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Stepping back from Gentzen [1935] for a moment

N-system/L-system, intro/elim rules. Proofs are static and complete objects.

Leibniz [1670s]: If two people disagree, “it would
suffice for them [...] to say to each other (and if
they wish also a friend): Let us calculate.”

Here, calculation seems to be a distributed effort to
find a valid argument (following some global rules).

The plan for this talk:

First, formalize computing with symbols
on sheets of paper

Second, deal with logical connectives.
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Proof search using sheets of paper

Prove that n(n + 1) is even for natural number n.

Assume:
∀n. even n ∨ odd n
∀n. odd n ⊃ even (s n)
∀n,m, p. (even n ∨ even m) ⊃

times n m p ⊃ even p

times n (s n) p

...

Hence:
∀n, p. times n (s n) p ⊃ even p

Assume:
∀n. even n ∨ odd n
∀n. odd n ⊃ even (s n)
∀n,m, p. (even n ∨ even m) ⊃

times n m p ⊃ even p

times n (s n) p
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Hence:
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times n m p ⊃ even p
times n (s n) p
odd n

...

Hence:
even p

Observations:

1. Occurrences of formulas have two senses: as assumption and goal.

2. Some formula occurrences are permanent; others may get deleted
and/or replaced.

3. One sheet can become 2, also 0 (if an assumption is the goal).
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Abstraction of what happens on sheets of paper

A1

A2

A3

A5

...
A0

A1

A2

A3

A5

...
A0

Conventions:

1. The two senses: hypothesis are blue; goals are red. The vertical dots
are no longer needed.

2. Sheets are encoded as multisets and not lists.
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Abstraction of what happens on sheets of paper

A1

A2

A3

A5

A7

A4

A1

A2

A3

A5

A8

A4

Conventions:

1. The two senses: hypothesis are blue; goals are red. The vertical dots
are no longer needed.

2. Permanent items are displayed in bold.

3. Sheets are encoded as multisets and not lists.

Our first step is to formalize an enriched version of multiset rewriting .

The distinction between hypothesis and goal is not part of the multiset
rewriting system itself: it is added later.
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The pre-logical framework

▶ Formulas will be tagged as “hypothesis” or “goal”.

▶ We abstract away the internal structure of tagged formulas and replace
them with atomic expressions.

▶ A sheet of paper is modeled by a multisets of atomic expressions.

▶ The current state is simply a set of sheets.

▶ Our first goal is to describe

▶ how state can be encoded as expressions and

▶ how state evolves by applying rewriting rules.
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Multiplicative features: multiset rewriting

Multisets: E ::= A | 1 | E1 × E2, where A is an atomic expression.

E.g. a× a× b denotes {a, a, b} ⊢ ∆
⊢ 1,∆

⊢ E1,E2,∆

⊢ E1 × E2,∆

Entailment between expressions and multisets provides an equality.

1 ⊢ E ⊢ E

E1 ⊢ ∆1 E2 ⊢ ∆2

E1 × E2 ⊢ ∆1,∆2

If E ⊢ F is provable then E and
F denote the same multiset.

Rewriting multiset ∆ to multiset ∆′ using rule E1 7→ E2 is done in 3 steps.

1. Split ∆ into two parts ∆1 and ∆2.

2. Determine that E1 is the same multiset as ∆1.

3. Identify ∆′ with the multiset union of E2 and ∆2.

E1 7→ E2 ⊢ ∆

⊢ ∆
decide on (E1 7→ E2) ∈ R, where R is some fixed set of rules

E1 ⊢ ∆1 ⊢ E2,∆2

E1 7→ E2 ⊢ ∆1,∆2

a ⊢ a b ⊢ b

a× b ⊢ a, b ⊢ a, c

a× b 7→ c ⊢ a, a, b

⊢ a, a, b

decide

−→
⊢ a, c

⊢ a, a, b
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Additive feature: copying of multisets

We also need to be able to copy the content of a sheet. To this end, we add
the following operators on expressions.

