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Abstract Relational descriptions have been used in formalizing diverse computational notions, including, for

example, operational semantics, typing, and acceptance by non-deterministic machines. We therefore propose a

(restricted) logical theory over relations as a language for specifying such notions. Our specification logic is further

characterized by an ability to explicitly treat binding in object languages. Once such a logic is fixed, a natural

next question is how we might prove theorems about specifications written in it. We propose to use a second logic,

called a reasoning logic, for this purpose. A satisfactory reasoning logic should be able to completely encode the

specification logic. Associated with the specification logic are various notions of binding: for quantifiers within

formulas, for eigenvariables within sequents, and for abstractions within terms. To provide a natural treatment

of these aspects, the reasoning logic must encode binding structures as well as their associated notions of scope,

free and bound variables, and capture-avoiding substitution. Further, to support arguments about provability,

the reasoning logic should possess strong mechanisms for constructing proofs by induction and co-induction. We

provide these capabilities here by using a logic called G which represents relations over λ-terms via definitions

of atomic judgments, contains inference rules for induction and co-induction, and includes a special generic

quantifier. We show how provability in the specification logic can be transparently encoded in G. We also describe

an interactive theorem prover called Abella that implements G and this two-level logic approach and we present

several examples that demonstrate the efficacy of Abella in reasoning about computations.

1 Introduction

We are interested in this paper in specifying computations and then reasoning about them. A range of formalisms

have been used as a means for realizing the first of these objectives. For example, the execution semantics of pro-

gramming languages have been describe via the λ-calculus [Reynolds, 1972, Plotkin, 1976], the π-calculus [Milner,

1992], and abstract machines [Landin, 1964]. A specification formalism that has been particularly successful and

widely applicable is operational semantics in both its “small-step” version [Plotkin, 1981] and its “big-step” ver-

sion [Kahn, 1987]. Of the many mature and flexible choices that can be made, we pick here relational specifications

and their direct encoding as theories in restricted logics. This choice allows us to transparently encode operational

semantics as well as a range of other notions including, most notably, typing. Another consequence of our choice

is that our specification language will, in fact, be a specification logic. More specifically, it will turn out to be a

simple, well understood logic that can be interpreted as a logic programming language in the style of λProlog

[Nadathur and Miller, 1988].

After one has picked a language for writing specifications, there is still a choice to be made about a language

for reasoning about them. The choices of these two languages are often related. If one has selected a specification

language relying on, say, process calculus, then a reasoning language that exploits bisimulations and congruences

would be a natural choice: see, for example, [Sangiorgi, 1994]. If one chooses abstract machines for specifications
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then inductive definitions are a natural choice for a reasoning language. In this paper, our reasoning language

will be a logic that contains standard but powerful mechanisms for induction and co-induction as well as the ∇-

quantifier (both in formulas and in definitions) [Miller and Tiu, 2005, Gacek et al., 2009]. Our choice of reasoning

logic has a number of appealing aspects, chief among them being that it is powerful enough to capture within it

many other reasoning techniques such as bisimulation and inductive definitions.

The approach we shall describe in this paper is thus characterized by the use of two logics, one for specifying

computations and the other for reasoning about these logic specifications. We pick both of logics to be intuition-

istic here but other choices are also sensible: for example, McDowell and Miller [2002] used a linear logic as a

specification language in order to provide declarative specifications for a programming language with state. The

logical symbols of these two logics will be separated in our treatment: in fact, provability in the specification logic

will be an inductively defined predicate of the reasoning logic. Although we distinguish the logics in this way, the

term structures that they use will be identical: in particular, the construction of terms in both logics will use the

same application and abstraction operations. As a result, term equality in the reasoning logic will immediately

reflect term equality in the specification logic.

In many commonly used approaches, it is problematic to treat specification-language abstraction through

reasoning-logic abstraction. The reasoning logic often involves function types that contain recursive functions;

this is the case, for example, in Coq and Isabelle/HOL. If function abstraction at the two levels are identified,

function types in the specification language would also have to contain recursively defined functions. Since the

specification language is intended to treat syntactic expressions and not general functions, this raises issues about

the adequate representation of syntax: see, for example, the discussion about “exotic terms” in [Despeyroux et al.,

1995]. In the setting that we shall soon unfold, we get around such problems by making function types in both

the specification and the reasoning logic weak: while term equality will still be governed by the rules for αβη-

conversion, this will happen within the simply typed λ-calculus that does not include stronger principles such as

recursion. To recover the lost strength, we will use inductively and co-inductively defined predicates for reasoning

about computations. However, at the predicate level, the specification logic and the reasoning logic will be strictly

separated. In summary, function types in both logics will be weak and will be used exclusively to represent syntax

that may contain bindings. Following Miller [2000], we shall call this style of encoding data with bindings the

λ-tree approach to abstract syntax.

When we develop the two-level logic approach in detail, the formulas of the specification logic will become

terms of the reasoning logic. This approach to encoding an object logic within a second logic should be contrasted

to the approach of provability logic (see, for example, [Smorynski, 2004]) where natural numbers are used to

denote syntactic objects of an object-logic and primitive recursive functions are used to parse and manipulate

those objects-cum-natural-numbers. Our encoding is more direct: both terms and formulas of the specification logic

are represented by terms in the reasoning logic, with simple types being used to separate terms from formulas.

Moreover, the presence of binding in the terms of the reasoning logic makes it possible to represent quantified

formulas in the specification logic in an immediate and natural manner.

There are a number of advantages to the two-level logic approach to reasoning and the particular realization

of it that we discuss in this paper. First, because of the term structures used in the reasoning logic, only mild

encoding techniques are needed to embed the specification logic in it: for example, specification-level term equality

is directly captured, quantification in the specification logic is treated by using λ-abstraction to bind the quantified

variable, and the instantiation of quantifiers is realized through β-conversion. Second, since specifications are

written in a logic and since such a logic typically has meta-theoretic properties (such as cut-admissibility) that

can be formalized in the reasoning logic, powerful techniques become available for reasoning about descriptions

presented in the specification logic. Third, as a series of examples illustrates, this two-level logic approach can

result in natural, readable, and completely formal proofs of well-known theorems about computational systems.

Finally, when one moves to implementing theorem provers based on this architecture, only one notion of binding,

variable, term equality, substitution, and unification needs to be treated for both logics.

In the next section we describe the aspects of the reasoning logic G that we shall use in this paper. Section 3

presents the specification language hH2 and shows how cut-free sequent calculus provability for it can be given

an adequate encoding in G. Section 4 describes briefly the structure of a theorem-prover called Abella that can

be used to interactively construct sequent calculus proofs in G. This description is then exploited in Section 5

to present examples of the use of the two-level logic approach. Section 6 describes related work and Section 7

concludes with an indication of some future directions.

2



2 The Reasoning Logic

The logic G [Gacek et al., 2009] is an extension of an intuitionistic and predicative subset of Church’s Simple The-

ory of Types [Church, 1940]. Terms in G are monomorphically typed and are constructed using abstraction and

application from constants and (bound) variables. The provability relation concerns terms of the distinguished

type o that are also called formulas. Logic is introduced by including special constants representing the proposi-

tional connectives ⊤, ⊥, ∧, ∨, ⊃ and, for every type τ that does not contain o, the constants ∀τ and ∃τ of type

(τ → o) → o. The binary propositional connectives are written in infix form and the expression ∀τx.B (∃τx.B)

abbreviates the formula ∀τλx.B (respectively, ∃τλx.B). Type subscripts are typically omitted from quantified

formulas when their identities do not aid the discussion. If Q is the abstraction operator or a quantifier, we will

often use the shorthand Qx1, . . . , xn.P for the expression Qx1 . . .Qxn.P .

The usual interpretation of universally quantified formulas equates them with the set of all their instances.

However, in (weak) logics meant for specifications over λ-tree syntax, an expression such as “B(x) holds for all

x” is often meant as a statement about the existence of a uniform argument for every instance rather than a

more general assertion about the truth of some property for these instances. The ∇-quantifier [Miller and Tiu,

2005] is included in G to encode such generic judgments. Specifically, the language contains logical constants ∇τ

of type (τ → o) → o for each τ , not containing o, that is in a designated set of nominal types. As with the other

quantifiers, ∇τx.B abbreviates ∇τλx.B.

Any adequate notion of derivation must associate with the ∇-quantifier at least the idea of generalizing on a

unique name, but in such a way that ∇τx.F is equivalent to ∇τ y.(F [y/x]); the notation F [t/x] denotes here and

below the result of a capture-avoiding replacement of x by t in F . The FOλ∆∇ logic [Miller and Tiu, 2005] realizes

such a view within a sequent calculus presentation of intuitionistic provability by attaching a local signature to

each formula in a sequent. In many reasoning situations, it is useful to strengthen the interpretation of ∇ by

associating with it the ∇-exchange rule given by the equivalence ∇x.∇y.F ≡ ∇y.∇x.F and the ∇-strengthening

rule given by the equivalence ∇x.F ≡ F , provided x is not free in F [Tiu, 2006]. The ∇-strengthening rule

brings with it an ontological commitment to an arbitrary number of distinct objects at the types over which

∇-quantification is permitted. This is an acceptable commitment in many applications where ∇-quantification

is typically used to represent object-level free variables which are themselves infinite in number. The addition

of these rules renders both the length of a local signature and the order of names in it unimportant. These

signatures can therefore be made implicit by distinguishing the variables bound by them as nominal constants.

It is necessary to recognize, however, that the particular names used for such constants have significance only

within a single formula and that, in this situation, the main impact is to ensure that each name refers to a distinct

atomic object.

The treatment of the ∇-quantifier outlined above was introduced in the LGω system [Tiu, 2006] and has

been adopted in G. Specifically, an infinite collection of nominal constants is assumed for each type at which

∇-quantification is permitted. The set of all nominal constants is denoted by C. These constants are distinct from

(eigen)variables and the usual, non-nominal constants that we denote by K. We define the support of a term (or

formula) t, written supp(t), as the set of nominal constants appearing in it. A permutation of nominal constants

is a type preserving bijection π from C to C such that {x | π(x) 6= x} is finite. Permutations are extended to

terms (and formulas), written π.t, as follows:

π.a = π(a), if a ∈ C π.c = c, if c /∈ C is atomic

π.(λx.M) = λx.(π.M) π.(M N) = (π.M) (π.N)

Given two formulas B and B′, we write B ≈ B′ to denote the fact that there is a permutation π such that

B λ-converts to π.B′. It is easy to see that ≈ is an equivalence relation. Following the earlier discussion, G is

designed to preserve provability of sequents with respect to replacement of formulas under this relation.

