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Abstract. Linear logic can be used as a meta-logic for the specifica-
tion of some sequent calculus proof systems. We explore in this paper
properties of such linear logic specifications. We show that derivability
of one proof system from another has a simple decision procedure that
is implemented simply via bounded logic programming search. We also
provide conditions to ensure that an encoded proof system has the cut-
elimination property and show that this can be decided again by simple,
bounded proof search algorithms.

1 Introduction

Various logical frameworks based on intuitionistic logic have been proposed
[FM88,Pau89,HHP93] and used for specifying natural deduction proof systems.
Given the intimate connection between natural deduction and λ-calculus, appli-
cations requiring object-level binding and substitutions have also been success-
fully implemented in these logical frameworks [Mil00].

In [Mil96], Miller proposed moving from intuitionistic logic to the more ex-
pressive setting of linear logic to capture the more general setting of sequent
calculus proof system. This use of linear logic has been future explored in
[Ric98,Pim01,MP]. In this paper we consider the structure of proofs in the Forum
presentation of linear logic in order to show how various aspects of the meta-
theory of linear logic can be used to conclude properties of the sequent calculus
being specified. In particular, we describe a decision procedure for determining
if one encoded proof system is derivable from another and we present conditions
and their decision procedure that imply that an encoded proof system satisfies
cut-elimination.

After providing an overview of Forum in Section 2 and the encoding into
Forum of object-level sequents and inference rules in Section 3, we prove in
? Miller has been supported in part by NSF grants CCR-9912387, CCR-9803971, INT-

9815645, and INT-9815731. Both authors wish to thank L’Institut de Mathématiques
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Section 4 that deduction between encodings of inference rules is captured by
shallow Forum proofs. A decision procedure for determining if the encoding
of one proof system is derivable from another proof system then follows by
doing bounded depth proof search. Of course, we wish to know if an object-level
proof system admits a cut-elimination theorem. Section 5 contains the basic
background for this problem and Section 6 contains the main object-level cut-
elimination theorem. Section 7 contains a specification and discussion of Girard’s
Logic of Unity. Finally, we conclude in Section 8.

2 The Forum presentation of linear logic

The Forum presentation of linear logic [Mil96] relies on the connectives ⊥, .................................................
............
.................................. , ?,

>, &, −◦,⇒, and ∀: this set of connectives is complete for linear logic, in the sense
that all other linear logic connectives can be defined from these. Proof search
using this collection of connectives can be restricted so that simple goal-directed
proof search (using the technical device of multiple-conclusion uniform proofs
[Mil93]) is complete. Thus, Forum makes it possible to claim that all of linear
logic can be seen as an abstract logic programming language [MNPS91]. Forum
has been used to specify a number of computation systems, ranging from object-
oriented languages [DM95], imperative programming features [Mil96,Chi95], and
a RISC processor [Chi95]. In this paper, we use Forum as a specification language
for sequent calculus proof systems. For this purpose, we work often within a
weaker fragment of Forum, called Flat Forum.

2.1 Flat Forum

A formula of Forum is a flat goal if it does not contain occurrences of −◦ and ⇒,
and all occurrences of the modal ? have atomic scope. A formula of the form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ A1
.................................................

............
.................................. · · · .................................................

............
.................................. An), (m,n ≥ 0)

is called a flat clause if G1, . . . , Gm are flat goals, A1, . . . , An are atomic formulas,
and occurrences of the symbol ↪→ are either occurrences of −◦ or ⇒. The formula
A1

.................................................
............
.................................. · · · .................................................

............
.................................. An is the head of such a clause, while for each i = 1, . . . , m, the

formula Gi is a body of this clause. If n = 0, then we write the head as simply ⊥
and say that the head is empty. A flat clause is essentially a clause of the LinLog
system [And92] except that heads of flat clauses may be empty.

A flat Forum formula is logically equivalent to a formula in uncurried form,
namely, a formula of the form

∀ȳ(B −◦A1
.................................................

............
.................................. · · · .................................................

............
.................................. An)

where n ≥ 0, ȳ is the list of variables free in the head A1
.................................................

............
.................................. · · · .................................................

............
.................................. An, all free

variables of B are also free in the head, and B may have occurrences of ∃, ⊗,
1, and !, but not in the scope of .................................................

............
.................................. , ?, &, ∀, −◦, and ⇒ (using the terminology



Ψ ; ∆ −→ A,>, Γ ; Υ
>R

Ψ ; ∆ −→ A, B, Γ ; Υ Ψ ; ∆ −→ A, C, Γ ; Υ

Ψ ; ∆ −→ A, B & C, Γ ; Υ
& R

Ψ ; ∆ −→ A, Γ ; Υ

Ψ ; ∆ −→ A,⊥, Γ ; Υ
⊥R

Ψ ; ∆ −→ A, B, C, Γ ; Υ

Ψ ; ∆ −→ A, B
.................................................