⊢ 0,∆

⊢ E1,∆ ⊢ E2,∆

⊢ E1 + E2,∆

Ei ⊢ ∆

E1 + E2 ⊢ ∆

Distributivity holds: the inference systems will not be able to distinguish
E1 × (E2 + E3) from (E1 × E2)+ (E1 × E3).

The × on the

▶ right builds contexts (by becoming a comma)

▶ left splits contexts

The + on the

▶ right accumulates branches

▶ left selects a branch.

These two senses for × and + allow us to prove results similar to the
elimination of non-atomic initials and cuts.
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Additional features: the linear and classical realms

As motivated before, some atomic expressions can remain in all evolutions of a
multiset; others can be deleted and replaced.

Atomic expressions will belong to the linear or the classical realms.

Non-atomic expressions are not classified either way.

Atomic expressions in the classical realm have a superpower .

▶ They can used any number of times.

▶ One of our inference systems will employ contraction and weakening rules.

Atomic expressions in the linear realm do not have this superpower.
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Additional feature: debts

Because computation can be distributed, multiset rewriting needs some
flexibility.

▶ Applying the rule a× b 7→ c to ∆ requires locating both a and b in ∆.

▶ ∆ might be very large and distributed across a network.

▶ The expression a might be found quickly, but finding b could take time.

▶ Instead of blocking rewriting until b is found, we might allow a debt to be
registered in our multiset and then resolve that debt later.

All atomic expressions will have a positive or negative “credit rating.”

▶ If b’s rating is positive, then a debt can be constructed.

This debt mechanism will help account for the difference between

▶ bottom-up and top-down reasoning, and

▶ sequent calculus and natural deduction.
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Expressions and Rules

The syntactic variable A ranges over some fixed set of atomic expressions.

Expressions and rules are defined inductively.

E ::= A | 0 | E1 + E2 | 1 | E1 × E2

R ::= A | 0 | R1 + R2 | 1 | R1 × R2 | R 7→ E | R Z⇒ E

7→ and Z⇒ associate to the left; + and × associate to the right.

A debt is an expression of the form A.

Γ ranges over finite multisets containing R-expressions.

∆ ranges over multisets that can contain both E -expressions and debts.

R denotes some countable set of R-expressions.
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Bias assignments

A bias assignment δ(·) maps atomic expressions to {−2,−1,+1,+2}.

If δ(A) > 0, then A can be converted into a debt.

A is in the linear realm if δ(A) is ±1 and in the classical realm if δ(A) is ±2.

S ranges over atomic expressions in the classical realm.

Υ ranges over finite multisets of atomic expressions in the classical realm.
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The basic inference system: B
Right rules

Γ ⊢ 0,∆

Γ ⊢ E1,∆ Γ ⊢ E2,∆

Γ ⊢ E1 + E2,∆
Γ ⊢ ∆

Γ ⊢ 1,∆

Γ ⊢ E1,E2,∆

Γ ⊢ E1 × E2,∆

Left rules

1 ⊢
R1 ⊢ ∆1 R2 ⊢ ∆2

R1 × R2 ⊢ ∆1,∆2

Ri ⊢ ∆

R1 + R2 ⊢ ∆

R ⊢ ∆1 ⊢ E ,∆2

R 7→ E ⊢ ∆1,∆2

R ⊢ Υ ⊢ E ,∆

R Z⇒ E ⊢ Υ,∆

R ⊢ ∆
⊢ ∆

decide, R ∈ R

⊢ Ā,∆

A ⊢ ∆
debit1, if δ(A) = +1

⊢ S̄ ,Υ
S ⊢ Υ

debit2, if δ(S) = +2

Identity rules E ⊢ E
init ⊢ Ā,A

iou
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Γ ⊢ ∆,S weaken
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iou

