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Abstract

In order to reason about specifications of computations that are given via the proof search
or logic programming paradigm one needs to have at least some forms of induction and some
principle for reasoning about the ways in which terms are built and the ways in which computa-
tions can progress. The literature contains many approaches to formally adding these reasoning
principles with logic specifications. We choose an approach based on the sequent calculus and
design an intuitionistic logic FOλ∆IN that includes natural number induction and a notion of
definition. We have detailed elsewhere that this logic has a number of applications. In this
paper we prove the cut-elimination theorem for FOλ∆IN, adapting a technique due to Tait
and Martin-Löf. This cut-elimination proof is technically interesting and significantly extends
previous results of this kind.

1 Introduction

As one attempts to prove a given sequent by placing above it an inference rule, zero or more
unproven sequents will arise for the premise of the inference rule and these sequents will, in general,
involve some different formulas than the conclusion sequent. Such changes in sequents during the
search for a proof have been used to provide a rich and flexible framework for the specification of
a wide range of computations. Of course, to make proof search resemble a computational process,
the cut rule needs to be avoided; that is, when attempting to model a computation by constructing
a proof, it seems sensible not to oblige the search to also search for lemmas to establish. The search
for lemmas is part of the creative activity of mathematicians when they look for proofs and does not
seem part of the notion of mechanical computation. The cut-elimination theorem, when available,
could be used to argue that the search for cut-free proofs is a complete proof procedure. The
logic programming paradigm can be defined, at least abstractly, using this notion of proof search,
although a further restriction on the search of proofs is often made. In particular, the notion of
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“goal-directed search” that seems to be a natural aspect of the logic programming paradigm has
been formulated using the technical notion of uniform proof [18, 17]. To retain completeness of
uniform proofs, restrictions on logical formulas need to maintained. For example, completeness of
uniform proofs can be achieved in classical logic by restricting to Horn clauses [19]; in intuitionistic
logic by restricting to hereditary Harrop formulas [18]; and in linear logic by choosing the proper
logical connectives [1, 17].

There are numerous examples of specifying computations within these logics and with using
meta-theoretic properties of those logics to infer properties of computations. We only mention a
few of these examples here. Intuitionistic logic has been used to specify both the dynamic and static
semantics of functional programming languages [10], and theorems that relate these two semantics
(such as subject reduction or type preservation) are rendered as simple consequences of the proof
theory of intuitionistic logic [14]. In [17], various linear logic encodings of simple objects with
state are given and proved equivalent within linear logic. Also in that paper, a small programming
language with references is specified, and techniques for proving the equivalence of two programs
are given based on resolution within linear logic. In [2], Chirimar provides two specifications of the
operational semantics of the DLX RISC processor [20], one capturing its sequential, machine code
semantics and the other capturing its concurrent, pipe-lined semantics. Using simple properties of
proofs in linear logic, he is able to formally show the equivalence of those two specifications.

Moving from the classical theory of Horn clauses (the logical foundations of Prolog) to all of
linear logic (as in the Forum specification language [17]) greatly increases the expressive power of
the logic programming paradigm. While Horn clauses are, of course, powerful enough to specify all
computations, such specifications need to represent most of the dynamics of a computation within
atomic formulas, that is, within the non-logical layer of the language. As a result, deep properties
of the ambient logic, such as cut-elimination, are of only limited use when reasoning about Horn
clause specifications since such properties only supply meaning for the logical constants. As more
expressive logics are used, more dynamics of a computation can be captured by various aspects
of the logic, and this increases the likelihood that properties of the logic can be used to derive
properties of the specified computations.

There is a difference, however, between specifying a computation and reasoning about a com-
putation, and, in particular, reasoning about computation often requires induction and some way
to considering all possible paths that a given computation could proceed or a given object could
have been constructed. In the literature, there have been various approaches to providing for these
missing features. Within type theory, for example, induction over data structures and over proofs
can be used for reasoning about computations [21]. Within logic programming, there are various
ways to turn the closed world assumption into a proof principle, such as SLDNF [4]. In this pa-
per, we consider another approach that introduces new inference rules into the sequent calculus of
intuitionistic logic. In particular, we add to the sequent calculus a rule for induction on natural
numbers and inference rules for treating logic specifications as definitions instead of as theories.
Our approach to definitions follows lines developed by Schroeder-Heister [25], Eriksson [5], Girard
[9], and Stärk [28].

Our needs for reasoning about specifications, however, forced us to develop a single extension
to intuitionistic logic, called FOλ∆IN (pronounced “fold-n”), that goes beyond the logics studied in
previous works. In particular, we needed one logic that allowed for not only induction and definitions
but also for higher-order quantification (but not predicate quantification) since we wished to treat
higher-order abstract syntax [23]. When designing a new sequent calculus to be used for reasoning,
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it is important to establish a cut-elimination theorem since this one result can be used to show
the consistency of the logic as well as that the consequence relation is closed under modus ponens.
The key features of FOλ∆IN (induction, definitions, and higher-order quantification) interact in
complicated ways, so previous cut-elimination proofs for logics with these features in isolation do
not carry over to this new system. The bulk of this paper is a presentation of a proof of cut-
elimination for FOλ∆IN.

The paper is organized as follows. In the next section, we briefly describe some uses that
have been made of FOλ∆IN. In section 3 we introduce the logic and some of its basic properties.
We proceed in Section 4 to give an overview of the cut-elimination proof. Section 5 specifies the
reduction rules that will be used to eliminate applications of the cut rule. This is followed by
a section which provides some auxiliary definitions and their properties. Section 7 contains the
proof of cut-elimination. We conclude with a brief comparison of our work with related work of
Martin-Löf and Schroeder-Heister.

2 Applications of FOλ∆IN

One use of FOλ∆IN has been to reason about Horn clause programs. For example, Horn clauses
can be used to specify a predicate that relates a list to its length and another predicate that relates
two lists if they are permutations of each other. It is an easy matter to give a proof in FOλ∆IN that
if two lists are permutations of each other, then those two lists have the same length [13, Chapter
2]. Many similar theorems can be found throughout McDowell’s dissertation [13].

As we shall see, the integration of definitions into sequent calculus makes it possible to perform
a case analysis on possible ways that a specified computation can progress. If exploited properly,
it is possible to capture notions such as simulation and bisimulation between two processes. The
paper [16] shows how this can be accomplished in abstract transition systems and CCS.

A final area where FOλ∆IN has been used to reason about specifications is in the area of logical
frameworks and higher-order abstract syntax. Logical frameworks have been successfully used to
give high-level, modular, and formal specifications of many important judgments in the area of
programming languages and inference systems. These judgments, such as “the term M denotes
a program”, “the program M evaluates to the value V ”, and “the program M has type T”, are
represented by predicates in the specification logic or by types in a dependent type calculus. One
of the advantages of such formal specifications is that they allow logical and mathematical analyses
to be used to prove properties about the specified systems. Given the specification of evaluation
for a functional programming language, for example, we may wish to prove that the language is
deterministic or that evaluation preserves types.