Figure 1 presents a subset of the core rules for G; the standard rules for the propositional connectives have

been omitted for brevity. Sequents in this logic have the form Σ : Γ −→ C where Γ is a set of formulas, C is

a formula and the signature Σ contains all the free variables of Γ and C. In the rules, Γ, F denotes Γ ∪ {F}.

In the ∇L and ∇R rules, a denotes a nominal constant of appropriate type. In the ∃L and ∀R rules, h is an

appropriately typed variable not occurring in Σ, c̄ is a listing of the variables in supp(B), and h c̄ represents the

application of h to these constants; raising, a technique introduced in [Miller, 1992], is used here to encode the

dependency of the quantified variable on supp(B). The judgment Σ,K, C ⊢ t : τ that appears in the ∀L and ∃R

rules enforces the requirement that the expression t instantiating the quantifier in the rule is a well-formed term

of type τ constructed from the variables in Σ and the constants in K ∪ C. Finally, we note that the id rule gives

expression to the richer notion of equality between formulas.

The notion of substitution plays an important role in defining the remaining rules of the logic. As usual, we

identify a substitution θ as a type-preserving mapping from variables to terms such that the set {x | xθ 6= x},
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B ≈ B′

Σ : Γ,B −→ B′
id

Σ : Γ −→ B Σ : B,∆ −→ C

Σ : Γ,∆ −→ C
cut

Σ,K, C ⊢ t : τ Σ : Γ,B[t/x] −→ C

Σ : Γ,∀τx.B −→ C
∀L

Σ,h : Γ −→ B[h c̄/x]

Σ : Γ −→ ∀x.B
∀R, h /∈ Σ

Σ,h : Γ,B[h c̄/x] −→ C

Σ : Γ,∃x.B −→ C
∃L, h /∈ Σ

Σ,K, C ⊢ t : τ Σ : Γ −→ B[t/x]

Σ : Γ −→ ∃τx.B
∃R

Σ : Γ,B[a/x] −→ C

Σ : Γ,∇x.B −→ C
∇L, a /∈ supp(B)

Σ : Γ −→ B[a/x]

Σ : Γ −→ ∇x.B
∇R, a /∈ supp(B)

Fig. 1 The core rules of G: the introduction rules for the propositional connectives are not displayed.

the domain of θ, is finite. We denote the mapping of a variable x in the domain of a substitution to the term

t by t/x. The usual application of a substitution θ = {t1/x1, . . . , tn/xn} to a term t requires paying attention

to the scope of binders. In the presence of the λ-conversion rules, such an application, that we write as t[θ], is

given precisely by the term ((λx1 . . . λxn.t) t1 . . . tn). In G, we also have to pay attention to the fact that a

substitution that is determined in the context of one formula may have to be applied to another formula; in this

case, we must be careful not to confuse the scopes of nominal constants. Specifically, letting π be a permutation

of nominal constants such that π.c does not appear in the range of θ for any c ∈ supp(B), the nominal capture

avoiding application of the substitution θ to the formula B is written as B[[θ]] and is defined to be (π.B)[θ]. This

definition is ambiguous since many permutations can be chosen for π but the ambiguity is harmless since the

result under all acceptable choices will be equivalent under ≈, the intended notion of equality for formulas.

The logic G supports the possibility of recursively defining atomic judgments. This allows specifications to

be directly embedded in the logic. For example, list membership can be defined by the following two clauses for

member:

∀x, ℓ. member x (x :: ℓ) , ⊤ ∀x, y, ℓ. member x (y :: ℓ) , member x ℓ

The part of the clause to the left of , is called the head while the part to the right is called the body. The

intuitive reading of a single clause is that if the body is true then the head is true. Moreover, the reading of the

complete set of clauses for a given predicate, such as member, is that the predicate holds for some arguments just

in the case that the predicate with these arguments matches the head of one of the clauses and the corresponding

instance of the body of that clause is true.

As seen in the example above, the head of a clause can use patterns to characterize the structure of arguments.

We also allow ∇-quantification to be used in the head to constrain the structure of terms relative to nominal

constants. For instance, the clause (∇z.name z) , ⊤ defines a predicate name which holds only on nominal

constants. When a clause has both ∀ and ∇ quantification, the order of these quantifiers allows us to further

restrict the structure of terms. For example, the clause ∀x.(∇z.fresh z x) , ⊤ defines a predicate fresh which

holds only when its first argument is a nominal constant which does not occur in its second argument. This idea

is particularly useful in recursive definitions such as the following definition of cntx which recognizes well-formed

typing contexts:

cntx nil , ⊤ ∀α, ℓ.(∇x.cntx (〈x,α〉 :: ℓ)) , cntx ℓ

These clauses say that cntx L holds if and only if L is a list of pairs of the form 〈x,α〉 in which x is a nominal

constant that does not appear elsewhere in the list.

Formally, definitions consist of a finite set of clauses of the form ∀x̄.(∇z̄.p t̄) , B where p t̄ and B are

formulas, neither of which contain any nominal constants. Moreover, the free variables of t̄ must be among z̄, x̄

and the free variables of B must be among x̄. The logic G is parameterized by the set of clauses, called D, chosen

for a particular reasoning task. Given a definitional clause ∀x̄.(∇z̄.p t̄) , B and a substitution σ such that the

list z̄σ contains only distinct nominal constants which do not appear in supp(x̄σ) and such that the free variables

of B[σ] are a subset of the free variables of (p t̄)[σ], we say that (p t̄)[σ] , B[σ] is an instance of the original

clause. Note that instances do not need to be ground and may contain other free variables. To treat definitions

in our calculus, we add the rules defL and defR shown in Figure 2 for unfolding predicates on the left and the

right of sequents using their defining clauses. The expression Σθ in the defL rule, denoting the application of

a substitution θ = {r1/x1, . . . , rn/xn} to the signature Σ, is defined to be the result of removing from Σ the

variables {x1, . . . , xn} and then adding every variable that is free in any term in {r1, . . . , rn}. This rule also uses

the nominal capture avoiding application of a substitution to a set of formulas that is defined in the obvious way:

Γ [[θ]] = {B[[θ]] | B ∈ Γ}.
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Σ : Γ −→ B

Σ : Γ −→ p t̄
defR, p t̄ , B an instance from D

{

Σθ : Γ [[θ]],B −→ C[[θ]] | for all θ and all instances (p t̄)[[θ]] , B from D
}

Σ : Γ, p t̄ −→ C
defL

Fig. 2 Definition rules

In the defL rule we consider all possible substitutions which allow an atomic formula to match the head of

a clause in D. Note that these substitutions are intended to affect the eigenvariables Σ. For example, consider

applying the defL rule to the sequent

Σ, x, ℓ : Γ,member x ℓ −→ C

assuming the clauses shown earlier for member. Two of the upper sequents for such an application will be the

following:

Σ, x, ℓ′ : Γ [[x :: ℓ′/ℓ]],⊤ −→ C[[x :: ℓ′/ℓ]]

Σ, x, y, ℓ′ : Γ [[y :: ℓ′/ℓ]],member x ℓ′ −→ C[[y :: ℓ′/ℓ]]

The first of these results from the eigenvariable ℓ being replaced by x :: ℓ′ for some new eigenvariable ℓ′ and the

second corresponds to ℓ being replaced by y :: ℓ′ where y and ℓ′ are new eigenvariables. Note also that these are

not the only upper sequents for the described rule: there will, in fact, be infinitely many other upper sequents,

obtained by choosing more specific substitutions for the variables in Σ, x, ℓ.

The defL rule may have no premises. This happens if there are no substitutions under which an atom in the

left of a sequent matches the head of a clause in D, something that would be the case if, for example, member x nil

appeared there. In this case, the rule provides an immediate proof of its conclusion. At the other extreme, there

may be an infinite number of substitutions which yield relevant instances as we have just seen. Having an infinite

set of premises is an obstacle to the effective application of the rule. However, the following fact about G helps

overcome this difficulty in practice: the provability of Σ : Γ −→ C implies the provability of Σθ : Γ [[θ]] −→ C[[θ]]

for any θ. Thus, the set of premises to be considered can be limited if we can identify a set of most general upper

sequents from which all other upper sequents can be derived by applying a nominal capture-avoiding substitution.

Looking back at the example of Σ, x, ℓ : Γ,member x ℓ −→ C, the two upper sequents that we have presented

explicitly constitute a most general set of upper sequents for the application of defL in this case. In practice, such

most general upper sequents are almost always computable and finite [Gacek et al., 2009]. We do not discuss

these aspects which are important to implementations any further here, but we will use the general observations

to limit consideration in particular examples to finite sets of most general upper sequents.

Identifying what constitutes a most general upper sequent for the defL rule may require some thought in

the case of definitions with ∇-quantification in the head. Consider, for example, the derivation of the sequent

x, y, z : fresh x y −→ q x y z using the defL rule, assuming that fresh is defined by ∀y.(∇z.fresh z y) , ⊤ and q

is some predicate. The following two sequents in which a is a nominal constant would be upper sequents in this

case:

y, z : ⊤ −→ q a y z y, z′ : ⊤ −→ q a y (z′ a)

The second sequent here is strictly more general than the first: we can obtain the first from the second via the

substitution {(λx.z)/z′} while there is no nominal capture-avoiding substitution which yields the second from

the first. In fact, the second sequent constitutes a complete set of most general upper sequents for the use of defL

in this case. Intuitively, in order to obtain such a most general sequent, the eigenvariables in the lower sequent

must be raised over the nominal constants introduced by the definition that is used in conjunction with the defL

rule. Notice also that the constraints expressed by the quantification in the head of a clause may necessitate the

“pruning” of some of such raising substitutions. For example, while y may be replaced initially by y′ a in the

sequent x, y, z : fresh x y −→ q x y z, the need to match the resulting atom fresh x (y′a) with the instance

fresh a y of the head of the clause under the proviso that y cannot depend on a will result in y′ being substituted

for by λu.y.