Structural rules

Γ ⊢ ∆,S ,S
Γ ⊢ ∆,S

contract
Γ ⊢ ∆

Γ ⊢ ∆,S weaken

13 / 35



The basic inference system: B
Right rules

Γ ⊢ 0,∆

Γ ⊢ E1,∆ Γ ⊢ E2,∆

Γ ⊢ E1 + E2,∆
Γ ⊢ ∆

Γ ⊢ 1,∆

Γ ⊢ E1,E2,∆

Γ ⊢ E1 × E2,∆

Left rules

1 ⊢
R1 ⊢ ∆1 R2 ⊢ ∆2

R1 × R2 ⊢ ∆1,∆2

Ri ⊢ ∆

R1 + R2 ⊢ ∆

R ⊢ ∆1 ⊢ E ,∆2

R 7→ E ⊢ ∆1,∆2

R ⊢ Υ ⊢ E ,∆

R Z⇒ E ⊢ Υ,∆

R ⊢ ∆
⊢ ∆

decide, R ∈ R

⊢ Ā,∆
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iou

Structural rules

Γ ⊢ ∆,S ,S
Γ ⊢ ∆,S

contract
Γ ⊢ ∆

Γ ⊢ ∆,S weaken

13 / 35



The basic inference system: B
Right rules

Γ ⊢ 0,∆

Γ ⊢ E1,∆ Γ ⊢ E2,∆

Γ ⊢ E1 + E2,∆
Γ ⊢ ∆

Γ ⊢ 1,∆

Γ ⊢ E1,E2,∆

Γ ⊢ E1 × E2,∆

Left rules

1 ⊢
R1 ⊢ ∆1 R2 ⊢ ∆2

R1 × R2 ⊢ ∆1,∆2

Ri ⊢ ∆

R1 + R2 ⊢ ∆

R ⊢ ∆1 ⊢ E ,∆2

R 7→ E ⊢ ∆1,∆2

R ⊢ Υ ⊢ E ,∆

R Z⇒ E ⊢ Υ,∆

R ⊢ ∆
⊢ ∆

decide, R ∈ R

⊢ Ā,∆

A ⊢ ∆
debit1, if δ(A) = +1

⊢ S̄ ,Υ
S ⊢ Υ

debit2, if δ(S) = +2

Identity rules E ⊢ E
init ⊢ Ā,A
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Some meta-theory of B

Proposition

Provability in B does not change if the init rule is restricted to atomic
expressions, i.e., A ⊢ A instead of E ⊢ E .

Proposition

The following inference rule is admissible in B.

Γ ⊢ ∆1,E E ⊢ ∆2

Γ ⊢ ∆1,∆2
clip

Proposition

If δ(A) = +1, the following dclip1 rule is admissible.

⊢ ∆1,A ⊢ ∆2,A

⊢ ∆1,∆2
dclip1

If δ(S) = +2, the following dclip2 rule is admissible.

⊢ ∆,S ⊢ Υ,S
⊢ ∆,Υ

dclip2
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Some meta theory of B (cont)

Proposition

If ⊢ ∆ has a B-proof, it has a B-proof without the debit1 and debit2 rules.

▶ If all debts are eventually paid, we can reorganize the proof so that the
payments precede the formation of a debt.

▶ Of course, these proofs might vary a great deal in structure.

Proposition

The right rules are invertible. In particular, if E is not atomic and the sequent
⊢ E ,∆ is provable, then there is a proof of this sequent in which the last
inference rule is an introduction rule for E .
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Removing some non-determinism from B

1. The right rules are invertible: do them in any order and to exhaustion.

▶ A B-proof Ξ is reduced if every occurrence of the decide rule has a
right-hand side containing only atomic expressions or debts.

▶ Proposition: If the sequent ⊢ ∆ has a B-proof, it has a reduced proof.

2. There are two ways to prove A ⊢ A when δ(A) = +1: init or a
combination of debit1 and iou. This has a simple resolution.

3. Major issue:
The structural rules seem all wrong from the proof search perspective.
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Structural rules: a major revision is needed

Γ ⊢ ∆,S ,S
Γ ⊢ ∆,S

contract
Γ ⊢ ∆

Γ ⊢ ∆,S weaken

These can be applied almost anytime! We need a better treatment.

Consider again a multiplicative and an additive rule.

R1 ⊢ ∆1 R2 ⊢ ∆2

R1 × R2 ⊢ ∆1,∆2

Γ ⊢ E1,∆ Γ ⊢ E2,∆

Γ ⊢ E1 + E2,∆

In the multiplicative rule, every side-expression occurrence in the conclusion
(a member of ∆1 ∪∆2) also occurs in a unique premise.