One challenge in reasoning about such specifications centers on the use of higher-order abstract
syntax, an elegant and declarative encoding of abstraction and substitution [23]. With most ap-
proaches to syntactic representation, the details of variable binding and substitution must be care-
fully addressed throughout a specification, and theorems about substitution and bound variables
can dominate the system analyses. With higher-order abstract syntax, on the other hand, these
features are specified concisely and their basic properties follow immediately from the specification
logic. However, reasoning within a logical framework about systems represented in higher-order
abstract syntax has been difficult since the logics that support this notion of syntax do not provide
facilities for the fundamental operations of case analysis and induction. Moreover, higher-order
abstract syntax leads to types and recursive definitions that do not give rise to monotone inductive
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operators, making inductive principles difficult to find. In [14] the authors have shown that these
difficulties can be overcome within FOλ∆IN. See [13, 14] for more on how FOλ∆IN can be used as
a meta-logic for an intuitionistic and linear logical framework.

The Pi derivation editor of Eriksson [6] was designed for the finitary calculus of partial inductive
definitions [5]. Because of FOλ∆IN’s close relationship with the finitary calculus of partial inductive
definitions, the Pi editor can be used to construct FOλ∆IN derivations. The many examples of
specifications and proofs in FOλ∆IN reported in [13, 14] were constructed using this editor.

Dependent typed λ-calculi have been used to specify computations in ways analogous to the
logic programming setting presented here [22]. Schürmann and Pfenning [26] presented a meta-logic
for such a dependent typed λ-terms that can be used to reason about higher-order deductions in
ways similar to uses of FOλ∆IN [14].

3 The Logic FOλ∆IN

The basic logic is an intuitionistic version of a subset of Church’s Simple Theory of Types [3] in
which meta-level formulas will be given the type o. The logical connectives are ⊥, >, ∧, ∨, ⊃, ∀τ ,
and ∃τ . The quantification types τ (and thus the types of variables) are restricted to not contain o.
Thus FOλ∆IN supports quantification over higher-order (non-predicate) types, a crucial feature for
higher-order abstract syntax, but has a first-order proof theory since there is no quantification over
predicate types. We will use sequents of the form Γ −→ B, where Γ is a finite multiset of formulas
and B is a single formula. The basic inference rules for the logic are shown in Table 1. In the ∀R
and ∃L rules, y is an eigenvariable that is not free in the lower sequent of the rule. The multicut
(mc) rule is a generalization of cut due to Slaney [27], and is used to simplify the presentation of
the cut-elimination proof.

We introduce the natural numbers via the constants z : nt for zero and s : nt → nt for successor
and the predicate nat : nt → o. The right and left rules for this new predicate are

Γ −→ nat z
natR Γ −→ nat I

Γ −→ nat (s I) natR

−→ B z B j −→ B (s j) B I,Γ −→ C

nat I, Γ −→ C
natL

.

In the left rule, the predicate B : nt → o represents the property that is proved by induction, and
j is an eigenvariable that is not free in B. The third premise of that inference rule witnesses the
fact that, in general, B will express a property stronger than (

∧
Γ) ⊃ C.

Because the induction predicate B in the natL rule is not necessarily a subformula of the formula
C or any formula in Γ, the subformula property does not hold for FOλ∆IN. In fact, we can derive
the following inference rule from the induction rule:

−→ B B,Γ −→ C

nat I, Γ −→ C .

This derived rule resembles the cut rule but requires a nat assumption. Although FOλ∆IN does
not have the subformula property, the cut-elimination theorem still provides a strong basis for
reasoning about proofs in FOλ∆IN [13, 14, 16]. In fact, the formulation of the natL rule and the
failure of the subformula property reflect the fact that in actual mathematical practice, finding the
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Table 1: Inference rules for the core of FOλ∆IN

⊥, Γ −→ B
⊥L Γ −→ > >R

B, Γ −→ D

B ∧ C, Γ −→ D
∧L C, Γ −→ D

B ∧ C, Γ −→ D
∧L B[t/x], Γ −→ C

∀x.B, Γ −→ C
∀L

Γ −→ B Γ −→ C
Γ −→ B ∧ C

∧R Γ −→ B[y/x]
Γ −→ ∀x.B

∀R

B, Γ −→ D C, Γ −→ D

B ∨ C, Γ −→ D
∨L B[y/x], Γ −→ C

∃x.B, Γ −→ C
∃L

Γ −→ B
Γ −→ B ∨ C

∨R Γ −→ C
Γ −→ B ∨ C

∨R Γ −→ B[t/x]
Γ −→ ∃x.B

∃R

Γ −→ B C, Γ −→ D

B ⊃ C, Γ −→ D
⊃ L B, Γ −→ C

Γ −→ B ⊃ C
⊃ R

A,Γ −→ A
init, where A is atomic

B,B,Γ −→ C

B, Γ −→ C
cL

∆1 −→ B1 · · · ∆n −→ Bn B1, . . . , Bn, Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc, where n ≥ 0
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proper induction hypothesis requires insight and creativity; they are not simply rearrangements of
the subformulas of the conclusion. As a result, any implementation of FOλ∆IN will necessarily be
interactive, at least for the invention of many induction hypotheses.

A definitional clause is written ∀x̄[p t̄
4= B], where p is a predicate constant, every free variable

of the formula B is also free in at least one term in the list t̄ of terms, and all variables free in t̄ are
contained in the list x̄ of variables. Since all free variables in p t̄ and B are universally quantified,
we often leave these quantifiers implicit when displaying definitional clauses. The atomic formula
p t̄ is called the head of the clause, and the formula B is called the body. The symbol 4= is used
simply to indicate a definitional clause: it is not a logical connective. A definition is a (perhaps
infinite) set of definitional clauses. The same predicate may occur in the head of multiple clauses
of a definition: it is best to think of a definition as a mutually recursive definition of the predicates
in the heads of the clauses.

Definitions are employed in FOλ∆IN via left and right introduction rules for atomic formulas.
If we impose no restrictions on definitions, the cut-elimination theorem does not hold [24]. Two
different approaches have been taken to retain the admissibility of cut. First, if the structural rule
of contraction is removed or restricted (as it is in linear logic, for example), cut-elimination can be
established [9, 25]. Another approach, more appropriate for use here since we wish to work within
an intuitionistic setting, is to restrict the occurrences of implications within the body of definitions.
In [25], Schroeder-Heister proved the cut-elimination theorem for an intuitionistic logic in which
no implications are allowed within definitions. Here we shall allow implications in the body of
definitions if they are suitably stratified. Toward that end we assume that each predicate symbol
p in the language has associated with it a natural number lvl(p), the level of the predicate. The
following definition extends the notion of level to formulas and derivations.

Definition 1 Given a formula B, its level lvl(B) is defined as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(>) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∃x.B) = lvl(B).

Given a derivation Π of Γ −→ B, lvl(Π) = lvl(B).

We shall now require that for every definitional clause ∀x̄[p t̄
4= B], lvl(B) ≤ lvl(p).

The logic FOλ∆IN has uses definitions in left and right-introduction rules for atoms; the following
relation will be useful for describing those inference rules.

Definition 2 Let the four-place relation dfn(ρ, A, σ,B) be defined to hold for the formulas A and
B and the substitutions ρ and σ if there is a clause ∀x̄[A′ 4= B] in the given definition such that
Aρ = A′σ.

The right and left rules for atoms are

Γ −→ Bθ
Γ −→ A

defR, where dfn(ε, A, θ, B)
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{Bσ,Γρ −→ Cρ | dfn(ρ,A, σ,B)}
A, Γ −→ C

defL
,

where ε is the empty substitution and the bound variables x̄ in the definitional clauses are chosen
to be distinct from the variables free in the lower sequent of the rule. Specifying a set of sequents
as the premise should be understood to mean that each sequent in the set is a premise of the
rule. The right rule corresponds to the logic programming notion of backchaining if we think of 4=
in definitional clauses as reverse implication. The left rule is similar to definitional reflection [25]
(not to be confused with another notion of reflection often considered between a meta-logic and
object-logic) and to an inference rule used by Girard in his note on fixed points [9]. Notice that in
the defL rule, the free variables of the conclusion can be instantiated in the premises.