The meaning of the set of clauses for a predicate is given by any one of the possible fixed-points that can

be associated with the clauses. While the defL and defR rules do not discriminate between the fixed points, G

allows for a refinement that selects the least or the greatest fixed point, based on an inductive or co-inductive

reading of the clauses for a given predicate. More precisely an inductive clause is denoted by
µ
= in place of ,

while a co-inductive clause is denoted by
ν
= in place of ,. We require that the clauses for a given predicate be

uniformly annotated to be inductive, co-inductive or neither. The defL and defR rules may be used with clauses

5



{x̄i : Bi[S/p] −→ ∇z̄i.S t̄i} Σ : Γ, S t̄ −→ C

Σ : Γ, p t̄ −→ C
IL

provided p is defined by the clauses {∀x̄i.(∇z̄i.p t̄i)
µ
= Bi} and

S is a term with no nominal constants and of the same type as p.

Fig. 3 The induction rule

in any of these forms. Predicates that are inductively defined admit additionally the induction rule IL shown in

Figure 3. In a proof search setting, the term corresponding to the schema variable S in this rule functions like

the induction hypothesis and is accordingly called the invariant of the induction. Note that each clause results in

an additional upper sequent for this rule which requires that clause to preserve the induction hypothesis. There

is also a co-induction rule in the logic G though it does not have a natural presentation with the clause-based

treatment of definitions used in this paper [Gacek et al., 2009].

The interpretation of definitions as fixed-points and the possibility of reading individual clauses inductively

or co-inductively is sensible only if such clauses satisfy suitable stratification conditions. For example, a clause

such as a , (a ⊃ ⊥), in which a predicate has a negative dependency on itself should be forbidden. In this paper,

we shall rely on a simple method for ensuring stratification that is due to Tiu and Momigliano [2009]. This

method uses the idea of associating with each predicate p a natural number, lvl(p), that is called its level. This

measure is then extended to formulas as follows: lvl(⊤) = lvl(⊥) = 0; lvl(p t̄) = lvl(p); lvl(B ∧C) = lvl(B ∨C) =

max(lvl(B), lvl(C); lvl(Qx.B) = lvl(B) where Q is ∇, ∀ or ∃; and lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C)). In this

context, we consider a definition to be stratified if we can assign levels to predicates in such a way that for any

clause for p with body B in the definition it is the case that lvl(B[λȳ.⊤/p]) < lvl(p). The logic G has been shown

to be consistent under this constraint [Gacek et al., 2009].

3 The Two-level Logic Approach to Reasoning

The logic G has significant expressive power, being able to treat λ-tree syntax directly and to support inductive

and co-inductive reasoning. As such, it can already be used for constructing specifications of computations and

then for reasoning about them. However, we will not use it in this immediate fashion, choosing instead to embed

a specification logic into it and then using the specification logic to encode the systems that we wish to formalize.

The particular specification logic that we will use in this scheme is the intuitionistic theory of second-order

hereditary Harrop formulas that we call hH2. This logic provides a convenient vehicle for formulating structural,

rule-based characterizations of a variety of properties such as evaluation and type assignment. Informally, one may

think of hH2 as an extension of a simple Prolog-like logic with support for representing and manipulating λ-tree

syntax [Miller, 2000]. An especially useful feature of encodings in hH2 is that derivations that are constructed

in hH2 based on such encodings end up reflecting the structure of computations in the object systems.1 The

embedding of hH2 within G that we describe transparently reflects derivations in hH2 and hence gives us the

ability to formalize a process of reasoning directly about computations. Moreover, by proving meta-theoretic

properties of hH2 within G, we obtain a collection of general logical principles that can be applied in arguments

about computations in any of the encoded object systems.

This section elaborates the specific two-level logic approach outlined above. Section 3.1 presents the logic

hH2 and Section 3.2 describes an example specification in hH2. Finally, Section 3.3 provides an embedding of

hH2 into G and shows how some of the meta-theory of hH2 can be formalized through this embedding.

3.1 The Specification Logic

Formulas in hH2 are of two kinds. The goal formulas are determined by the grammar

G = ⊤ | A | G ∧G | A ⊃ G | ∀τx.G,

where A denotes atomic formulas whose arguments are monomorphically typed λ-terms and τ ranges over types

that do not themselves contain the type of formulas. Definite clauses are formulas of the form ∀x1 . . . ∀xn.(G1 ⊃

· · · ⊃ Gm ⊃ A), where n and m may both be zero and where quantification is, again, over variables whose

types do not contain that of formulas. This restricted set of formulas is “second-order” in that to the left of an

1 Since hH2 is a subset of the λProlog language [Nadathur and Miller, 1988], these specifications can also be compiled
and executed, using an implementation of λProlog such as Teyjus [Nadathur and Mitchell, 1999, Gacek et al., 2008].
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Σ : ∆ ⊢ ⊤
TRUE

Σ : ∆ ⊢ G1 Σ : ∆ ⊢ G2

Σ : ∆ ⊢ G1 ∧G2
AND

Σ : ∆,A ⊢ G

Σ : ∆ ⊢ A ⊃ G
AUGMENT

Σ ∪ {c :τ} : ∆ ⊢ G[c/x]

Σ : ∆ ⊢ ∀τx.G
GENERIC

Σ : ∆ ⊢ G1[t̄/x̄] · · · Σ : ∆ ⊢ Gn[t̄/x̄]

Σ : ∆ ⊢ A
BACKCHAIN

where ∀x̄.(G1 ⊃ . . . ⊃ Gn ⊃ A′) ∈ ∆ and A′[t̄/x̄] = A

Fig. 4 Derivation rules for the hH2 logic

x : a ∈ Γ

Γ ⊢ x : a

Γ ⊢ m : (a → b) Γ ⊢ n : a

Γ ⊢ m n : b

Γ, x : a ⊢ r : b

Γ ⊢ (λx :a.r) : (a → b)
x not in Γ

Fig. 5 Rules for relating a λ-term to a simple type

∀m,n, a, b.(of m (arr a b) ⊃ of n a ⊃ of (app m n) b)
∀r, a, b.(∀x.(of x a ⊃ of (r x) b) ⊃ of (lam a r) (arr a b))

Fig. 6 Second-order hereditary Harrop formulas (hH2) encoding simply typing

implication in a definite formula one finds goal formulas and to the left of an implication in a goal formula, one

finds only atomic formulas. These definite clauses, in fact, coincide with the second-order fragment of higher-order

hereditary Harrop formulas [Miller et al., 1991].

Provability in hH2 is formalized by a sequent calculus proof system in which sequents are of the form

Σ : ∆ ⊢ G, where ∆ is a list of definite clauses, G is a goal formula, and Σ is a set of eigenvariables. The inference

rules for hH2 are presented in Figure 4: an immediate consequence of the results in [Miller et al., 1991] is that

this proof system is complete for the intuitionistic theory of hH2. The GENERIC rule introduces an eigenvariable

when read in a proof search direction, and there is an associated freshness side-condition: c must not already be

in Σ. In the BACKCHAIN rule, for each term ti ∈ t̄ we enforce the type constraint that Σ ⊢ ti : τi holds where τi
is the type of the quantified variable xi. An important property to note about these rules is that if we use them

to search for a proof of the sequent Σ : ∆ ⊢ G, then all the intermediate sequents that we will encounter will

have the form Σ′ : ∆,L ⊢ G′ for some Σ′ with Σ ⊆ Σ′, some goal formula G′, and some list of atomic formulas

L. Thus the initial context ∆ is global: changes occur only in the list of atoms on the left and the goal formula

on the right. In presenting sequents, we will elide the signature when it is inessential to the discussion.

3.2 An Example

We briefly illustrate the ease with which type assignment for the simply typed λ-calculus can be encoded in

hH2. There are two classes of objects in this domain: types and terms. For types we will consider a single

base type called i and the arrow constructor for forming function types. Terms can be variables x, applications

(m n) where m and n are terms, and typed abstractions (λx : a.r) where r is a term and a is the type of x.

The standard rules for assigning types to terms are given in Figure 5. Object-level simple types and untyped

λ-terms can be encoded in a simply typed (meta-level) λ-calculus as follows. We assume the types ty and tm for

representing object-level simple types and untyped λ-terms. The simple types are built from the two constructors

i : ty and arr : ty → ty → ty and terms are built using the two constructors app : tm → tm → tm and

lam : ty → (tm → tm) → tm. Here, the constructor lam takes two arguments: one for the type of the variable

being abstracted and the other for the actual abstraction. Note, in particular, that the bound variable in an

object-level abstraction will be encoded by an explicit, specification logic abstraction: thus, the object-level term

(λf : i→ i.(λx : i.(f x))) will be represented by the specification logic term lam (arr i i) (λf.lam i (λx.app f x)).

Given this encoding of the untyped λ-calculus and simple types, the inference rules of Figure 5 can be specified

by the hH2 definite clauses in Figure 6 involving the binary predicate of. Note that this specification in hH2

does not maintain an explicit context for typing assumptions but uses hypothetical judgments instead. Also,

the explicit side-condition in the rule for typing abstractions is not needed since it is captured by the freshness

side-condition of the GENERIC rule in hH2.

The properties that we prove in G will eventually be about specification logic judgments. To reflect such

properties into related properties about the object system, we will establish two results about our encodings: that

7



there exists a bijection, φ, between expressions of the object system and their specification logic representations

and that this bijection preserves the judgments of interest. These properties constitute what is referred to as the

adequacy of an encoding. We illustrate below the structure of adequacy arguments in the context of our encoding

of the simply typed λ-calculus.

We start by defining the mapping φ from object-level simple types to hH2 terms of type tp and from object-

level untyped λ-terms to hH2 terms of type tm.