............
.................................. C, Γ ; Υ

.................................................
............
.................................. R

Ψ ; B, ∆ −→ A, C, Γ ; Υ

Ψ ; ∆ −→ A, B −◦ C, Γ ; Υ
−◦ R

B, Ψ ; ∆ −→ A, C, Γ ; Υ

Ψ ; ∆ −→ A, B ⇒ C, Γ ; Υ
⇒ R

Ψ ; ∆ −→ A, B[y/x], Γ ; Υ

Ψ ; ∆ −→ A, ∀τx.B, Γ ; Υ
∀R Ψ ; ∆ −→ A, Γ ; B, Υ

Ψ ; ∆ −→ A, ? B, Γ ; Υ
?R

B, Ψ ; ∆
B−→ A; Υ

B, Ψ ; ∆ −→ A; Υ
decide !

Ψ ; ∆ −→ A, B; B, Υ

Ψ ; ∆ −→ A; B, Υ
decide ?

Ψ ; ∆
B−→ A; Υ

Ψ ; B, ∆ −→ A; Υ
decide

Ψ ; · A−→ A; Υ
initial

Ψ ; · A−→ ·; A, Υ
initial ?

Ψ ; · ⊥−→ ·; Υ
⊥L

Ψ ; ∆
Bi−→ A; Υ

Ψ ; ∆
B1&B2−→ A; Υ

& Li
Ψ ; B −→ ·; Υ
Ψ ; · ? B−→ ·; Υ

? L

Ψ ; ∆1
B−→ A1; Υ Ψ ; ∆2

C−→ A2; Υ

Ψ ; ∆1, ∆2
B

.................................................
............
.................................. C−→ A1,A2; Υ

.................................................
............
.................................. L

Ψ ; ∆
B[t/x]−→ A; Υ

Ψ ; ∆
∀τ x.B−→ A; Υ

∀L

Ψ ; ∆1 −→ A1, B; Υ Ψ ; ∆2
C−→ A2; Υ

Ψ ; ∆1, ∆2
B−◦C−→ A1,A2; Υ

−◦ L
Ψ ; · −→ B; Υ Ψ ; ∆

C−→ A; Υ

Ψ ; ∆
B⇒C−→ A; Υ

⇒ L

Fig. 1. The Forum proof system. The rule ∀R has the proviso that y is not free in the
lower sequent. In &Li, i = 1 or i = 2.

of [And92], no synchronous connective is in the scope of an asynchronous con-
nective.) Although uncurried clauses are not Forum clauses, they can easily be
rewritten to curried clauses using the following logical equivalences:

(B ⊗ C)−◦H ≡ B −◦ C −◦H (∃x.B x)−◦H ≡ ∀x.(B(x)−◦H)

(B ⊕C)−◦H ≡ (B −◦H) & (C −◦H) (! B)−◦H ≡ B ⇒ H 1−◦H ≡ H.

(In the equivalence involving ∃, x is not free in H.)
As in Church’s Simple Theory of Types [Chu40], both terms and formulas

are built using a simply typed λ-calculus. We assume the usual rules of α, β,
and η-conversion and we identify terms and formulas up to α-conversion. A term
is λ-normal if it contains no β and no η redexes. All terms are λ-convertible to
a term in λ-normal form, and such a term is unique up to α-conversion. The
substitution notation B[t/x] denotes the λ-normal form of the β-redex (λx.B)t.
Following [Chu40], we shall also assume that formulas of Forum have type o.

There are two kinds of sequents in Forum, namely, Ψ ; ∆ −→ Γ ; Υ and
Ψ ; ∆ B−→ Γ ; Υ. The outermost contexts, labeled here as Ψ and Υ , are the left
and right classical contexts: these contexts are sets of formulas. The innermost
contexts, labeled here as ∆ and Γ , are the left and right linear contexts: these



contexts are multisets of formulas. In the second sequent, the formula B over
the sequent arrow is also formula and multiset Γ contains only atomic formulas.
(Notice that the position of classical and linear contexts is different from that
used in sequents within the LU proof system of Girard [Gir93].) The sequent
system for Forum is given in Figure 1. The following is a consequence of the
soundness and completeness result for Forum [Mil96].

Theorem 1. Let Ψ be a set of flat clauses, Γ and ∆ be multisets of flat goals,
and Υ be a set of atomic formulas. Then the sequent Ψ ;∆ −→ Γ ; Υ has a proof
if and only if ! Ψ,∆ ` Γ, ? Υ has a proof in linear logic.