The number of premises of the defL rule may be zero or may be infinite. If the formula A does
not unify with the head of any definitional clause, then the number of premises will be zero. In this
case, A is an unprovable formula logically equivalent to ⊥, and defL corresponds to the ⊥L rule.
If the formula A does unify with the head of a definitional clause, the number of premises could be
infinite, since the domains of the substitutions ρ and σ may include variables that are not free in A
and B. In general we wish to work with inference rules with a finite number of premises. This can
be achieved by restricting definitions to have only a finite number of clauses and to restrict the use
of defL rule to those formulas A such that for every definitional clause there is a finite, complete
set of unifiers (CSU) [11] of A and the head of the clause. Consider the following inference rule due
to Eriksson [5]

{Bθ, Γθ −→ Cθ | θ ∈ CSU(A,A′) for some clause ∀x̄[A′ 4= B]}
A, Γ −→ C

defLCSU ,

where the variables x̄ are chosen to be distinct from the variables free in the lower sequent of the
rule. When the CSUs and definition are finite, this rule will have a finite number of premises.
Notice that in first-order logics, a CSU will have at most one member, namely the most general
unifier (MGU).

Proposition 3 The rules defL and defLCSU are interadmissible, that is, if FOλ∆IN is formulated
with either defL or defLCSU , the other rule is admissible in that formulation.

Proof Given the set of derivations
{

Πθ,B

Bθ,Γθ −→ Cθ

}

θ∈CSU(A,A′) for some clause ∀x̄[A′
4
=B]

,

we can construct a derivation of A, Γ −→ C using defL as follows. For any definitional clause
∀x̄[A′ 4= B] and substitutions ρ and σ such that Aρ = A′σ, the substitution

ρσ(y) =

{
σ(y) if y ∈ FV (A′)
ρ(y) otherwise

will be a unifier of A and A′. Thus for some θ ∈ CSU(A,A′) there is a substitution θ′ such that
ρσ is θ ◦ θ′. (Notice that composition of substitution is defined so that A(θ ◦ θ′) = (Aθ)θ′.) We can
thus use Πθ,Bθ′ as the premise derivation of Bσ,Γρ −→ Cρ for defL. (We will formally define what
it means to apply a substitution to a derivation in Definition 5. For now it is enough to know that
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it yields a derivation whose endsequent is obtained by applying the substitution to the endsequent
of the original derivation.)

Given the set of derivations
{

Πρ,σ,B

Bσ,Γρ −→ Cρ

}

dfn(ρ,A,σ,B)
,

we can construct a derivation of A, Γ −→ C using defLCSU as follows. For any definitional clause
∀x̄[A′ 4= B] and substitution θ ∈ CSU(A,A′), dfn(θ, A, θ,B) holds. We can thus use Πθ,θ,B as the
premise derivation of Bθ, Γθ −→ Cθ for defL.

Observe that several of the rules of FOλ∆IN may have variables that are free in the premise but
not in the conclusion: this results from the eigenvariable y of ∀R and ∃L, the term t of ∀L and
∃R, the cut formulas B1, . . . , Bn of mc, the induction predicate B of natL, and the substitutions ρ
and σ of defL. We view the choice of such variables as arbitrary and identify all derivations that
differ only in the choice of variables that are not free in end-sequent.

We define an ordinal measure which corresponds to the height of a derivation:

Definition 4 Given a derivation Π with premise derivations {Πi}i, the measure ht(Π) is the least
upper bound of {ht(Πi) + 1}i.

Substitutions are finite maps from variables to terms. It is common to view substitutions as
maps from terms to terms by applying the substitution to all free variables of a term. We can then
extend the mapping in turn to formulas and multisets by applying it to every term in a formula and
every formula in a multiset. The following definition extends substitutions yet again to apply to
derivations. Since we identify derivations that differ only in the choice of variables that are not free
in the end-sequent, we will assume that such variables are chosen to be distinct from the variables
in the domain of the substitution and from the free variables of the range of the substitution. Thus
applying a substitution to a derivation will only affect the variables free in the end-sequent.

Definition 5 If Π is a derivation of Γ −→ C and θ is a substitution, then we define the derivation
Πθ of Γθ −→ Cθ as follows:

1. Suppose Π ends with the defL rule
{

Πρ,σ,B

Bσ,Γ′ρ −→ Cρ

}

dfn(ρ,A,σ,B)

A, Γ′ −→ C
defL

.

Observe that if dfn(ρ′, Aθ, σ′, B) then dfn(θ ◦ ρ′, A, σ′, B). Thus Πθ is
{

Πθ◦ρ′,σ′,B
Bσ′, Γ′θρ′ −→ Cθρ′

}

dfn(ρ′,Aθ,σ′,B)

Aθ, Γ′θ −→ Cθ
defL

.

2. If Π ends with any other rule and has premise derivations Π1, . . . ,Πn, then Πθ also ends with
the same rule and has premise derivations Π1θ, . . . ,Πnθ.

Lemma 6 For any substitution θ and derivation Π of Γ −→ C, Πθ is a derivation of Γθ −→ Cθ.
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Proof This lemma states that Definition 5 is well-constructed, and follows by induction on µ(Π).
Observe that if Π ends with the defR rule

Π′
Γ −→ Bσ
Γ −→ A

defR
,

then dfn(ε, A, σ,B), and so it is also true that dfn(ε, Aθ, σ ◦ θ, B). Therefore

Π′θ
Γθ −→ Bσθ
Γθ −→ Aθ

defR

is a valid derivation.

Lemma 7 For any derivation Π and substitution θ, ht(Π) ≥ ht(Πθ).

Proof The proof of this lemma is a simple induction on ht(Π). The measures may not be equal
because when the derivations end with the defL rule, some of the premise derivations of Π may
not be needed to construct the premise derivations of Πθ.

Our logic does not contain a weakening rule; instead we allow extra assumptions in the axioms.
The following definition provides meta-level weakening on derivations. Since we identify derivations
that differ only in the choice of variables that are not free in the end-sequent, we will assume that
such variables are chosen to be distinct from the free variables of the weakening formulas.

Definition 8 If Π is a derivation of Γ −→ C and ∆ is a multiset of formulas, then we define the
derivation w(∆, Π) of Γ, ∆ −→ C as follows:

1. If Π ends with the defL rule
{

Πρ,σ,B

Bσ,Γ′ρ −→ Cρ

}

A, Γ′ −→ C
defL

,

then w(∆,Π) is {
w(∆ρ,Πρ,σ,B)

Bσ,Γ′ρ, ∆ρ −→ Cρ

}

A, Γ′, ∆ −→ C
defL

.

2. If Π ends with the natL rule

Π1
−→ B z

Π2

B j −→ B (s j)
Π3

B I,Γ −→ C

nat I, Γ −→ C
natL

,

then w(∆,Π) is
Π1

−→ B z
Π2

B j −→ B (s j)
w(∆, Π3)

B I, Γ, ∆ −→ C

nat I, Γ,∆ −→ C
natL

.
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3. If Π ends with the mc rule

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′
B1, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

,

then w(∆,Π) is

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

w(∆, Π′)
B1, . . . , Bn,Γ, ∆ −→ C

∆1, . . . ,∆n,Γ, ∆ −→ C
mc

.