φ(i) = i φ(a→ b) = arr φ(a) φ(b)

φ(x) = x φ(m n) = app φ(m) φ(n) φ(λx :a.r) = lam φ(a) (λx.φ(r))

In the first case for the mapping of terms, x is used to denote both an object-level and a corresponding specification

logic variable. Note that under this mapping bound object-level variables will correspond to variables bound by

λ’s in the specification logic, and object-level free variables will correspond (eventually) to eigenvariables in

the specification logic. The mapping φ is bijective so long as we only allow eigenvariables at type tm. In later

arguments, we will need the fact that bound variables in both the object system and the specification logic can

be renamed so that, for example, rules with freshness side-conditions can be correctly applied. It is important

that such object-level and specification logic renamings are carried out in a consistent fashion. A more general

form of this property is that φ is compositional with respect to substitution which can be stated as follows:

φ(r[x := n]) = φ(r)[φ(n)/x]

Notice that we have used object-level substitution on the left and specification logic substitution on the right.

This equality can be proved by induction on the structure of r.

We now want to define a mapping from object-level derivations of typing judgments to derivations in hH2 of

sequents of the form ∆,L ⊢ of e t where ∆ is a list of the clauses from Figure 6 and L is a list of atomic formulas

of the form of x1 a1, . . . , of xk ak where each xi is a unique eigenvariable. Towards this end, we first define the

following bijection between a list of typing assumptions Γ from the simply typed λ-calculus and a list of atomic

formulas of the form described for L.

φ(x1 : a1, . . . , xk : ak) = of x1 φ(a1), . . . , of xk φ(ak)

Using this, we can define the mapping for the (atomic) typing derivation for variables as follows:

φ

(

Γ ⊢ xi : ai

)

=
∆, φ(Γ ) ⊢ of xi φ(ai)

If the object system typing derivation to which φ is applied is correct, then it must be that xi : ai ∈ Γ . Thus the

right-hand side is an instance of the BACKCHAIN rule on the clause of xi φ(ai) which is in φ(Γ ).

Derivations in the object system that have the typing rule for applications at the end are mapped in the

expected way:

φ





...
Γ ⊢ m : a→ b

...
Γ ⊢ n : a

Γ ⊢ m n : b



 =
φ

(

...
Γ ⊢ m : a→ b

)

φ

(

...
Γ ⊢ n : a

)

∆,φ(Γ ) ⊢ of φ(m n) φ(b)

=
φ(

...)
∆,φ(Γ ) ⊢ of φ(m) (arr φ(a) φ(b))

φ(
...)

∆,φ(Γ ) ⊢ of φ(n) φ(a)

∆, φ(Γ ) ⊢ of (app φ(m) φ(n)) φ(b)

This is clearly a well-formed instance of the BACKCHAIN rule using the clause for typing applications in ∆.

In mapping derivations in the object system that have the rule for typing abstractions at the end, we need to

be mindful of the variable naming restriction and how this is realized in the specification logic. Suppose we want

to define the following mapping:

φ







...
Γ, x : a ⊢ r : b

Γ ⊢ (λx :a.r) : a → b






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seq(s N) L ⊤
µ
= ⊤ nat z

µ
= ⊤

seq(s N) L (B ∧ C)
µ
= seqN L B ∧ seqN L C nat (s N)

µ
= nat N

seq(s N) L (A ⊃ B)
µ
= seqN (A :: L) B

seq(s N) L (∀B)
µ
= ∇x.seqN L (B x) member B (B :: L)

µ
= ⊤

seq(s N) L 〈A〉
µ
= member A L member B (C :: L)

µ
= member B L

seq(s N) L 〈A〉
µ
= ∃b.prog A b ∧ seqN L b

Fig. 7 Second-order hereditary Harrop logic in G

Here we assume that x does not appear in Γ so that the naming restriction is satisfied. We map this to the

following specification logic derivation:

φ(
...)

∆,φ(Γ ), of x φ(a) ⊢ of φ(r) φ(b)

∆, φ(Γ ) ⊢ of x φ(a) ⊃ of φ(r) φ(b)
AUGMENT

∆,φ(Γ ) ⊢ ∀x.(of x φ(a) ⊃ of ((λx.φ(r)) x) φ(b))
GENERIC

∆,φ(Γ ) ⊢ of (lam φ(a) (λx.φ(r))) (arr φ(a) φ(b))
BACKCHAIN

In the GENERIC rule we overload notation to let x be the eigenvariable we select. Since it does not appear in

Γ it will not appear in φ(Γ ), and thus the freshness side-condition on the GENERIC rule is satisfied. In fact,

the naming restriction in the object logic matches up with the freshness side-condition in the specification logic

exactly as needed.

The inverse of the φ mapping for typing judgments can be defined in the expected way, and it can be seen

from this that φ is a bijection. Therefore our encoding of the typing relation is adequate.

3.3 Encoding Specification Logic Provability in G

The definitional clauses in Figure 7 encode hH2 provability in G; this encoding is based on ideas from [McDowell and Miller,

2002]. Formulas in hH2 are represented in this setting by terms of type form and we reuse the symbols ∧, ∨, ⊃,

⊤, and ∀ for constants involving this type in G; we assume that the context will make clear which reading of these

symbols is meant. The constructor 〈·〉 is used to inject atomic formulas in hH2 into specially marked expressions

of type form in G. As we have seen earlier, provability in hH2 is about deriving sequents of the form ∆,L ⊢ G,

where ∆ is a fixed list of definite clauses and L is a varying list of atomic formulas. Our encoding uses the G

predicate prog to represent the definite clauses in ∆. In particular, the definite clause ∀x̄.[G1 ⊃ · · · ⊃ Gn ⊃ A] is

encoded as the clause ∀x̄.prog A (G1∧· · ·∧Gn) , ⊤ and particular specifications written in hH2 will be reflected

into G through corresponding collections of prog clauses. Sequents in hH2 are represented in G by means of atomic

formulas of the form seqN L G where L is a list encoding the atomic formulas in L and where G encodes the goal

formula. The provability of such sequents in hH2, given by the rules in Figure 4, leads to the clauses that define

seq in Figure 7. The argument N that is written as a subscript in the expression seqN L G encodes (roughly) the

height of the corresponding hH2 derivation and is needed in formalizing proofs by induction on these heights.

This argument has type nt that is endowed with two constructors: z of type nt and s of type nt → nt.

A few remarks are appropriate pertaining to the encoding of hH2 provability. First, note that proofs of

universally quantified goal formulas in hH2 are generic in nature. Thus, a natural way to encode the proof rule

for the (specification-logic) universal quantifier is to use the ∇-quantifier, as is done in the clause defining seq for

this case. Second, observe that in proving an implication, the atomic assumption is added, as would be expected,

to the list that is the second argument of seq. Third, the last clause for seq can be seen to implement backchaining

over a given hH2 specification, stored as prog clauses. The matching of atomic judgments to heads of clauses is

handled by the treatment of definitions in the logic G; thus the last rule for seq simply performs this matching

and makes a recursive call on the corresponding clause body. Finally, observe that the way the natural number

(subscript) arguments are used in the seq clauses ensures a correct encoding of the fact that the premise sequents

of a rule in hH2 must be shorter than the derivation of the conclusion sequent.
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With this kind of an encoding, we can now formulate and prove in G statements about what is or is not

provable in hH2. Induction over the heights of derivations may be needed in such arguments and this can be

realized via natural number induction on N in seqN L P , realized using induction over the clauses in Figure 7

defining the nat predicate. Notice also that the defL rule encodes case analysis in the derivation of an atomic

goal, leading eventually to a consideration of the different ways in which an atomic judgment may have been

inferred in the specification logic.

3.3.1 Formalizing Properties of the Specification Logic

Since we have encoded the entire derivability relation of hH2, we can prove general properties about it in G and

then use these in reasoning about particular specifications. For example, the following formula, which is provable

in G, states that the judgment seqn ℓ g is not affected by permuting, contracting, or weakening the context ℓ.

∀n, ℓ1, ℓ2, g.(seqn ℓ1 g) ∧ (∀e.member e ℓ1 ⊃ member e ℓ2) ⊃ (seqn ℓ2 g)

This property can be applied to any specification judgment that uses hypothetical assumptions. Using it with

the encoding of typing judgments for the simply typed λ-calculus, for example, we easily obtain that permuting,

contracting, or weakening the typing context of a typing judgment does not invalidate that judgment.

Two additional properties of our specification logic which are useful and provable in G are called the instan-

tiation and cut properties. The instantiation property recovers the notion of universal quantification from our

representation of the specification logic ∀ using ∇. The exact property is

∀n, ℓ, g.∇x.(seqn (ℓ x) (g x)) ⊃ ∀t.(seqn (ℓ t) (g t)).

Stated another way, although ∇-quantification cannot be replaced by ∀-quantification in general, it can be

replaced in this way when dealing with specification judgments. The cut property allows us to remove hypothetical

judgments using a proof of such judgments. This property is stated as the formula

∀n,m, ℓ, a, g.(nat n ∧ seqn ℓ 〈a〉) ∧ (nat m ∧ seqm (a :: ℓ) g) ⊃ ∃p.(nat p ∧ seqp ℓ g),

which can be proved in G. To demonstrate the usefulness of the instantiation and cut properties, we observe that

using these together with our encoding of typing for the simply typed λ-calculus leads to an easy proof of the

type substitution property, i.e., if Γ, x : a ⊢ m : b and Γ ⊢ n : a then Γ ⊢ m[x := n] : b.

3.3.2 Adequacy of the Encoding of the Specification Logic

We are eventually interested in lifting the results we prove about encodings to related results about the original

object systems. In the two-level logic approach, adequacy proofs of this kind can be factored through an adequacy

result for the encoding of the specification logic; in the present context, this corresponds to the adequacy of the

encoding of hH2 in G via the definition of seq and prog. One benefit of the two-level logic approach is that

adequacy of the encoding of the specification logic needs to be established only once for all applications, provided

this is properly parameterized by the embedding of specifications themselves via the prog clauses. Thus, the

important statement of adequacy for the combination of hH2 and G is the following:

Theorem 1 Let ∆ be a list of closed definite clauses, L a list of atoms, G a goal formula, and Σ a set of

eigenvariables containing at least the free variables of ∆, L, and G. Suppose that all non-logical specification logic

constants and types are represented by equivalent constants and types in G and let ψ denote the obvious mapping

between formulas in hH2 and terms in G. Suppose also that specification logic ∀-quantification (eigenvariables)

and reasoning logic ∇-quantification (nominal constants) are allowed only at inhabited types. Then Σ : ∆,L ⊢ G

has a derivation in hH2 if and only if ∃n.nat n ∧ seqn ψ(L) ψ(G) is provable in G with the clauses for nat,

member, and seq as stated before and the clauses for prog as given by the prescribed encoding of ∆.