In an additive rule, every side-expression occurrence in the conclusion
(a member of ∆) occurs in every premise.

New treatment: Classical realm atomic expressions are treated additively ,
even in multiplicative rules.
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Structural rules (continued)

This new treatment of structural rules produces rules of the following form.

1 ⊢ Υ

R1 ⊢ A1,Υ R2 ⊢ A2,Υ

R1 × R2 ⊢ A1,A2,Υ

Here, A1 and A2 have only linear realm atomic expressions or debts.
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The two-phase inference system F

⊢ 0,∆

⊢ E1,∆ ⊢ E2,∆

⊢ E1 + E2,∆
⊢ ∆

⊢ 1,∆

⊢ E1,E2,∆

⊢ E1 × E2,∆

⇓R ⊢ A,Υ

⊢ A,Υ
decide, R ∈ R

Three kinds of sequents: ⊢ ∆ ⇓R ⊢ A,Υ ⊢ E ⇓ A,Υ

⇓ 1 ⊢ Υ

⇓R1 ⊢ A1,Υ ⇓R2 ⊢ A2,Υ

⇓R1 × R2 ⊢ A1,A2,Υ

⇓Ri ⊢ A,Υ

⇓R1 + R2 ⊢ A,Υ

⇓R ⊢ A1,Υ ⊢ E ⇓ A2,Υ

⇓R 7→ E ⊢ A1,A2,Υ

⇓R ⊢ Υ ⊢ E ⇓ A,Υ

⇓R Z⇒ E ⊢ A,Υ

⊢ A,A,Υ

⇓A ⊢ A,Υ
debit1, if δ(A) = +1

⊢ Ā,Υ

⇓A ⊢ Υ
debit2, if δ(A) = +2

δ(A) < 0

⇓A ⊢ A,Υ
initL

δ(A) > 0

⊢ A ⇓ A,Υ
initR

⊢ E ,A,Υ

⊢ E ⇓ A,Υ
release†

δ(A) > 0

⊢ A,A,Υ
iou

The proviso † for release: E is either not atomic or it is atomic and δ(E) < 0.
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Synthetic rules in F

⊢ A,Υ is a border sequent: only of atomic expressions and debts.

A synthetic rule is built from right phases above a left phase: their premises
and conclusions are border sequents.

· · ·
... · · ·

⊢ A′,Υ′

... ⇐ right phase

⊢ ∆,Υ

...

†
· · ·

... · · · ⇐ left phase

⇓R ⊢ A,Υ

⊢ A,Υ
decide

† is either release, debit1, or debit2.

The right phase is invertible and additive.

The left phase is not invertible and multiplicative.
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Different levels of adequacy when encoding proof systems

F presents an assembly language for inference. We want to compile logical
inference rules into F and preserve the proof search semantics.

Three levels of adequacy of encodings are natural to identify.

1. Relative completeness: a formula has a proof in one system if it has a
proof in the other system.

2. Full completeness of proofs: the complete proofs in one system naturally
correspond to proofs in the other system.

3. Full completeness of inference rules: every inference rule is in one-to-one
correspondence with those in the other system.

All encodings in this talk are at this highest level of adequacy:

A set of rules R encodes a proof system P means that the synthetic
rules in F for elements of R corresponds to inference rules in the P,
and vice versa.

21 / 35



Encoding sequents of formulas

Two-sided sequents are of the form

B1, . . . ,Bn ⊢ C1, . . . ,Cm

which we encode as the expression

⌊B1⌋ × · · ·× ⌊Bn⌋ × ⌈C1⌉ × · · ·× ⌈Cm⌉

or, equivalently, by the multiset

⌊B1⌋, . . . , ⌊Bn⌋, ⌈C1⌉, . . . , ⌈Cm⌉.

In classical logic, formulas on the left and right are subject to weakening and
contraction: thus, δ(⌊ · ⌋) = ±2 and δ(⌈ · ⌉) = ±2.