4. If Π ends with any other rule and has premise derivations Π1, . . . , Πn, then w(∆,Π) also ends
with the same rule and has premise derivations w(∆, Π1), . . . , w(∆, Πn).

The following lemmas can be proved by induction on the measure of the given derivation.

Lemma 9 For any multiset ∆ of formulas and derivation Π of Γ −→ C, w(∆, Π) is a derivation
of Γ,∆ −→ C.

Lemma 10 For any derivation Π and multiset ∆ of formulas, ht(Π) = ht(w(∆,Π)).

Lemma 11 For any derivation Π, multiset ∆ of formulas, and substitution θ,

w(∆, Π)θ and w(∆θ, Πθ)

are the same derivation.

Lemma 12 For any derivation Π and multisets ∆ and ∆′ of formulas,

w(∆, w(∆′, Π)) and w(∆ ∪∆′,Π)

are the same derivation.

4 Overview of the Cut-Elimination Proof

Gentzen’s classic proof of cut-elimination for first-order logic [7] uses an induction involving the
number of logical connectives in the cut formula. A cut on a compound formula is replaced by
cuts on its subformulas, which necessarily contain a lower number of connectives. For example, the
derivation

Π1
∆ −→ B1

Π2
∆ −→ B2

∆ −→ B1 ∧B2
∧R

Π3
B1, Γ −→ C

B1 ∧B2, Γ −→ C
∧L

∆,Γ −→ C
mc

is reduced to
Π1

∆ −→ B1

Π3
B1,Γ −→ C

∆,Γ −→ C
mc

.
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By the induction hypothesis, this cut on B1 is eliminable, hence the original cut on B1 ∧B2 is also
eliminable. In first-order logic, when the cut formula is atomic, the cut can easily be removed by
permuting the cut up toward the leaves of the proof; eventually an initial rule is reached, at which
point the removal of the cut is trivial.

In FOλ∆IN, however, the rules for natural numbers and definitions act on atoms, so the atomic
case is not simple. Consider, for example, the derivation

Π1
∆ −→ Bθ
∆ −→ A

defR

{
Πρ,σ,D

Dσ,Γρ −→ Cρ

}

A, Γ −→ C
defL

∆,Γ −→ C
mc

.

The obvious reduction for this is a cut between Π1 and the appropriate premise of the defL rule;
however, Bθ is a formula of arbitrary complexity, and so will in general have a greater number of
connectives than the atom A, which has zero. Thus a different induction measure is needed.

Schroeder-Heister proves cut-elimination for several logics with definitions [24, 25] by including
the number of uses of the defL rule in the derivation as part of the induction measure. However, the
logics he considers do not contain induction; the inclusion of the natR and natL rules in FOλ∆IN

complicates things further. The derivation

Π1
∆ −→ nat I

∆ −→ nat (s I) natR
Π2

−→ B z
Π3

B j −→ B (s j)
Π4

B (s I), Γ −→ C

nat (s I),Γ −→ C
natL

∆, Γ −→ C
mc

can be reduced in a number of ways, but the reductions are all variations of the derivation

Π1
∆ −→ nat I

Π2
−→ B z

Π3

B j −→ B (s j)
Π3[I/j]

B I −→ B (s I)
nat I −→ B (s I) natL

∆ −→ B (s I)
mc Π4

B (s I), Γ −→ C

∆, Γ −→ C
mc

.

Here, the cut on the atomic formula nat (s I) is replaced by two cuts, one on the atom nat I and
the other on the formula B (s I). It is not clear what induction measure can be used here. For the
first cut, the atom nat I contains no logical connectives, but this is true of the original cut formula
nat (s I) as well. The number of natR rules in the right subderivation of the cut has gone down
by one, but the duplication of Π3 might offset this. For the second cut, the cut formula B (s I) is
not related at all to the original cut formula; it certainly can have no fewer connectives than the
atom nat (s I). And though its left premise is shorter than the left premise of the original cut, it
is unclear how the heights of the right premises compare.

It should be noted, however, that the complicating factor here is not the presence of an induction
rule, but our use of the nat predicate in the induction rule. If we remove the natR rules from the
logic and reformulate the induction rule to be

−→ B z B j −→ B (s j) B I, Γ −→ C

Γ −→ C
ind

,

11



then Schroeder-Heister’s proofs can be extended to that logic. Despite this, we prefer to include
the nat predicate in our formulation of the logic. At an aesthetic level, our formulation maintains
the symmetry between right and left rules of the logic. Including the nat predicate also keeps the
form of the induction rule for natural numbers consistent with the form of the induction rules we
can derive from it for defined predicates [13]. Finally, the nat predicate plays a key role in the
adequacy proofs for encodings of intuitionistic and linear logic frameworks in FOλ∆IN [14].

Our proof of the cut-elimination theorem for FOλ∆IN uses a technique introduced by Tait [29]
to prove normal form theorems. Martin-Löf extended the method to apply beyond terms to natural
deduction proofs [12], and we use it here in a sequent calculus setting. Rather than associate an
induction measure with derivations, we use the derivations themselves as a measure by defining
well-founded orderings on derivations, and performing the induction relative to those orderings.
The basis for the orderings is a set of reduction rules, such as those suggested above, that will be
used to eliminate applications of the cut rule. We give these reduction rules in Section 5. This
is followed by a section which discusses two orderings on derivations, a normalizability ordering
and a reducibility ordering. The well-foundedness of the normalizability ordering for a derivation
implies that the reduction rules can be used to reduce the derivation to a cut-free derivation of
the same end-sequent. The reducibility ordering is a superset of the normalizability ordering; thus
its well-foundedness implies the well-foundedness of the normalizability ordering. (This notion
of reducibility was called convertibility by Tait and computability by Martin-Löf. We prefer to
avoid these terms since they carry other meanings in theoretical computer science and, instead, use
reducibility after Girard [8].) In Section 7 we prove the key lemma: for every derivation, the tree
of its successive predecessors in the reducibility relation is well-founded. From this we conclude
that the corresponding tree in the normalizability relation is also well-founded, and hence the cut
rule can be eliminated from that derivation. Since this holds for every derivation, the consistency
of FOλ∆IN follows.

5 Reduction Rules for Derivations

Here we define a reduction relation between derivations, which is an adaptation of the reduction
rules used in Gentzen’s original Hauptsatz [7].

Definition 13 We define a reduction relation between derivations. The redex is always a derivation
Ξ ending with the multicut rule

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn, Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc

.

If n = 0, Ξ reduces to the premise derivation Π.
For n > 0 we specify the reduction relation based on the last rule of the premise derivations.

If the rightmost premise derivation Π ends with a left rule acting on a cut formula Bi, then the
last rule of Πi and the last rule of Π together determine the reduction rules that apply. We classify
these rules according to the following criteria: we call the rule an essential case when Πi ends with
a right rule; if it ends with a left rule, it is a right-commutative case; if Πi ends with the init rule,
then we have an axiom case; a multicut case arises when it ends with the mc rule. When Π does
not end with a left rule acting on a cut formula, then its last rule is alone sufficient to determine
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the reduction rules that apply. If Π ends in a rule acting on a formula other than a cut formula,
then we call this a left-commutative case. A structural case results when Π ends with a contraction
on a cut formula. If Π ends with the init rule, this is also an axiom case; similarly a multicut case
arises if Π ends in the mc rule. For simplicity of presentation, we always show i = 1.