The proof of this theorem is straightforward and its details are available in [Gacek, 2009b]. The only interesting

point is the relevance of the condition that specification logic ∀-quantification and reasoning logic ∇-quantification

are allowed only at inhabited types. This condition is needed because we have chosen to use a shallow encoding

of the typing judgment of the specification logic. That is, rather than encoding an explicit typing judgment for

specification logic terms, we have relied on the typing judgment of G to enforce the well-formedness of terms. Due

to the lack of restrictions on the occurrences of nominal constants, the typing judgment in G is more permissive

than the specification logic typing judgment. However, as the statement of the theorem indicates, this difference

only manifests itself at uninhabited types. For inhabited types, the instantiation property of hH2 can be used to
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remove any “stray” nominal constants. A deeper encoding involving an explicit typing judgment would avoid this

condition, but would also impose additional costs in terms of reasoning both about and through the encoding.

In our experience, the shallow encoding has turned out to provide a good balance in practice.

The theorem above restricts the definitions of the predicates nat, member, seq, and prog, but makes no

explicit reference to other predicates. Indeed, the definitions of other predicates have no affect on the adequacy of

the encoding of the specification logic. Additionally, G may make use of additional constants and types which are

unconnected to the constants and types used to represent the specification logic without affecting the adequacy

of the encoding.

4 The Architecture of Abella

Abella is an interactive theorem prover for the logic G which incorporates the two-level logic approach to reasoning

[Gacek, 2008, 2009a]. In this section we briefly describe the architecture of Abella. In particular, we illustrate how

G and the two-level logic approach are presented to the user within this system and we introduce terminology

and notation that are useful in the example applications that we consider in the next section.

4.1 Proof Construction, Tactics, and (Co)Induction

The high-level structure of Abella is similar to that of most other tactics-based theorem provers. At any time,

the state of the prover is represented by a collection of subgoals, all of which need to be solved for the overall

proof to succeed. The user applies a tactic to a subgoal in order to make progress towards a completed proof. If

we think of a completed proof as a derivation for a sequent in G, then the subgoals correspond to sequents whose

derivations will complete the proof being sought. A tactic corresponds in this setting to a scheme for using the

rules of G to produce new subgoals whose derivations can, in turn, be used to produce a derivation of the subgoal

under consideration.

The tactics in Abella are designed to model natural proof steps. Some tactics serve to collect related proof

rules under a single name. For example, Abella has a “case analysis” tactic which uses a rule such as ∨L, ∧L,

⊥L, defL, ∃L, or ∇L, depending on the structure of the formula to which it is applied. Other tactics combine

the use of many rules in tandem. For example, Abella has an “apply” tactic which takes a lemma or hypothesis

of the form ∀x̄.H1 ⊃ . . . ⊃ Hn ⊃ C and hypotheses H ′
1, . . . ,H

′
n and tries to find terms t̄ such that for each

i ∈ {1, . . . , n} it is the case that H ′
i −→ Hi[t̄/x̄] can be provided a proof using only the id rule. If successful, the

tactic adds a new hypothesis C[t̄/x̄].

Abella has treatments for induction and co-induction which simplify much of the work involved in formulating

invariants and co-invariants. We will focus on the treatment of induction here: further details of the approach to

induction and co-induction in Abella are available in [Gacek, 2009b]. Suppose we have the sequent

Σ : p t̄,H1, . . . ,Hn −→ C,

where p is inductively defined. The induction tactic can be applied to this sequent by designating p t̄ as the the

induction formula. The application of the tactic is based on the additional formula

∀Σ.(p t̄)∗ ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C,

in which ∀Σ denotes a list of universal quantifiers, one for each variable in Σ. This formula, which we call the

induction hypothesis and denote by IH, has an occurrence in it of the induction formula that is annotated with
∗. The formula annotated in this way in the induction hypothesis can only be matched by another formula that

has the same annotation. The induction tactic now transforms the original sequent into

Σ : IH, (p t̄)@, H1, . . . ,Hn −→ C.

The atomic formula p t̄ that has the annotation @ here is treated as if the annotation is not present, with the

exception that when it is unfolded using a defL rule any new atoms that are introduced that have p as their

head symbol are annotated with ∗. These formulas that are annotated with ∗ are treated just like the formula

with the @ annotation except that they are also eligible to be used with the induction hypothesis. Thus, viewed

intuitively, the induction tactic simply generates an induction hypothesis that is usable when the induction

formula is unfolded. This tactic can be seen as the special case of the use of the IL rule; a detailed justification

is presented elsewhere [Gacek, 2009b].
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4.2 Treatment of the Two-level Logic Approach to Reasoning

Abella incorporates the two-level logic approach to reasoning using the specification logic hH2 and its encoding

via seq and prog. Moreover, the actual details of the encoding are hidden from the user. As we have observed

already, hH2 is a subset of the λProlog language. Abella allows hH2 specifications to be written in λProlog

syntax, thereby permitting one to reason about computations based on the same descriptions that are used

to prototype them. Following this approach also creates the feeling that one is reasoning directly about hH2

derivations that reflect the encoded computations.

Abella uses specialized syntax to simplify the presentation of specification logic judgments. In particular, the

judgment ∃n.nat n ∧ seqn L 〈A〉 is presented as {L ⊢ A}. Moreover, the list L is decomposed into a presentable

format that matches the way hypotheses are typically written in an hH2 judgment. For example, the judgment

{H1 :: H2 :: L ⊢ A} is presented more suggestively as {L,H2,H1 ⊢ A}. If the list ends in nil rather than a

variable then we simply write {H2,H1 ⊢ A}. If the entire list is nil then we elide even the turnstile, writing the

judgment as {A}. Looking at the clauses in Figure 7, we see that any seq judgment in which the last argument

is a non-atomic goal can be immediately and deterministically transformed into a collection of such judgments

in which the last argument is an atomic goal. Thus the specialized {· ⊢ ·} notation is the only representation

of the specification logic that needs to be exposed to the user. For example, using the clauses from Figure 6

in Abella, case analysis on an assumption {of (lam A R) (arr A B)} results directly in the new assumption

{of c A ⊢ of (R c) B} where c is a nominal constant.

As we have observed in Section 3.3, hH2 is a logic with notable meta-theoretic properties which can be

formalized and established as theorems of G. Combining such results with the apply tactic leads to an expanded

collection of tactics within Abella which are geared to reasoning about hH2 specifications. For example, given

{L,A ⊢ B} and {L ⊢ A} the cut tactic allows one to derive {L ⊢ B}. Similarly, given a hypothesis {L ⊢ A}, a

nominal constant v in that hypothesis, and a term t of the same type as v, the inst tactic allows one to derive

{L[t/v] ⊢ A[t/v]}. Also, a tactic is available for deriving from {L ⊢ A} the hypothesis {K ⊢ A} if the list L

denotes a set that is a subset of the set denoted by the list K.

Finally, the treatment of induction described previously is extended to formulas of the form {L ⊢ A} by

attaching annotations directly to such formulas. This treatment is justified by unfolding {L ⊢ A} to ∃n.nat n ∧

seqn L 〈A〉, applying the ∃L and ∧L rules, and using the induction tactic with nat n as the induction formula.

5 Examples

We now illustrate the two-level logic approach to reasoning through concrete examples. We start with a speci-

fication of evaluation and typing for the simply typed λ-calculus for which we prove some basic properties. We

then consider extensions in two different directions. In one direction, we enrich the collection of terms to the

language of PCF [Plotkin, 1977] and we demonstrate that the associated reasoning scales up smoothly. In the

other direction, we retain the simple language but enhance the complexity of the properties we prove.

In the examples we present, we will omit the outermost universal quantifiers when we write specification

formulas, using the convention that tokens given by capital letters denote variables that are implicitly universally

quantified over the entire formula. We will also assume the availability of two special predicates: the binary infix

predicate = for each type that is defined by the clause X = X , ⊤ and, for each nominal type, the unary

predicate name that is defined by the clause (∇x.name x) , ⊤. Finally, we will assume that the formula

∀L,E.∇x. member (E x) L ⊃ ∃E′. E = λy.E′,

is derivable. This formula, which can be proved by a straightforward induction on the definition of member, states

that if a list does not contain a nominal constant then no element of the list can contain that constant.

We will leave out many details of proofs in our presentation, restricting ourselves to indicating the general

structure of the argument and to highlighting especially interesting applications of inference rules and the use of

induction.

5.1 Type Preservation for the Simply Typed λ-Calculus

We recall the encoding of the simply typed λ-calculus in hH2 that was presented in Section 3.2. We use ty

and tm as the types for hH2 terms that encode the types and terms of the (object) λ-calculus. The hH2

constants i : ty and arr : ty → ty → ty are used to denote a base type and the arrow type; we assume for

simplicity that there is only one base type in the object language. The hH2 constants app : tm → tm → tm
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eval (lam A R) (lam A R)

eval M (lam A R) ⊃ eval (R N) V ⊃ eval (app M N) V

of M (arr A B) ⊃ of N A ⊃ of (app M N) B

∀x.(of x A ⊃ of (R x) B) ⊃ of (lam A R) (arr A B)

Fig. 8 Evaluation and typing in the simply typed λ-calculus

and lam : ty → (tm → tm) → tm are used to denote object-level applications and (typed) abstractions. In this

context, call-by-name evaluation and (monomorphic) typing for the simply typed λ-calculus can be specified by

the hH2 formulas as shown in Figure 8.

Consider now proving that evaluation in the simply typed λ-calculus preserves typing. Stated in terms of the

encoding in hH2, this property can be expressed through the following formula in G:

∀E,V, A. {eval E V } ⊃ {of E A} ⊃ {of V A}. (1)

We show below how a proof can be constructed in Abella of a sequent with only this formula on the right.

