely the case for a step of an eliminator. This
proof case subsumes that of other reducers (derived operators and error

handlers). Assume e = (op (op2 ẽ′) ẽ′′) of type T and the following reduction
rule by which the step has been proved.

ps

(op (op2 Ẽ′)→ Ẽ′′) t)

(As ` L, the rule above has been type cheked by `red, so ps contains only
value premises.) As ` L and by the assumptions of the preservation we have

that L |= ` (op (op2 ẽ′) ẽ′′) T , then this latter fact is proved with a rule
for which there exists a substitution γ that satisfies the rule and such that
(op (op2 Ẽ′) Ẽ′′)γ = e. We have to prove that tγ is of type T . Since this is a
typing rule of L, we have that it has been typechecked with `typ, which means

all arguments ẽ′′ are well-typed, and also (op2 ẽ′) is well-typed. Now, these
expressions are well-typed with a corresponding typing formula L |= ` E′i
for E′i ∈ Ẽ′ or L |= ` E′′i for E′′i ∈ Ẽ′′ (we will consider abstractions later).
Since we have that `pre L, we have that those facts have been put in a

conjunction Γ s and succeed to prove a query that Γ s ` (op (op2 Ẽ′) Ẽ′′) :
T and also Γ s ` t : T . Since this query has been checked with universal
quantifications over the variables of the query, any instantiations can be
concluded. Therefore, we sure had L |= ` (op (op2 Ẽ′) Ẽ′′)γ T , that is

L |= ` (op (op2 Ẽ′) Ẽ′′)γ T , but we can also conclude L |= ` tγ T . That
is, the reduction is type preserving. In our setting of logic programs, some
arguments of op might be abstraction. In that case the query is hypothetical
of the form ` x : T1 ⇒ ` R : T2, for some R argument of op. Now, there are
two cases: either 1) t contains R simply as a variable, i.e. the step simply
inherits R as it is, or 2) t contains (R t′) for some term t′, i.e. the step
applies a substitution. In case 1) we have that R will have the same type

as in (op (op2 Ẽ′) Ẽ′′) and the query has checked that the whole resulting
term turns out to be type preserving. In the second case, the fact that the
query has been checked with the axiom (eq-sub), guarantees us that (R t′)
matches the expected type as well, and, again, any instantiations of R and
E will do as well.

C Type soundness

Type soundness of well-typed languages follows from progress and preservation
in the usual way. If we have immediately a value or an error we are done. If it
takes a step to some e′′ then type preservation ensures that e′′ is typeable and
so the inductive hypothesis applies and we can conclude.