Essential cases:

∧R/ ∧ L: If Π1 and Π are

Π′1
∆1 −→ B′

1

Π′′1
∆1 −→ B′′

1

∆1 −→ B′
1 ∧B′′

1
∧R

Π′
B′

1, B2, . . . , Bn, Γ −→ C

B′
1 ∧B′′

1 , B2, . . . , Bn, Γ −→ C
∧L

,

then Ξ reduces to

Π′1
∆1 −→ B′

1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′
B′

1, B2, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

The case for the other ∧L rule is symmetric.

∨R/ ∨ L: If Π1 and Π are

Π′1
∆1 −→ B′

1

∆1 −→ B′
1 ∨B′′

1
∨R

Π′
B′

1, B2, . . . , Bn, Γ −→ C
Π′′

B′′
1 , B2, . . . , Bn,Γ −→ C

B′
1 ∨B′′

1 , B2, . . . , Bn, Γ −→ C
∨L

,

then Ξ reduces to

Π′1
∆1 −→ B′

1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′
B′

1, B2, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

The case for the other ∨R rule is symmetric.

⊃ R/ ⊃ L: Suppose Π1 and Π are

Π′1
B′

1,∆1 −→ B′′
1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′
B2, . . . , Bn, Γ −→ B′

1

Π′′
B′′

1 , B2, . . . , Bn,Γ −→ C

B′
1 ⊃ B′′

1 , B2, . . . , Bn, Γ −→ C
⊃ L

.

Let Ξ1 be
{

Πi
∆i −→ Bi

}

i∈{2..n}
Π′

B2, . . . , Bn,Γ −→ B′
1

∆2, . . . , ∆n, Γ −→ B′
1

mc Π′1
B′

1, ∆1 −→ B′′
1

∆1, . . . ,∆n,Γ −→ B′′
1

mc
.
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Then Ξ reduces to

Ξ1

. . . −→ B′′
1

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′′

B′′
1 , {Bi}i∈{2..n}, Γ −→ C

∆1, . . . , ∆n, Γ, ∆2, . . . ,∆n,Γ −→ C
mc

cL
∆1, . . . ,∆n, Γ −→ C .

We use the double horizontal lines to indicate that the relevant inference rule (in this case,
cL) may need to be applied zero or more times.

∀R/∀L: If Π1 and Π are

Π′1
∆1 −→ B′

1[y/x]
∆1 −→ ∀x.B′

1
∀R

Π′
B′

1[t/x], B2, . . . , Bn, Γ −→ C

∀x.B′
1, B2, . . . , Bn, Γ −→ C

∀L
,

then Ξ reduces to

Π′1[t/y]
∆1 −→ B′

1[t/x]

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′

. . . −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

∃R/∃L: If Π1 and Π are

Π′1
∆1 −→ B′

1[t/x]
∆1 −→ ∃x.B′

1
∃R

Π′
B′

1[y/x], B2, . . . , Bn, Γ −→ C

∃x.B′
1, B2, . . . , Bn, Γ −→ C

∃L
,

then Ξ reduces to

Π′1
∆1 −→ B′

1[t/x]

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′[t/y]

. . . −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

natR/natL: Suppose Π1 is ∆1 −→ nat z
natR and Π is

Π′
−→ D z

Π′′
D j −→ D (s j)

Π′′′
D z, B2, . . . , Bn, Γ −→ C

nat z, B2, . . . , Bn,Γ −→ C
natL

.

Then Ξ reduces to

w(∆1, Π′)
∆1 −→ D z

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′′′

D z, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.
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natR/natL: Suppose Π1 is
Π′1

∆1 −→ nat I

∆1 −→ nat (s I) natR

and Π is
Π′

−→ D z
Π′′

D j −→ D (s j)
Π′′′

D (s I), B2, . . . , Bn, Γ −→ C

nat (s I), B2, . . . , Bn, Γ −→ C
natL

.

Let Ξ1 be

Π′1
∆1 −→ nat I

Π′
−→ D z

Π′′
D j −→ D (s j) D I −→ D I

init

nat I −→ D I
natL

∆1 −→ D I
mc

,

and Ξ2 be
Ξ1

∆1 −→ D I
Π′′[I/j]

D I −→ D (s I)
∆1 −→ D (s I)

mc
.

Then Ξ reduces to

Ξ2

∆1 −→ D (s I)

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′′′

D (s I), B2, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

defR/defL: Suppose Π1 and Π are

Π′1
∆1 −→ B′

1θ

∆1 −→ B1
defR

{
Πρ,σ,D

Dσ,B2ρ, . . . , Bnρ, Γρ −→ Cρ

}

B1, B2, . . . , Bn,Γ −→ C
defL

.

Then by the defR rule in Π1 dfn(ε, B1, θ, B
′
1) holds. Let θ′ be the restriction of θ to the

variables x̄ of the relevant definitional clause. Since B′
1 is the body of this clause, its free

variables are included in x̄, and so B′
1θ
′ = B′

1θ. Then Ξ reduces to

Π′1
∆1 −→ B′

1θ

{
Πi

∆i −→ Bi

}

i∈{2..n}
Πε,θ′,B′1

B′
1θ, B2, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

Left-commutative cases:

•L/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1, and Π1 is
{

Πi
1

∆i
1 −→ B1

}

∆1 −→ B1
•L

,
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where •L is any left rule except ⊃ L, defL, or natL (but including cL). Then Ξ reduces to




Πi
1

∆i
1 −→ B1

{
Πj

∆j −→ Bj

}

j∈{2..n}
Π

B1, . . . , Bn, Γ −→ C

∆i
1,∆2, . . . , ∆n, Γ −→ C

mc





∆1, ∆2, . . . ,∆n,Γ −→ C
•L

.

⊃ L/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1 and Π1 is

Π′1
∆′

1 −→ D′
1

Π′′1
D′′

1 , ∆′
1 −→ B1

D′
1 ⊃ D′′

1 , ∆′
1 −→ B1

⊃ L
.

Let Ξ1 be

Π′′1
D′′

1 , ∆′
1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn, Γ −→ C

D′′
1 , ∆′

1,∆2, . . . , ∆n, Γ −→ C
mc

.

Then Ξ reduces to

w(∆2 ∪ . . . ∪∆n ∪ Γ, Π′1)
∆′

1,∆2, . . . , ∆n, Γ −→ D′
1

Ξ1

D′′
1 , ∆′

1, ∆2, . . . ,∆n, Γ −→ C

D′
1 ⊃ D′′

1 , ∆′
1, ∆2, . . . ,∆n, Γ −→ C

⊃ L
.

natL/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1, and Π1 is

Π1
1

−→ D1 z
Π2

1

D1 j −→ D1 (s j)
Π3

1

D1 I, ∆′
1 −→ B1

nat I,∆′
1 −→ B1

natL
.

Let Ξ1 be

Π3
1

D1 I, ∆′
1 −→ B1

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π

B1, . . . , Bn, Γ −→ C

D1 I, ∆′
1, ∆2, . . . ,∆n, Γ −→ C

mc
.

Then Ξ reduces to

Π1
1

−→ D1 z
Π2

1

D1 j −→ D1 (s j)
Ξ1

D1 I, ∆′
1, ∆2, . . . ,∆n,Γ −→ C

nat I,∆′
1, ∆2, . . . ,∆n,Γ −→ C

natL
.

defL/ ◦ L: If Π ends with a left rule other than cL acting on B1 and Π1 is
{

Πρ,σ,D
1

Dσ,∆′
1ρ −→ B1ρ

}

A, ∆′
1 −→ B1

defL
,
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then Ξ reduces to




Πρ,σ,D
1

Dσ,∆′
1ρ −→ B1ρ

{
Πiρ

∆iρ −→ Biρ

}

i∈{2..n}
Πρ

. . . −→ Cρ

Dσ,∆′
1ρ,∆2ρ, . . . ,∆nρ, Γρ −→ Cρ

mc





A, ∆′
1,∆2, . . . ,∆n, Γ −→ C

defL
.