Using the right rules for the universal quantifier and implication, the starting goal can be reduced to the

subgoal corresponding to the sequent

{eval E V }, {of E A} −→ {of V A}.

We can prove this sequent by induction on {eval E V } using the rest of the sequent to generate the induction

invariant. Let us abbreviate that induction hypothesis, namely, [∀E, V,A. {eval E V }∗ ⊃ {of E A} ⊃ {of V A}]

by IH. The resulting induction yields two sequents, one for each clause defining eval. The base case, namely,

IH, {of (lam B R) A} −→ {of (lam B R) A}

is trivial. The other case is given by the sequent

IH, {evalM (lam B R)}∗, {eval (R N) V }∗, {of (appM N) A} −→ {of V A}.

Applying case analysis to the typing judgment on the left yields the sequent

IH, {evalM (lam B R)}∗, {eval (R N) V }∗,

{of M (arr C A)}, {of N C} −→ {of V A}.

Applying the induction hypothesis to the evaluation and typing judgments on M yields the sequent

IH, . . . , {eval (R N) V }∗, {of N C}, {of (lam B R) (arr C A)} −→ {of V A}.

Case analysis can be applied to the new typing judgment and this yields

IH, . . . , {eval (R N) V }∗, {of N B}, {of c B ⊢ of (R c) A} −→ {of V A}.

Notice that this analysis has forced B = C and thus all instances of C have been replaced. In the last hypothesis

of this sequent, c is a nominal constant so we can apply the instantiation property of hH2 to obtain {of N B ⊢

of (R N) A}. We can then use the cut property with the assumption {of N B} to produce the following sequent.

IH, . . . , {eval (R N) V }∗, {of (R N) A} −→ {of V A}.

Applying the induction hypothesis to the two assumptions displayed above completes this proof.

Proofs of properties such as the one above involve what is often called a “substitution lemma.” In this case,

assuming a conventional syntax representation, such a lemma would be stated as “if B has type α and the variable

x and term t have the same type β, then B[t/x] has type α.” Such a lemma can be proved using an induction

on the details of the construction of terms and their binding structure. Notice that in the proof above, this

substitution lemma comes for free: it is a direct application of the cut-admissibility result for hH2. Of course, the

proof of cut-admissibility requires a detailed induction on the structure of hH2 proofs. As this example illustrates,

however, once cut-admissibility has been established, one should be able to get most substitution lemmas for free

by using such meta-level properties of hH2.
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Our ultimate objective is to show the type preservation property for the simply typed λ-calculus. We obtain

this result from the property stated in formula (1) by using the adequacy of our encodings. Suppose that e

evaluates to v and that ⊢ e : a holds. Let ∆ be the clauses in Figure 8. By the adequacy of these clauses,

which can be proved as shown in Section 3, we know that ∆ ⊢ eval φ(e) φ(v) and ∆ ⊢ of φ(e) φ(a) must have

derivations in hH2. Then from the adequacy of the seq encoding of hH2 into G we know that {eval φ(e) φ(v)}

and {of φ(e) φ(a)} must both have proofs in G. Using the proofs of these two formulas together with the proof

of formula (1), we can construct a proof of {of φ(v) φ(a)}. Then by the adequacy of seq, it must be that

∆ ⊢ of φ(v) φ(a) has a derivation in hH2. Finally by the adequacy of the clauses in ∆ it must be that ⊢ v : a

holds. Notice that one must prove adequacy for the clauses which make up a specification, but one does not need

to ever re-prove the adequacy of seq. Thus, the two-level logic approach to reasoning does not introduce any

recurring costs with respect to adequacy of the associated reasoning.

5.2 Type Uniqueness for the Simply Typed λ-Calculus

Proving the formula [∀E,A,B. {of E A} ⊃ {of E B} ⊃ A = B], that is, that types are unique for the simply

typed λ-calculus, brings out another important aspect of the two-level logic approach to reasoning: the reasoning

logic can be used to make explicit, and thereby to exploit in reasoning, properties of terms that arise dynamically

when the specification logic is used to “carry out” computations described in it. Specifically, in this example we

will use G to characterize the typing contexts that are constructed in hH2 when using hypothetical judgments

to assign types to abstractions.

In order to prove the theorem about uniqueness of types, we will need to generalize it to allow for the

assignment of types relative to typing contexts. These typing contexts can be characterized in G by a variant of

the cntx predicate that we saw in Section 2 that is defined by the following clauses:

ctx nil
µ
= ⊤ (∇x. ctx (of x A :: L))

µ
= ctx L.

It is easy to see that if the judgment ctx L holds, then L must be a list of elements of the form (of x A) where

each x is a nominal constant that does not appear later in the list. Thus, the type assignments in L must be to

nominal constants and the assignment to each such constant must be unique. These properties, which are needed

for proving the uniqueness of typing, are written as the following formulas in G:

∀X,A,L. ctx L ⊃ member (of X A) L ⊃ name X (2)

∀X,A,B,L. ctx L ⊃ member (of X A) L ⊃ member (of X B) L ⊃ A = B. (3)

Both formulas can be established as lemmas in G by a simple induction on the structure of the ctx definition.

Notice that in the second formula, the universally quantifier over X could have been replaced by the generic

quantifier over X. We also note that the proof of this second formula makes use of the general lemma about list

membership and nominal constants described at the beginning of this section.

The generalization of the type uniqueness theorem is now given as the following formula:

∀E,A,B,L. ctx L ⊃ {L ⊢ of E A} ⊃ {L ⊢ of E B} ⊃ A = B.

Attempting to prove this formula yields the sequent

ctx L, {L ⊢ of E A}, {L ⊢ of E B} −→ A = B.

Applying induction on the first typing judgment with the following inductive hypothesis (again denoted by IH)

∀E,A,B,L. ctx L ⊃ {L ⊢ of E A}∗ ⊃ {L ⊢ of E B} ⊃ A = B.

results in three cases. The first case is

IH, ctx L,member (of E A) L, {L ⊢ of E B} −→ A = B.

We can apply lemma (2) here to obtain

IH, ctx L,member (of E A) L,name E, {L ⊢ of E B} −→ A = B.

Applying case analysis to the assumption name E leads to a single premise since there is a most general upper

sequent for this use of defL. In particular, E is replaced by a nominal constant c and every other variable is raised

over this constant. Thus we have the following sequent:

IH, ctx (L c),member (of c (A c)) (L c), {L c ⊢ of c (B c)} −→ A c = B c.
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Now case analysis on the remaining typing assumption results in the single sequent

IH, ctx (L c),member (of c (A c)) (L c),member (of c (B c)) (L c) −→ A c = B c.

At this point we can apply lemma (3) to finish this case.

The second of the three original cases is the sequent

IH, ctx L, {L ⊢ of M (arr C A)}∗, {L ⊢ of N C}∗, {L ⊢ of (appM N) B} −→ A = B.

Now we can perform case analysis on the remaining typing assumption for app M N . This results in two cases.

The first is that of (app M N) B may occur in the list L. This case can be handled using lemma (2), i.e., we

can determine name (app M N) which when subjected to case analysis will result in zero cases (that is, it is

recognized as a false assumption). The other case is

IH, ctx L, {L ⊢ of M (arr C A)}∗, . . . , {L ⊢ of M (arr D B)}, . . . −→ A = B.

At this point we can apply the induction hypothesis to the two typing judgments for M to determine that

arr C A = arr D B and therefore A = B.

The remaining case in the original proof is the sequent

IH, ctx L, {L, of c C ⊢ of (R c) D}∗, {L ⊢ of (lam C R) B} −→ arr C D = B.

Here c is a nominal constant. Case analysis on the typing judgment for lam C R results in two cases. Again, the

first one can be dismissed using lemma (2). The second one is as follows.

IH, ctx L, {L, of c C ⊢ of (R c) D}∗, {L, of c C ⊢ of (R c) F} −→ arr C D = arr C F.

Here we have opted to use the nominal constant c in deconstructing this second typing judgment. Any other

choice is equally valid and does not affect the proof. In order to use the induction hypothesis we must be able to

show that ctx (of c C :: L) holds: but this is immediate from the definition of ctx and the fact that c is a nominal

constant which does not appear in L. Therefore we can use the induction hypothesis and determine that D = F ,

thus finishing the proof.

5.3 Extension to the Language of PCF

We now extend the specification of the simply typed λ-calculus to treat an abstract version of the programming

language PCF presented by Plotkin [1977]. To do this, we replace the base type i : ty with the types for numbers

num : ty and booleans bool : ty. We also enrich the set of terms by allowing the following constants.

zero : tm succ : tm→ tm if : tm→ tm→ tm→ tm

true : tm pred : tm→ tm rec : ty → (tm→ tm) → tm

false : tm iszero : tm→ tm

Using these, the specification for evaluation and typing in PCF is presented in Figure 9.

We shall not repeat the proofs of type preservation and type uniqueness for PCF, but rather we will explain

how these proofs differ from the ones for the simply typed λ-calculus. First, for type preservation, the statement

is unchanged:

∀E,V, A. {eval E V } ⊃ {of E A} ⊃ {of V A}.