In intuitionistic logic, only the formulas on the left are subject to weakening
and contraction: thus, δ(⌊ · ⌋) = ±2 and δ(⌈ · ⌉) = ±1.
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Rules for classical and intuitionistic logic R1

(⊃L) ⌊A ⊃ B⌋ 7→ ⌈A⌉ Z⇒ ⌊B⌋
(⊃R) ⌈A ⊃ B⌉ 7→ ⌊A⌋ × ⌈B⌉
(∧L) ⌊A ∧ B⌋ 7→ ⌊A⌋
(∧L) ⌊A ∧ B⌋ 7→ ⌊B⌋
(∧R) ⌈A ∧ B⌉ 7→ ⌈A⌉+ ⌈B⌉
(∨L) ⌊A ∨ B⌋ 7→ ⌊A⌋+ ⌊B⌋
(∨R) ⌈A ∨ B⌉ 7→ ⌈A⌉
(∨R) ⌈A ∨ B⌉ 7→ ⌈B⌉
(⊥L) ⌊⊥⌋ 7→ 0
(⊤R) ⌈⊤⌉ 7→ 0
(Id1) ⌊C⌋ × ⌈C⌉
(Id2) 1 7→ ⌈C⌉ Z⇒ ⌊C⌋
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Choosing the correct bias assignment for sequent calculi

Using the bias assignment that returns only negative numbers, then we get
sequent calculi similar to Gentzen’s LK and LJ.

▶ If δ(⌊ · ⌋) = −2 and δ(⌈ · ⌉) = −1, then deciding on (⊃L) yields

⇓ ⌊A ⊃ B⌋ ⊢ ⌊A ⊃ B⌋,Υ ⊢ ⌈A⌉, ⌊A ⊃ B⌋,Υ
⇓ ⌊A ⊃ B⌋ 7→ ⌈A⌉ ⊢ ⌈A⌉, ⌊A ⊃ B⌋,Υ ⊢ ⌊B⌋, ⌊A ⊃ B⌋,A,Υ

⇓ ⌊A ⊃ B⌋ 7→ ⌈A⌉ Z⇒ ⌊B⌋ ⊢ ⌊A ⊃ B⌋,A,Υ

⊢ ⌊A ⊃ B⌋,A,Υ

which encodes (assuming that A is {⌈C⌉}).

A ⊃ B, Γ ⊢ A A ⊃ B,B, Γ ⊢ C

A ⊃ B, Γ ⊢ C

▶ If we set δ(⌊ · ⌋) = −2 and δ(⌈ · ⌉) = −2, then we have

A ⊃ B, Γ ⊢ A,Ψ A ⊃ B,B, Γ ⊢ Ψ

A ⊃ B, Γ ⊢ Ψ
.
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The two identity rules: initial and cut

The (Id1) and (Id2) rules have special roles.

⇓ ⌊C⌋ ⊢ ⌊C⌋,Υ initL ⇓ ⌈C⌉ ⊢ ⌈C⌉,Υ initL

⇓ ⌊C⌋ × ⌈C⌉ ⊢ ⌊C⌋, ⌈C⌉,Υ
⊢ ⌊C⌋, ⌈C⌉,Υ decide Id1

⇓ 1 ⊢ Υ ⊢ ⌈C⌉,Υ ⊢ ⌊C⌋,A,Υ

⇓ 1 Z⇒ ⌈C⌉ 7→ ⌊C⌋ ⊢ A,Υ

⊢ A,Υ
decide Id2

These justify the synthetic rules

⊢ ⌊C⌋, ⌈C⌉,Υ
⊢ ⌈C⌉,Υ ⊢ ⌊C⌋,A,Υ

⊢ A,Υ

In the intuitionistic setting, the variable Υ contains only ⌊ · ⌋ atomic expressions
while A contains only a single expression, which is of the form ⌈ · ⌉.

(Id1) and (Id2) encode the init and cut rules of sequent calculus.
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Negative bias encodes sequent calculi

Proposition

Let δ(⌊ · ⌋) = −2.

