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Reasoning about infinite computations via coinduction and corecursion has an ever increas-
ing relevance in formal methods and, in particular, in the semantics of programming languages,
starting from [16]; see also [13] for a compelling example — and, of course, coinduction un-
derlies (the meta-theory of) process calculi. This was acknowledged by researchers in proof
assistants, who promptly provided support for coinduction and corecursion from the early 90’s
on, see [19, 10] for the beginning of the story concerning the most popular frameworks.

It also became apparent that tools that search for refutations/counter-examples of conjec-
tures prior to attempting a formal proof are invaluable: this is particularly true in PL theory,
where proofs tend to be shallow but may have hundreds of cases. One such approach is property-
based testing (PBT), which employs automatic test data generation to try and refute executable
specifications. Pioneered by QuickCheck for functional programming [7], it has now spread to
most major proof assistants [4, 18].

In general, PBT does not extend well to coinductive specifications (an exception being
Isabelle’s Nitpick, which is, however, a counter-model generator). A particular challenge, for
example, for QuickChick is extending it to work with Coq’s notion of coinductive via guarded
recursion (which is generally seen to be an unsatisfactory approach to coinduction). We are not
aware of applications of PBT to other form of coinduction, such as co-patterns [1].

While PBT originated in the functional programming community, we have given in a previ-
ous paper ([5]) a reconstruction of some of its features (operational semantics, different flavors
of generation, shrinking) in purely proof-theoretic terms employing the framework of Founda-
tional Proof Certificates [6]: the latter, in its full generality, defines a range of proof structures
used in various theorem provers such as resolution refutations, Herbrand disjuncts, tableaux,
etc. In the context of PBT, the proof theory setup is much simpler. Consider an attempt to
find counter-examples to a conjecture of the form ∀x[(τ(x)∧P (x)) ⊃ Q(x)] where τ is a typing
predicate and P and Q are two other predicates defined using Horn clause specifications. By
negating this conjecture, we attempt to find a (focused) proof of ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)].
In the focused proof setting, the positive phase (where test cases are generated) is represented
by ∃x and (τ(x) ∧ P (x)). That phase is followed by the negative phase (where conjectured
counter-examples are tested) and is represented by ¬Q(x). FPCs are simple logic programs
that guide the search for potential counter-examples using different generation strategies; they
further capture diverse features such as δ-debugging, fault isolation, explanation, etc. Such
a range of features can be programmed as the clerks and experts predicates that decorate the
sequent rules used in a FPC proof checking kernel: the kernel is also able to do a limited amount
of proof reconstruction.

As explained in [5], the standard PBT setup needs little more than Horn logic. However,
when addressing infinite computations, we need richer specifications. While coinductive logic
programming, see [21] and [3] for a much more principled and in depth treatment, may at first
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seem to fit the bill, the need to model infinite behavior rather than infinite objects, that is
(ir)rational terms on the domain of discourse, has lead us to adopt a much stronger logic (and
associated proof theory) with explicit rules for induction and coinduction.

A natural choice for such a logic is the fixed point logic G [9] and its linear logic cousin
µMALL [2], which are associated to the Abella proof assistant and the Bedwyr model-checker.
In fact, the latter has already been used for related aims [11].

To make things more concrete, consider the usual rules for CBV evaluation in the λ-calculus
with constants, but define it coinductively, following see [13]: using Bedwyr’s concrete syntax,
this is written as:

Define coinductive coeval: tm -> tm -> prop by
coeval (con C) (con C);
coeval (fun R) (fun R);
coeval (app M N) V :=

exists R W, coeval M (fun R) /\ coeval N W /\ coeval (R W) V.

Is evaluation still deterministic? And if not, can we find terms E, V1, and V2 such that
coeval E V1 /\ coeval E V2 /\ (V1 = V2 -> false)?1 Indeed we can, since a divergent
term such as Ω co-evaluates to anything. In fact, co-evaluation is not even type sound in its
generality. Our PBT approach aims to find such counter-examples.

It can also be used to separate various notion of equivalences in lambda and process calculi:
for example, separating applicative and ground similarity in PCFL [20], or analogous standard
results in the π-calculus. While analogous goals have been achieved for labeled transition
systems and for CCS (using, for example, the Concurrency Workbench), it is a remarkable
feature of the proof-theoretic account that is easy to generalizes PBT from a system without
bindings (say, CCS) to a system with bindings (say, the π-calculus). Such ease is possible since
proof theory accommodates the λ-tree syntax approach to treating bindings [14]: this approach
includes the ∇ quantifier [15] that appears in both Abella and Bedwyr.

In our current setup, we attempt to find counter-examples, using Bedwyr to execute both the
generation of test cases (controlled by using specific FPCs [5]) and the testing phase. Such an
implementation of PBT has the advantages of allowing us to piggyback on Bedwyr’s facilities for
efficient proof search via tabling for (co)inductive predicates. There are a couple of treatments
of the negation in the testing phase. One approach to eliminating negation from intuitionistic
specification can be based on the techniques in [17]. Another approach identifies the proof
theory behind model checking as the linear logic µMALL [12] and in that setting, negations
can be eliminated by using De Morgan duality (and inequality).
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