The basic structure of this proof is the same, however, when we induct on {eval E V } we get 13 cases instead of

two, since eval has that many more cases now. These additional cases are either easy or similar to the cases in the

earlier version of the proof. The substitution property for typing judgments is again obtained for free using the

instantiation and cut properties of hH2. The only increase in proof size is due to a widening of the central case

analysis. The story for type uniqueness is the same: since typing contexts have not been changed, the definition

of ctx is as before and the proof of the formula

∀E,A,B,L. ctx L ⊃ {L ⊢ of E A} ⊃ {L ⊢ of E B} ⊃ A = B

proceeds as before but with additional cases as expected from the additional clauses in the specification of typing.
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eval zero zero

eval true true

eval false false

eval M V ⊃ eval (succ M) (succ V )

eval M zero ⊃ eval (pred M) zero

eval M (succ V ) ⊃ eval (pred M) V

eval M zero ⊃ eval (iszero M) true

eval M (succ V ) ⊃ eval (iszero M) false

eval M true ⊃ eval N1 V ⊃ eval (if M N1 N2) V

eval M false ⊃ eval N2 V ⊃ eval (if M N1 N2) V

eval (lam A R) (lam A R)

eval M (lam A R) ⊃ eval (R N) V ⊃ eval (app M N) V

eval (R (rec A R)) V ⊃ eval (rec A R) V

of zero num

of true bool

of false bool

of M num ⊃ of (succ M) num

of M num ⊃ of (pred M) num

of M num ⊃ of (iszero M) bool

of M bool ⊃ of N1 A ⊃ of N2 A ⊃ of (if M N1 N2) A

of M (arr A B) ⊃ of N A ⊃ of (app M N) B

(∀x.of x A ⊃ of (R x) B) ⊃ of (lam A R) (arr A B)

(∀x.of x A ⊃ of (R x) A) ⊃ of (rec A R) A

Fig. 9 Evaluation and typing in PCF

term M ⊃ term N ⊃ term (app M N)

(∀x.term x ⊃ term (R x)) ⊃ term (abs R)

path M done

path M P ⊃ path (app M N) (left P )

path N P ⊃ path (app M N) (right P )

(∀x.∀p.path x p ⊃ path (R x) (S p)) ⊃ path (abs R) (bnd S)

Fig. 10 Specification of paths through λ-terms

5.4 Comparing Paths in λ-Terms

Terms in the untyped, pure λ-calculus can be visualized as tree structures. As such, we can define paths in a

term as paths that start at the root in the corresponding tree. We shall formally prove here that if every path in

one λ-term is also a path in another λ-term, then the two terms are equal.

To formalize this theorem, we first need a representation of untyped λ-terms and paths in hH2. We introduce

the two types tm and pt for this purpose and we use the constructors shown below.

app : tm→ tm→ tm done : pt left : pt→ pt

abs : (tm→ tm) → tm bnd : (pt→ pt) → pt right : pt→ pt

Notice that since we are concerned with only pure λ-terms, we only need the two constructors app and abs for

representing them.

We now introduce the predicates term and path defined by the specification logic formulas in Figure 10. Note

that we allow partial paths using done. Notice also that the G formula

∀R,S.{path (abs R) (bnd S)} ⊃ (∀x.∀p.{path x p} ⊃ {path (R x) (S p)})
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is a kind of converse to the last clause specifying path and is also trivial to prove. Thus, if we have a path

(bnd S) through the term (abs R) and a path P through term N , then the result of substituting path P into the

abstraction S is a path in the term resulting from substituting N into the abstraction R. This formula is another

example of a “substitution lemma for free.”

We wish now to prove the theorem:

∀M,N. {termM} ⊃ (∀P. {pathM P} ⊃ {path N P}) ⊃M = N. (4)

Since induction in G is an introduction rule for defined predicates, the assumption {term M} is placed in this

formula to enable induction on the structure of M . Before we prove this formula, we need to strengthen it. In

particular, when M is an abstraction we need to consider how the contexts for the term and path judgments will

grow. The defined predicate ctxs describes how these two contexts are related.

ctxs nil nil
µ
= ⊤ (∇x.∇p.ctxs (term x :: L) (path x p :: K))

µ
= ctxs L K.

Along with this definition, we need the following lemmas which allow us to extract information about a term

based on its membership in one of the contexts described by ctxs.

∀X,L,K. ctxs L K ⊃ member (term X) L ⊃ name X ∧ ∃P. member (path X P ) K

∀X,P, L,K. ctxs L K ⊃ member (path X P ) K ⊃ name X ∧ name P.

The proofs of both lemmas are by straightforward induction on the member hypotheses.

We can state the strengthened version of the theorem as the following lemma.

∀L,K,M,N. ctxs L K ⊃ {L ⊢ term M} ⊃

(∀P. {K ⊢ pathM P} ⊃ {K ⊢ path N P}) ⊃M = N.

The proof of this lemma proceeds by induction on {L ⊢ term M}. The base case needs the following lemma,

which is proved by induction on one of the member hypotheses and which uses the general lemma about list

membership and nominal constants described in the preamble of this section.

∀L,K,X1, X2, P. ctxs L K ⊃ member (path X1 P ) K ⊃

member (path X2 P ) K ⊃ X1 = X2.

In the other cases of the proof, we need to show that the top-level constructor ofM is also the top-level constructor

of N . We do this by constructing a partial path through the top-level constructor of M : since paths in M are also

paths in N , the top-level constructor of N must match that of M . Once we know that the top-level constructors

are the same, we can use the assumption that all paths inM are paths in N to show that all paths in an immediate

subterm of M are paths in the corresponding immediate subterm of N . Then by induction we can conclude that

those subterms are equal.

There is one technical complication in the proof of path equivalence which comes from the inductive case

concerning abstractions. Suppose M = abs R and N = abs R′. Here we know

∀P. {K ⊢ path (abs R) P} ⊃ {K ⊢ path (abs R′) P}

but in order to use the inductive hypothesis we must show

∀P. {K,path x p ⊢ path (R x) P} ⊃ {K,path x p ⊢ path (R′ x) P},

where x and p are nominal constants. Now the problem is that when we go to prove this latter formula, the ∀R

rule says that we must replace P by (P ′ p x) for some new eigenvariable P ′. Note that P ′ is raised over both p

and x even though the dependency on x must be vacuous. The following lemma establishes this vacuity and is

used to finish this case of the proof.

∀K,M,P.∇x, p. {K,path x p ⊢ path (M x) (P p x)} ⊃ ∃P ′. P = λz.P ′

This lemma is proved by induction on the path judgment and uses the general lemma about nominal constants

and list membership. Note that we single out path x p being the first member of the context even though new

path assumptions may be added during induction. This is not a problem since we can always use the property of

hH2 which allows contexts to be freely rearranged. With this issue resolved, the proof of this theorem can now

be completed.
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step (app (lam A R) M) (R M)

step M M ′ ⊃ step (app M N) (app M ′ N)

step N N ′ ⊃ step (app M N) (app M N ′)

(∀x.step (R x) (R′ x)) ⊃ step (lam A R) (lam A R′)

Fig. 11 One step β-reduction in the simply typed λ-calculus

In the theorem about paths, we have encoded the the property that all paths in m are paths in n via the

formula

∀P. {path φ(m) P} ⊃ {path φ(n) P}. (5)

There is a question about the adequacy of this encoding even after we have established the adequacy of our

representation of terms and paths and we have shown that, for all terms m and paths p, m has path p if and

only if {path φ(m) φ(p)} is provable in G. To resolve this question in one direction, assume that the formula (5)

is provable. Let p be any path in m so that we have a proof of {path φ(m) φ(p)}. Using formula (5) and this

proof we can construct a proof of {path φ(n) φ(p)}. Thus n has path p. For the other direction, we argue that if

every path in m is a path in n then we can prove formula (5). Such a proof reduces to constructing a derivation

of the sequent

{path φ(m) P} −→ {path φ(n) P}. (6)

We can construct a proof of this sequent by repeatedly unfolding {path φ(m) P} and the new hypotheses which

result from it. This process will terminate since φ(m) is a finite term with no variables and the recursive clauses

of path always deconstruct their first argument. The sequents which result from this repeated case analysis will

have the form −→ {path φ(n) P} for some instance of P such that −→ {path φ(m) P} is provable. By the

assumption of adequacy for the path predicate, we know P = φ(p) where p is a path in m. Thus p is also a path

in n and thus each sequent −→ {path φ(n) P} is provable.

5.5 Other Examples

There are many other examples of topics that have been completely formalized within G and checked using the

Abella prover. We list some of these examples here: complete details of the proofs can be found on the website

for Abella [Gacek, 2009a].

Meta-theory of the λ-calculus We have used Abella to specify both big-step and small-step evaluation for untyped

λ-terms and then to prove that they compute the same values and that they are both determinate and type-

preserving. We have also encoded a proof of the Church-Rosser theorem and have also proved strong normalization

for the simply typed λ-calculus. The latter theorem and proof deserve a few additional words. Strong normalization

for the λ-calculus can be defined elegantly as

snM
µ
= ∀N.{step M N} ⊃ sn N,

where step (specified in Figure 11) relates two terms when the second is the replacement of exactly one β-redex

in the first. Induction on sn corresponds to induction on the tree of possible β-reductions for a term which in

this case can be used in place of induction on the longest possible length of a β-reduction. Using the predicate of

defined in Figure 8, the strong normalization theorem for the simply typed λ-calculus is stated simply as

∀M,A.{of M A} ⊃ sn M.

The proof of this theorem uses a logical relations style argument based on the predicate reduce defined as

reduceM i
µ
= {of M i} ∧ sn M

reduceM (arr A B)
µ
= {of M (arr A B)} ∧ ∀U. reduce U A ⊃ reduce (appM U) B.

Abella allows such a definition although it does not satisfy the stratification condition described in Section 2. As

we mention in Section 7, more flexible notions of stratification need to be identified and validated in order to

justify this proof.
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Meta-theory of the π-calculus We have specified the semantics of the finite π-calculus using the specification

logic and formalized the notion of open bisimulation using a co-inductive definition in the reasoning logic. We

have shown that open bisimulation is an equivalence relation and a congruence using this formalization. This

formalization constitutes an elegant treatment of the π-calculus where all issues involving bindings, names, and

substitutions are handled declaratively without explicit side-conditions.

The POPLmark challenge problems The POPLmark challenge [Aydemir et al., 2005] is a selection of problems

which highlights the traditional difficulties in reasoning about systems which manipulate objects with binding.

The particular tasks of the challenge involve reasoning about evaluation, typing, and subtyping for F<:, a λ-

calculus with bounded subtype polymorphism. We have solved parts 1a and 2a of this challenge using Abella,

which represent the fundamental reasoning tasks involving objects with binding.

Cut-elimination We have shown that the cut rule can be eliminated from LJ while preserving the provability

relation. The encoding of sequents in our specification logic used hypothetical judgments to represent LJ hypothe-

ses and generic judgments to represent LJ universals. This allowed the cut-elimination proof to take advantage

of Abella’s built-in treatment of meta-properties of the specification logic.