1. If δ(⌈ · ⌉) = −1 then R1 encodes (essentially) Gentzen’s LJ proof system.

2. If δ(⌈ ·⌉) = −2, then R1 encodes (essentially) Gentzen’s LK proof system.
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Natural deduction for intuitionistic logic

Γ ⊢ A ⊃ B ↓ Γ ⊢ A ↑
Γ ⊢ B ↓ [⊃ E ]

Γ,A ⊢ B ↑
Γ ⊢ A ⊃ B ↑ [⊃ I ]

Γ ⊢ A ∧ B ↓
Γ ⊢ A ↓ [∧E ]

Γ ⊢ A ∧ B ↓
Γ ⊢ B ↓ [∧E ]

Γ ⊢ A ↑ Γ ⊢ B ↑
Γ ⊢ A ∧ B ↑ [∧I ]

Γ ⊢ ⊤ ↑ [⊤I ]
Γ ⊢ ⊥ ↓
Γ ⊢ C ↑ [⊥E ]

Γ,A ⊢ A ↓ [I]
Γ ⊢ A ↓
Γ ⊢ A ↑ [M]

Γ ⊢ A ↑
Γ ⊢ A ↓ [S]

Natural deduction in the style of Sieg and Byrnes (Studia Logica, 1998).

A proof is normal if it does not contain the switch rule [S ].
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R1 can also capture natural deduction

Let δ(⌊ · ⌋) = +2 and δ(⌈ · ⌉) = −1.

The ↑ and ↓ judgments are encoded as follows.

▶ Γ ⊢ C ↑ is encoded using ⊢ ⌊Γ⌋, ⌈C⌉.

▶ Γ ⊢ C ↓ is encode using ⊢ ⌊Γ⌋, ⌊C⌋.

Using decide on the R-formula (⊃L) yields

⊢ ⌊A ⊃ B⌋,Υ
⇓ ⌊A ⊃ B⌋ ⊢ Υ

debit2
⊢ ⌈A⌉,Υ
⊢ ⌈A⌉ ⇓Υ

release

⇓ ⌊A ⊃ B⌋ 7→ ⌈A⌉ ⊢ Υ ⊢ ⌊B⌋ ⇓ ⌊B⌋,Υ
initR

⇓(⌊A ⊃ B⌋ 7→ ⌈A⌉) Z⇒ ⌊B⌋ ⊢ ⌊B⌋,Υ
⊢ ⌊B⌋,Υ

decide

This yields the synthetic rule, which encodes the [⊃ E ] inference rule.

⊢ ⌊A ⊃ B⌋,Υ ⊢ ⌈A⌉,Υ
⊢ ⌊B⌋,Υ
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The [M] and [S ] rules

Deciding on (Id1) and (Id2), respectively, yields

⊢ ⌊B⌋,Υ
⇓ ⌊B⌋ ⊢ Υ

debit2 ⇓ ⌈B⌉ ⊢ ⌈B⌉,Υ initL

⇓ ⌊B⌋ × ⌈B⌉ ⊢ ⌈B⌉,Υ
⊢ ⌈B⌉,Υ decide

⇓ 1 ⊢ Υ

⊢ ⌈B⌉,Υ
⊢ ⌈B⌉ ⇓Υ

release

⇓ 1 7→ ⌈B⌉ ⊢ Υ ⊢ ⌊B⌋ ⇓ ⌊B⌋,Υ
initL

⇓ 1 7→ ⌈B⌉ Z⇒ ⌊B⌋ ⊢ ⌊B⌋,Υ
⊢ ⌊B⌋,Υ

decide

and these yield the two synthetic rules (encoding [M] and [S ])

⊢ ⌊B⌋,Υ
⊢ ⌈B⌉,Υ and

⊢ ⌈B⌉,Υ
⊢ ⌊B⌋,Υ

.

The R-expression (Id2) corresponds to cut in sequent calculus and to the
switch [S ] in natural deduction.
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Encoding natural deduction

Proposition

Assume that δ(⌈ · ⌉) = −1 and δ(⌊ · ⌋) = +2. Then

▶ Γ ⊢ C ↑ if and only if ⊢ ⌊Γ⌋, ⌈C⌉ is provable using R1, and

▶ Γ ⊢ C ↓ if and only if ⊢ ⌊Γ⌋, ⌊C⌋ is provable using R1.