Right-commutative cases:

−/ ◦ L: Suppose Π is {
Πi

B1, . . . , Bn,Γi −→ C

}

B1, . . . , Bn, Γ −→ C
◦L

,

where ◦L is any left rule other than ⊃ L, defL, or natL (but including cL) acting on a
formula other than B1, . . . , Bn. Then Ξ reduces to





Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Πi

B1, . . . , Bn, Γi −→ C

∆1, . . . ,∆n,Γi −→ C
mc





∆1, . . . ,∆n, Γ −→ C
◦L

.

−/ ⊃ L: Suppose Π is

Π′
B1, . . . , Bn, Γ′ −→ D′ Π′′

B1, . . . , Bn, D′′, Γ′ −→ C

B1, . . . , Bn, D′ ⊃ D′′, Γ′ −→ C
⊃ L

.

Let Ξ1 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′
B1, . . . , Bn, Γ′ −→ D′

∆1, . . . , ∆n, Γ′ −→ D′ mc

and Ξ2 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′′
B1, . . . , Bn, D′′, Γ′ −→ C

∆1, . . . , ∆n, D′′, Γ′ −→ C
mc

.

Then Ξ reduces to

Ξ1

∆1, . . . ,∆n, Γ′ −→ D′
Ξ2

∆1, . . . , ∆n, D′′, Γ′ −→ C

∆1, . . . , ∆n, D′ ⊃ D′′,Γ′ −→ C
⊃ L

.

−/natL: Suppose Π is

Π′
−→ D z

Π′′
D j −→ D (s j)

Π′′′
B1, . . . , Bn, D I,Γ′ −→ C

B1, . . . , Bn, nat I, Γ′ −→ C
natL

.
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Let Ξ1 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′′′
B1, . . . , Bn, D I, Γ′ −→ C

∆1, . . . , ∆n, D I, Γ′ −→ C
mc

.

then Ξ reduces to

Π′
−→ D z

Π′′
D j −→ D (s j)

Ξ1

∆1, . . . , ∆n, D I, Γ′ −→ C

∆1, . . . , ∆n, nat I,Γ′ −→ C
natL

.

−/defL: If Π is {
Πρ,σ,D

B1ρ, . . . , Bnρ,Dσ,Γ′ρ −→ Cρ

}

B1, . . . , Bn, A,Γ′ −→ C
defL

,

then Ξ reduces to




{
Πiρ

∆iρ −→ Biρ

}

i∈{1..n}
Πρ,σ,D

{Biρ}i∈{1..n}, Dσ,Γ′ρ −→ Cρ

∆1ρ, . . . ,∆nρ,Dσ,Γ′ρ −→ Cρ
mc





∆1, . . . ,∆n, A,Γ′ −→ C
defL

.

−/ ◦ R: If Π is {
Πi

B1, . . . , Bn,Γi −→ Ci

}

B1, . . . , Bn,Γ −→ C
◦R

,

where ◦R is any right rule, then Ξ reduces to




Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Πi

B1, . . . , Bn, Γi −→ Ci

∆1, . . . ,∆n,Γi −→ Ci
mc





∆1, . . . ,∆n, Γ −→ C
◦R

.

Multicut cases:

mc/ ◦ L: If Π ends with a left rule other than cL acting on B1 and Π1 ends with a multicut and
reduces to Π′1, then Ξ reduces to

Π′1
∆1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

−/mc: Suppose Π is
{

Πj

{Bi}i∈Ij , Γj −→ Dj

}

j∈{1..m}
Π′

{Dj}j∈{1..m}, {Bi}i∈I′ , Γ′ −→ C

B1, . . . , Bn, Γ1, . . . ,Γm,Γ′ −→ C
mc

,
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where I1, . . . , Im, I ′ partition the formulas {Bi}i∈{1..n} among the premise derivations Π1,
. . . , Πm,Π′. For 1 ≤ j ≤ m let Ξj be

{
Πi

∆i −→ Bi

}

i∈Ij
Πj

{Bi}i∈Ij , Γj −→ Dj

{∆i}i∈Ij , Γj −→ Dj
mc

.

Then Ξ reduces to{
Ξj

. . . −→ Dj

}

j∈{1..m}

{
Πi

∆i −→ Bi

}

i∈I′
Π′

. . . −→ C
∆1, . . . ,∆n, Γ1, . . . Γm, Γ′ −→ C

mc
.

Structural case:

−/cL: If Π is
Π′

B1, B1, B2, . . . , Bn, Γ −→ C

B1, . . . , Bn, Γ −→ C
cL

,

then Ξ reduces to

Π1
∆1 −→ B1

{
Πi

∆i −→ Bi

}

i∈{1..n}
Π′

B1, B1, B2, . . . , Bn,Γ −→ C

∆1,∆1, ∆2, . . . , ∆n, Γ −→ C
mc

cL
∆1, . . . ,∆n, Γ −→ C .

Axiom cases:

init/ ◦ L: If Π ends with either natL or defL acting on B1 and Π1 ends with the init rule, then Ξ
reduces to

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

w(∆1 \B1, Π)
∆1, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n, Γ −→ C
mc

.

−/init: If Π ends with the init rule and C is a formula in Γ, then Ξ reduces to

∆1, . . . ,∆n, Γ −→ C
init

.

If Π ends with the init rule, but C is not a formula in Γ, then C must be one of the cut
formulas, say B1. In this case Ξ reduces to w(∆2 ∪ . . . ∪∆n ∪ Γ,Π1).

An inspection of the rules of the logic and this definition will reveal that every derivation ending
with a multicut has a reduct. Because we use a multiset as the left side of the sequent, there may be
ambiguity as to whether a formula occurring on the left side of the rightmost premise to a multicut
rule is in fact a cut formula, and if so, which of the left premises corresponds to it. As a result,
several of the reduction rules may apply, and so a derivation may have multiple reducts.

The following lemma states that the reduction relation is preserved by weakening.

Lemma 14 If Ξ reduces to Ξ′, then, for any multiset ∆ of formulas, w(∆, Ξ) reduces to w(∆, Ξ′).

The proof of this lemma is a simple case analysis on the relevant clauses of Def. 13 and makes use
of Def. 8 and Lemmas 11 and 12.
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6 Normalizability and Reducibility

We now define two properties of derivations: normalizability and reducibility. Each of these prop-
erties implies that the derivation can be reduced to a cut-free derivation of the same end-sequent.

Definition 15 We define the set of normalizable derivations to be the smallest set that satisfies
the following conditions:

1. If a derivation Π ends with a multicut, then it is normalizable if for every substitution θ there
is a normalizable reduct of Πθ.

2. If a derivation ends with any rule other than a multicut, then it is normalizable if the premise
derivations are normalizable.

These clauses assert that a given derivation is normalizable provided certain (perhaps infinitely
many) other derivations are normalizable. If we call these other derivations the predecessors of the
given derivation, then a derivation is normalizable if and only if the tree of the derivation and its
successive predecessors is well-founded. In this case, the well-founded tree is call the normalization
of the derivation.