6 Related Work

The range of applications that we have demonstrated for our reasoning logic G depends on its strong declarative

treatment of binding as well as its treatment of fixed points (i.e., induction and co-induction). In comparing our

work to the many other research efforts devoted to building theorem provers that can reason about specifications of

computations, it is convenient to characterize the latter approaches using these two axes of logical expressiveness.

Some of these systems start with a clean and comprehensive foundation for fixed points and (co)induction, treating

the notion of of binding as something that can be implemented later within such an inductive logic. Other systems

start with a logically supported approach to binding and then later provide some aspects of inductive reasoning

over binding structure. We use this coarse classification below to organize our comments about related efforts.

6.1 Inductive Frameworks with Treatments of Binding Added

Many systems for reasoning about computations start with established inductive logic theorem provers such

as Coq [Bertot and Castéran, 2004] (based on the Calculus of Inductive Constructions [Coquand and Paulin,

1988]) and Isabelle/HOL [Nipkow et al., 2002], and then use those systems to build approaches to binding and

substitution. We discuss three examples of this approach: the locally nameless representation, the Nominal package

for Isabelle/HOL [Urban, 2008], and Hybrid [Felty and Momigliano, 2010].

The locally nameless representation of binding structure uses de Bruijn indices for bound variables and names

for free variables. The central benefits of this approach are that α-equivalent terms are syntactically equal, the

statements of lemmas and theorems rarely need to talk about arithmetical operations over de Bruijn indices, and

capture-avoiding substitution can be defined in a straightforward and structurally recursive way. However, one

must still define this substitution manually and prove lemmas about its behavior. Additionally, there is no device

like ∇ for quantifying over fresh variable names. Instead, practitioners of the locally nameless approach (see, for

example, Aydemir et al. [2008]) advocate an encoding of such quantification using cofinite quantification, i.e.,

quantification over all names not belonging to some arbitrary, finite set. This technique, however, still requires

sometimes explicitly proving that free variables can be renamed while preserving provability of a judgment.

The Nominal package for Isabelle/HOL automates the formalization of alpha-equivalence classes based on

ideas from nominal logic [Pitts, 2003]. The user is then left to define and reason about a notion of capture-avoiding

substitution over terms constructed with such alpha-equivalence classes. Reasoning over open terms is supported

in the Nominal package via the nominal logic N-quantifier which has similarities to the ∇-quantifier. However,

the N-quantifier is “over-worked” in the nominal approach since it is also used to introduce names which are

bound by name abstractions. This creates some additional difficulties such as when introducing functions and

predicates in the nominal approach one must prove properties which state that name swapping does not change

the results of a function or the provability of a predicate—a property which is enforceable statically for definitions

of predicates in G due to the separation between free and bound variables.

Hybrid adds support to traditional theorem provers such as Coq and Isabelle/HOL for reasoning about

binding structures by translating such structure into a de Bruijn representation. The logic of the theorem prover

then serves as the meta-logic in which reasoning is conducted. This approach necessarily produces more overhead
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during reasoning due to the occasional need to reason about the effects of the translation, although one might

expect that such reasoning can eventually be automated. Hybrid is often used in a two-level logic approach using

a specification logic that is essentially the same hH2 specification language considered in this paper. The Hybrid

system, by design, lacks a reasoning logic with a device like the ∇-quantifier for reasoning about open terms

and generic judgments. Recent work has suggested that such a device is not necessary for simple reasoning tasks

such as type uniqueness arguments [Felty and Momigliano, 2009], although it is unclear if the Hybrid approach

will scale to problems such as those proposed by the POPLmark challenge [Aydemir et al., 2005]. For these

types of problems one needs to recognize as equivalent those judgments which differ only in the renaming of free

variables. Such a property is built into G through the use of nominal constants to denote such free variables. To

use such an approach in Hybrid, one will have to manually develop and prove properties about notions of variable

permutations.

6.2 Binding Frameworks with Treatments of Induction Added

There are a variety of systems for reasoning about computations which take binding as a primitive notion and

then attempt to define separately notions of induction over that structure. Many of these start with the LF logical

framework [Harper et al., 1993], a dependently typed λ-calculus with a direct treatment of variable binding. While

the LF type system can be used to describe both the structure and behavior of many computational systems, it

does not include a notion of induction: inductive arguments about LF specifications are typically supported by

constructing a second layer on top of LF.

Twelf [Pfenning and Schürmann, 1999], the most popular tool for reasoning about LF specifications, pro-

vides an operational semantics for LF that defines recursive relations over LF terms. Subject to some side-

conditions, these relations can then be interpreted as proofs about LF specifications. Similar functional ap-

proaches have been developed starting with M+
2

[Schürmann, 2000], a simple meta-logic for reasoning over LF

representations where proof terms are represented as recursive functions. More recent work includes the Delphin

[Poswolsky and Schürmann, 2008] and Beluga [Pientka, 2008] functional languages which can be used in the

same spirit as M+
2
. New work by Licata et al. [2008] proposes a language which combines LF with recursive

functions over LF so that a strict separation into levels is no longer needed. In all of these approaches, however,

side-conditions for termination and coverage are required and algorithms have been devised to check for such

properties. Since termination and coverage are in general undecidable, such algorithms are necessarily incomplete.

6.3 The Development of a Logic for both Bindings and Fixed Points

The logic G is the result of an extended effort to design a single logic that integrates induction and co-induction

with the ability to reason flexibly about bindings. The λProlog language [Nadathur and Miller, 1988] provided

a starting point as a specification language that allowed a completely declarative treatment of binding. In order

to support reasoning about specifications written in the hH2 subset of λProlog, McDowell and Miller [2000]

developed the two-level logic approach used in this paper but with a much weaker reasoning logic called FOλ∆IN.

That logic provided induction on natural numbers but did not contain ∇-quantification. As a result of this missing

ingredient, reasoning about object-level bindings became unduly complicated; see, for example, the discussion on

explicit eigenvariable encoding in [McDowell and Miller, 2000].

The ∇-quantifier was first introduced in [Miller and Tiu, 2005]. The logic that was first proposed did not

include inference rules for induction and co-induction but these were added shortly thereafter by Tiu [2004]. The

initial logics adopted a minimalistic view of the ∇-quantifier that turned out to be inadequate for many instances

of inductive reasoning over binding structures. To redress this situation Tiu [2006] proposed the addition of the ∇-

exchange and ∇-strengthening rules and developed the nominal constant based treatment of the ∇-quantifier used

in this paper. The resulting logic still did not have the ability to concisely characterize occurrences of nominal

constants in terms and was consequently awkward to use in reasoning about open terms and contexts. The

missing piece was provided by the notion of nominal abstraction Gacek et al. [2009]. This final logic, G, combines

into one proof system, the two separate components for reasoning about fixed points and about binding. These

components are independently constructed yet their interaction is well-behaved and quite useful.

7 Conclusions and Future Work

We have presented an intuitionistic logic, G, in which binding is treated directly using the ∇-quantifier (both

in formulas and the head of definitions) and in which least and greatest fixed points are treated directly using
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inference rules for induction and co-induction. In a logic that has this kind of expressiveness, it is possible to

inductively define proofs systems for specification logics, such as hH2. This makes it possible to use a theorem-

proving approach in which the specification logic is used in an intrinsic way and in which reasoning takes place

through a transparent embedding of that logic in the richer reasoning logic. We have described a system called

Abella that exploits this two-level logic approach and we have shown its flexibility and power through a sequence

of reasoning examples. While the illustrations we have been able to consider in this paper are limited, Abella

has had a number of significant theorem-proving successes that are described more completely on the web page

associated with it.

Experience with the two-level logic approach to reasoning has provided us with insights into possible ways to

enhance the logic G and the methodology built into Abella. We indicate a few such directions that we intend to

pursue in the near future.

More permissive stratification conditions for definitions The current stratification condition for definitions in G is

somewhat simplistic: that condition rules out seemingly well-behaved definitions such as that of the reducibility

relation used in logical relations arguments; see Section 5.5 for details. One could imagine a more sophisticated

condition which would allow definitions to be stratified based on an ordering relation over the arguments of the

predicate being defined. The proof theoretic arguments needed to prove cut-elimination for a logic with such

definitions seem rather delicate, particularly since we allow substitutions which may interfere with any ordering

based on term structure.

Contexts are special In principle, provability in the specification logic is captured by an inductive definition of the

seq predicate; in practice, it has been most useful for Abella to provide some special treatment of that predicate

(via the {· ⊢ ·} notation). Similarly, while contexts are, in principle, just another list structure, it seems likely

that they should also have some special attributes associate to them. As some examples illustrated, the current

practice requires stating a definition describing a context, proving various inversion lemmas about membership

in such contexts, and then applying these lemmas at the appropriate times. Treating context as special objects

should make it possible to automate several of these lemmas or to arrange things so that such lemmas are not

needed but have their effects embedded into the prover.

Types-as-predicates As we have described the logic G, there is no direct connection between predicates (on which

we may apply induction) and the simple types attributed to variables. The description of the type and its

constructors is not sufficient: it is necessary to define a predicate that describes the members of the type. For

example, if we wish to do induction on the structure of untyped λ-terms (as in Section 5.4), we need to build the

predicate term from the description of the type tm. Linking simple types to the predicates that define them is a

natural enhancement to a theorem prover for G.

Alternate specification logics and proof systems In this paper, we fixed the specification logic to be hH2 and

we fixed the proof system for hH2 to be based on goal-directed proof search. Clearly some applications of the

two-level logic approach might benefit from using a different proof system (based on, say, bottom-up proof search)

or a different logic. For example, McDowell and Miller [2002] showed that switching to a linear logic specification

logic made it possible to treat programming languages with references. More concretely, we have implemented a

full hereditary Harrop formula specification logic in Abella and have begun experimenting with reasoning over it.

Automating proof search Abella currently relies extensively on user guidance in constructing proofs. Recent work

has developed formal theorems and implementation techniques for structuring proof search in G-like logics: see,

for example, [Baelde et al., 2007, Baelde, 2008]. It would be interesting to use such results to build a greater

degree of automation into Abella.
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