Normal proofs are captured by removing (Id2) from consideration.

The following rules can also be captured.

Γ ⊢ A ∨ B ↓ Γ,A ⊢ C ↑(↓) Γ,B ⊢ C ↑(↓)
Γ ⊢ C ↑(↓)

[∨E ]

Γ ⊢ Ai ↑
Γ ⊢ A1 ∨ A2 ↑

[∨I ]
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Other proof systems and logics

The LICS 2023 paper discusses additional proof systems:

▶ Generalized elimination rules [Schroeder-Heister, 1984], [von Plato, 2001]

▶ Free deduction for classical logic [Parigot 1992]

▶ Sequent calculus for linear logic: uses four tags, not just the two used here.

▶ Quantificational logic

Future work

▶ Use PSF to help prove object-level results: eg, cut elimination, etc
▶ Accommodate a feature similar to sub-exponentials should permit

capturing more proof systems.
▶ Multi-conclusion proof systems for intuitionistic logic [Maehara, 1954]
▶ G1m, LJQ∗, etc [Nigam, Pimentel and Reis, 2011].

▶ Consider higher-level rules
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First-order quantification

Early logical frameworks (λProlog, LF) were notable for their treatment of
quantification via binder mobility : term-level bindings move to formula-level
bindings (quantifier) to proof-level bindings (eigenvariables).

▶ Add quantified expressions and rules: Q x .(E x) and Q x .(R x).

▶ Sequents are enriched: Σ binds over sequents: Σ : Γ ⊢ ∆ and Σ :⇓ Γ ⊢ ∆.

▶ Add two rules to B (in the first rule, x ̸∈ Σ).

Σ, x : Γ ⊢ E x ,∆

Σ : Γ ⊢ Q x .E x ,∆

Σ : Γ,R t ⊢ ∆ t is a Σ-term

Σ : Γ,Q x .R x ⊢ ∆

The rule (⊃L) in R1 can be written more explicitly as

Q A.Q B.⌊A ⊃ B⌋ 7→ ⌈A⌉ Z⇒ ⌊B⌋

We can now add the following to R1.

Q B.Q t. ⌊∀x .B x⌋ 7→ ⌊B t⌋
Q B. ⌈∀x .B x⌉ 7→ Q x .⌈B x⌉
Q B. ⌊∃x .B x⌋ 7→ Q x .⌊B x⌋

Q B.Q t. ⌈∃x .B x⌉ 7→ ⌈B t⌉
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Related work

▶ Logical frameworks in the 1980s and 1990s: Framework based on
intuitionistic logic and typed λ-terms.
▶ E.g., λProlog, LF.

▶ Frameworks based on linear logic (with subexponentials)
▶ M, Pimentel, Nigam, and Reis et al. [1996-2014] have considered many

proof systems and logic.

▶ Sufficient (and decidable) conditions that ensure that a sequent calculus for
a first-order logic has the cut-elimination property.

▶ Various implementations have been developed.

▶ This paper grew out of the desire to supplant linear logic with something
more basic and pre-logical.

▶ There are related approaches using algebraic and model-theoretic
semantics as frameworks: e.g., A. Avron and I. Lev [IJCAR 2001].
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Conclusion

PSF is a framework for specifying proof systems.

▶ It separates the semantics of inference rules into two parts:
▶ the rule, i.e., ⌊A ⊃ B⌋ 7→ ⌈A⌉ Z⇒ ⌊B⌋
▶ the bias assignment, i.e., values for δ(⌈ · ⌉) and δ(⌊ · ⌋).

▶ Inference rules in, say NJ and LK, are identified as synthetic rules
containing two phases of PSF rewriting steps.

▶ Many features shared with linear logic appear naturally.
▶ Inference rules are characterized as multiplicative and additive.
▶ The tagged formulas are either deletable or permanent.
▶ Importance of contraction and weakening.

▶ Centrality of don’t-know-nondeterminism and don’t-care-nondeterminism

▶ In PSF, cut-elimination is used to reason about the framework instead of
specifying computation à la Curry-Howard correspondence.
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Questions?

Art by Nadia Miller
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https://nadiaamiller.wixsite.com/website