Since a normalization is well-founded, it has an associated induction principle: for any property
P of derivations, if for every derivation Π in the normalization, P holds for every predecessor of Π
implies that P holds for Π, then P holds for every derivation in the normalization.

Lemma 16 If there is a normalizable derivation of a sequent, then there is a cut-free derivation
of the sequent.

Proof Let Π be a normalizable derivation of the sequent Γ −→ B. We show by induction on the
normalization of Π that there is a cut-free derivation of Γ −→ B.

1. If Π ends with a multicut, then one of its reducts is one of its predecessors (by way of the
empty substitution) and so is normalizable. But the reduct is also a derivation of Γ −→ B,
so by the induction hypothesis this sequent has a cut-free derivation.

2. Suppose Π ends with a rule other than multicut. Since we are given that Π is normalizable,
by definition the premise derivations are normalizable. These premise derivations are the
predecessors of Π, so by the induction hypothesis there are cut-free derivations of the premises.
Thus there is a cut-free derivation of Γ −→ B.

The next two lemmas are also proved by induction on the normalization of the given derivation.
The proof of the second lemma uses Lemmas 11 and 14 for the case when the derivation ends with
a multicut.

Lemma 17 If Π is a normalizable derivation, then for any substitution θ, Πθ is normalizable.

Lemma 18 If Π is a normalizable derivation, then for any multiset ∆ of formulas, w(∆,Π) is
normalizable.
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We now define the property of reducibility for derivations. We do this by induction on the
level of the derivation: in the definition of reducibility for derivations of level i we assume that
reducibility is already defined for all levels j < i. (Recall from Definition 1 that the level of a
derivation is defined to be the level of the consequent of its end-sequent.)

Definition 19 For any i, we define the set of reducible i-level derivations to be the smallest set of
i-level derivations that satisfies the following conditions:

1. If a derivation Π ends with a multicut, then it is reducible if for every substitution θ there is
a reducible reduct of Πθ.

2. Suppose the derivation ends with the implication right rule

Π
B, Γ −→ C

Γ −→ B ⊃ C
⊃ R

.

Then the derivation is reducible if the premise derivation Π is reducible and, for every sub-
stitution θ, multiset ∆ of formulas, and reducible derivation Π′ of ∆ −→ Bθ, the derivation

Π′
∆ −→ Bθ

Πθ
Bθ,Γθ −→ Cθ

∆,Γθ −→ Cθ
mc

is reducible.

3. If the derivation ends with the implication left rule or the nat left rule, then it is reducible if
the right premise derivation is reducible and the other premise derivations are normalizable.

4. If the derivation ends with any other rule, then it is reducible if the premise derivations are
reducible.

These clauses assert that a given derivation is reducible provided certain (perhaps infinitely many)
other derivations are reducible. If we call these other derivations the predecessors of the given
derivation, then a derivation is reducible only if the tree of the derivation and its successive prede-
cessors is well-founded. In this case, the well-founded tree is call the reduction of the derivation.

In defining reducibility for a derivation of Γ −→ B ⊃ C ending with ⊃ R we quantify over
reducible derivations of ∆ −→ Bθ. This is legitimate since we are defining reducibility for a
derivation having level max(lvl(B) + 1, lvl(C)), so the set of reducible derivations having level
lvl(Bθ) = lvl(B) is already defined. For a derivation ending with ⊃ L or natL, some premise
derivations may have consequents with a higher level than that of the consequent of the conclusion.
As a result, we cannot use the reducibility of those premise derivations to define the reducibility of
the derivation as a whole, since the reducibility of the premise derivations may not yet be defined.
Thus we use the weaker notion of normalizability for those premise derivations. Also observe that
the consequent of the premise to the rule defR cannot have a higher level than the consequent of the
conclusion because of the level restriction on definitional clauses. Finally, as with normalizations,
reductions have associated induction principles.

The following lemmas are proved by induction on the reduction of the given derivation. The
proof of Lemma 20 is straightforward. The proofs of Lemmas 21 and 22 use Lemmas 17 and 18,
respectively, for the case when the derivation ends with ⊃ L or natL. The proof of Lemma 22 also
requires Lemmas 11 and 14.
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Lemma 20 If a derivation is reducible, then it is normalizable.

Lemma 21 If Π is a reducible derivation, then for any substitution θ, Πθ is reducible.

Lemma 22 If Π is a reducible derivation, then for any multiset ∆ of formulas, w(∆, Π) is re-
ducible.

7 Cut-Elimination

In the previous section we proved that every reducible derivation is normalizable and that every
normalizable derivation can be reduced to a cut-free derivation of the same end-sequent. In this
section we show that every FOλ∆IN derivation is reducible, and thus every derivable sequent can
be derived without the cut rule. The consistency of FOλ∆IN is then a simple corollary of the
cut-elimination theorem.

Lemma 23 For any derivation Π of B1, . . . , Bn, Γ −→ C and reducible derivations Π1, . . . ,Πn of
∆1 −→ B1, . . . , ∆n −→ Bn (n ≥ 0), the derivation Ξ

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc

is reducible.

Proof The proof is by induction on ht(Π), with subordinate inductions on n and on the reductions
of Π1, . . . ,Πn. The proof does not rely on the order of the inductions on reductions. Thus when
we need to distinguish one of the Πi, we shall refer to it as Π1 without loss of generality.

The derivation Ξ is reducible if for every substitution θ some reduct of Ξθ is reducible. If n = 0,
then Ξθ reduces to Πθ. By Lemma 21 it suffices to show that Π is reducible. This is proved by a
case analysis of the last rule in Π. For each case, the result follows easily from the outer induction
hypothesis and Definition 19. The ⊃ R case requires that substitution for variables doesn’t increase
the measure of a derivation (Lemma 7). In the cases for ⊃ L and natL we need the additional
information that reducibility implies normalizability (Lemma 20).

For n > 0 we proceed with a case analysis of the reduction rules that apply to Ξ (and thus to
Ξθ) to show that in fact every reduct of Ξθ is reducible. Most cases follow easily from the induction
hypothesis, Definition 19, and Lemmas 7, 10, 17, 18, 20, 21, and 22. We show the interesting cases
below.

⊃ R/ ⊃ L: Π1 and Π are

Π′1
B′

1,∆1 −→ B′′
1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′
B2, . . . , Bn, Γ −→ B′

1

Π′′
B′′

1 , B2, . . . , Bn,Γ −→ C

B′
1 ⊃ B′′

1 , B2, . . . , Bn, Γ −→ C
⊃ L

.

Recall that substitution for variables preserves reducibility (Lemma 21) and does not increase
the measure of a derivation (Lemma 7). Thus the derivation Ξ1

Π2θ
∆2θ −→ B2θ · · ·

Πnθ
∆nθ −→ Bnθ

Π′θ
B2θ, . . . , Bnθ,Γθ −→ B′

1θ

∆2θ, . . . ,∆nθ, Γθ −→ B′
1θ

mc
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is reducible by the outer induction hypothesis. Since we are given that Π1 is reducible, by
Definition 19 the derivation Ξ2

Ξ1

∆2θ, . . . ,∆nθ, Γθ −→ B′
1θ

Π′1θ
B′

1θ, ∆1θ −→ B′′
1θ

∆1θ, . . . ,∆nθ,Γθ −→ B′′
1θ

mc

is reducible. Therefore the derivation

Ξ2

. . . −→ B′′
1θ

{
Πiθ

∆iθ −→ Biθ

}

i∈{2..n}
Π′′θ

B′′
1θ, {Biθ}i∈{2..n}, Γθ −→ Cθ

∆1θ, . . . ,∆nθ, Γθ, ∆2θ, . . . ,∆nθ, Γθ −→ Cθ
mc

cL
∆1θ, . . . ,∆nθ, Γθ −→ Cθ ,

which is the reduct of Ξθ, is reducible by the outer induction hypothesis and Definition 19.

natR/natL: Π1 is
Π′1

∆1 −→ nat I

∆1 −→ nat (s I) natR

and Π is
Π′

−→ D z
Π′′

D j −→ D (s j)
Π′′′

D (s I), B2, . . . , Bn, Γ −→ C

nat (s I), B2, . . . , Bn, Γ −→ C
natL

.

Consider the derivation Ξ1

Π′1
∆1 −→ nat I

Π′
−→ D z

Π′′
D j −→ D (s j) D I −→ D I

init

nat I −→ D I
natL

∆1 −→ D I
mc

.

Since the measure of the right premise derivation is no larger than ht(Π), Ξ1 is reducible by
induction on the reduction of Π1 (Π′1 is a predecessor of Π1). Again recall that substitution for
variables preserves reducibility (Lemma 21) and does not increase the measure of a derivation
(Lemma 7). The derivation Ξ2

Ξ1θ
∆1θ −→ Dθ Iθ

Π′′θ[Iθ/j]
Dθ Iθ −→ Dθ (s Iθ)

∆1θ −→ Dθ (s Iθ)
mc

is then reducible by the outer induction hypothesis. Therefore the derivation

Ξ2

∆1θ −→ Dθ (s Iθ)

{
Πiθ

∆iθ −→ Biθ

}

i∈{2..n}
Π′′′θ

. . . −→ Cθ

∆1θ, . . . ,∆nθ, Γθ −→ Cθ
mc

,

which is the reduct of Ξθ, is reducible by the outer induction hypothesis.
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defL/ ◦ L: Π1 and Π1θ are
{

Πρ,σ,D
1

Dσ,∆′
1ρ −→ B1ρ

}

A, ∆′
1 −→ B1

defL

{
Πθ◦ρ′,σ′,D

1

Dσ′, ∆′
1θρ

′ −→ B1θρ
′

}

Aθ, ∆′
1θ −→ B1θ

defL
.

The derivation Ξρ′,σ′,D

Πθ◦ρ′,σ′,D
1

Dσ′,∆′
1θρ

′ −→ B1θρ
′

{
Πiθρ

′
∆iθρ

′ −→ Biθρ
′

}

i∈{2..n}
Πθρ′

. . . −→ Cθρ′

Dσ′, ∆′
1θρ

′,∆2θρ
′, . . . ,∆nθρ′, Γθρ′ −→ Cθρ′

mc
.

is reducible by Lemmas 7 and 21 and induction on the reduction of Π1 (Πθ◦ρ′,σ′,D
1 is a prede-

cessor of Π1). Therefore the derivation
{

Ξρ′,σ′,D

Dσ′,∆′
1θρ

′, ∆2θρ
′, . . . , ∆nθρ′,Γθρ′ −→ Cθρ′

}

Aθ,∆′
1θ, ∆2θ, . . . ,∆nθ,Γθ −→ Cθ

defL
,

which is the reduct of Ξθ, is reducible by Definition 19.

−/ ⊃ R: Ξ has the form

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′
C ′, B1, . . . , Bn, Γ −→ C ′′

B1, . . . , Bn, Γ −→ C ′ ⊃ C ′′ ⊃ R
∆1, . . . ,∆n, Γ −→ C ′ ⊃ C ′′ mc

.

Once again recall that substitution for variables preserves reducibility (Lemma 21) and does
not increase the measure of a derivation (Lemma 7). The derivation Ξ1

Π1θ
∆1θ −→ B1θ · · ·

Πnθ
∆nθ −→ Bnθ

Π′θ
C ′θ,B1θ, . . . , Bnθ,Γθ −→ C ′′θ

C ′θ,∆1θ, . . . ,∆nθ, Γθ −→ C ′′θ
mc

is reducible by the outer induction hypothesis. For any substitutions θ′ and θ′′ and reducible
derivation Ξ′, the derivation

Ξ′θ′′
(∆′ −→ C ′θθ′)θ′′

{
Πiθθ

′θ′′
(∆i −→ Bi)θθ′θ′′

}

i∈{1..n}
Π′θθ′θ′′

(. . . −→ C ′′)θθ′θ′′

∆′θ′′, ∆1θθ
′θ′′, . . . ,∆nθθ′θ′′, Γθθ′θ′′ −→ C ′′θθ′θ′′

mc

is reducible by the outer induction hypothesis. This is a reduct of Ξ2θ
′′, where Ξ2 is

Ξ′
∆′ −→ C ′θθ′

Ξ1θ
′

C ′θθ′, ∆1θθ
′, . . . , ∆nθθ′, Γθθ′ −→ C ′′θθ′

∆′, ∆1θθ
′, . . . ,∆nθθ′, Γθθ′ −→ C ′′θθ′

mc
.
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Since a reduct of Ξ2θ
′′ is reducible for every θ′′, by Definition 19 Ξ2 is reducible. Since

Ξ1 is reducible and Ξ2 is reducible for every substitution θ′ and reducible derivation Ξ′, by
Definition 19

Ξ1

C ′θ, ∆1θ, . . . ,∆nθ, Γθ −→ C ′′θ
∆1θ, . . . ,∆nθ, Γθ −→ C ′θ ⊃ C ′′θ

⊃ R

is reducible. This last derivation is the reduct of Ξθ by the current reduction rule.

Corollary 24 Every derivation is reducible.

Proof This result follows immediately from Lemma 23 with n = 0.

Theorem 25 If a sequent is derivable, then there is a cut-free derivation of the sequent.

Proof This result follows immediately from Corollary 24, Lemma 20, and Lemma 16.
Since there is no right rule for ⊥, there is no cut-free derivation of −→ ⊥. Thus consistency is

a simple corollary of cut-elimination.

Corollary 26 There is no FOλ∆IN derivation of the sequent −→ ⊥.

8 Related Work

The logic FOλ∆IN is related to Schroeder-Heister’s “logics with definitional reflection” [24]. He
proved cut-elimination for two logics: the first without contraction but allowing arbitrary impli-
cations in definitions, the second with contraction but only implication-free definitions. He also
showed a counter-example to cut-elimination for the logic with both contraction and definitions
with arbitrary implications, but conjectured that cut-elimination should hold if the definitions
were stratified (as we accomplish in FOλ∆IN through the level restriction). The proof presented in
this paper clearly establishes that Schroeder-Heister’s conjecture is true.

However, there are significant differences between Schroeder-Heister’s logics and ours. The first
is that FOλ∆IN uses a stronger version of the left rule for definitions; Schroeder-Heister has extended
his cut-elimination results to logics with this stronger rule [25]. More significantly, Schroeder-
Heister has no induction rules in his logics. Because of the presence of the natL rule in FOλ∆IN,
Schroeder-Heister’s cut-elimination proofs do not extend to our setting.

The proof of cut-elimination presented in this paper is patterned after Martin-Löf’s normaliza-
tion proof for a natural deduction system with iterated inductive definitions [12]. Our work can be
viewed as an adaptation of his to the sequent calculus setting: our rules for definitions and nat-
ural numbers roughly correspond to his introduction and elimination rules for inductively defined
predicates.
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