The following lemma holds in general for Forum proofs, but it is particularly
relevant here since the scope of ? will always be atomic.

Lemma 1. If a sequent has a Forum proof, it has a proof in which there are no
occurrences of decide? applied to an atomic formula.

Proof Permute all occurrences of decide? involving an atomic formula up in
a proof until they reach an instance of the initial rule, in which the combination
of initial and decide? can be rewritten to an occurrence of initial?.

Furthermore, a Forum proof of a sequent of the form Ψ ; ∆ −→ Γ ; Υ , where
Ψ , ∆, Γ and Υ are as in Theorem 1, is such that there are no occurrences of −◦R,
⇒R, and decide? inference rules and the left-hand linear context of all sequents
in the proof is a subset of ∆.

3 Representing sequents and inference rules

This section summarizes material found in [MP,Pim01]: see also [Mil96,Ric98]
for related material.

Since we now wish to represent one logic and proof system within another, we
need to distinguish between the meta-logic, namely, linear logic as presented by
Forum, and the various object-logics for which we wish to specify sequent proof
systems. Formulas of the object-level will be identified with meta-level terms of
type bool. Object-level logical connectives will be introduced as needed and as
constructors of this type.

A two-sided sequent ∆ −→ Γ is generally restricted so that ∆ and Γ are
either lists, multisets, or sets of formulas. Sets are used if all three structural rules
(exchange, weakening, contraction) are implicit; multisets are used if exchange
is implicit; and lists are used if no structural rule is implicit. Since our goal
here is to encode object-level sequents into meta-level sequents as directly as
possible, and since contexts in Forum are either multisets or sets, we will not be
able to represent sequents that make use of lists. It is unlikely, for example, that
non-commutative object-logics can be encoded into our linear logic meta theory
along the lines we describe below.



3.1 Three schemes for encoding sequents

Consider the well-known, two-sided sequent proof systems for classical, intu-
itionistic, and linear logic. A convenient distinction between these logics can be
described, in part, by where the structural rules of thinning and contraction can
be applied. In classical logic, these structural rules are allowed on both sides of
the sequent arrow; in intuitionistic logic, no structural rules are allowed on the
right of the sequent arrow; and in linear logic, they are not allowed on either
sides of the arrow. Thus a classical sequent is a pairing of two sets; a linear logic
sequent is a pairing of two multisets; and an intuitionistic sequent is the pairing
of a set (for the left-hand side) and a multiset (for the right-hand side). This
discussion suggests the following representation of sequents in these three sys-
tems. Let b·c and d·e be two meta-level predicates, both of type bool → o. These
predicates are used to identify which object-level formulas appear on which side
of the sequent arrow, and the ? modal is used to mark the formulas to which
weakening and contraction can be applied.

We will identify three schemes for encoding sequents. The linear scheme
encodes the (object-level) sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) by the
meta-level formula bB1c .................................................

............
.................................. · · · .................................................

............
.................................. bBnc .................................................

............
.................................. dC1e .................................................

............
.................................. · · · .................................................

............
.................................. dCme or by the Forum

sequent
·; · −→ bB1c, . . . , bBnc, dC1e, . . . , dCme; ·.

The intuitionistic scheme encodes B1, . . . , Bn −→ C1, . . . , Cm, where n,m ≥ 0,
with the meta-level formula ?bB1c .................................................

............
.................................. · · · .................................................

............
.................................. ?bBnc .................................................

............
.................................. dC1e .................................................

............
.................................. · · · .................................................

............
.................................. dCme or by

the Forum sequent

·; · −→ dC1e, . . . , dCme; bB1c, . . . , bBnc.

Often intuitionistic sequents are additionally restricted to having one formula
on the right. Finally, the classical scheme encodes the sequent B1, . . . , Bn −→
C1, . . . , Cm (n, m ≥ 0) as the meta-level formula

?bB1c .................................................
............
.................................. · · · .................................................

............
.................................. ?bBnc .................................................

............
.................................. ?dC1e .................................................

............
.................................. · · · .................................................

............
.................................. ?dCme

or by the Forum sequent

·; · −→ ·; bB1c, . . . , bBnc, dC1e, . . . , dCme.

3.2 Encoding additive and multiplicative inference rules

We first illustrate how to encode object-level inference rules using the linear
scheme.

Consider the specification of the logical inference rules for object-level con-
junction, represented here as the infix constant ∧ of type bool → bool → bool.
Consider the additive inference rules for this connective.

∆,A −→ Γ

∆,A ∧B −→ Γ
∧ L1

∆,B −→ Γ

∆,A ∧B −→ Γ
∧ L2

∆ −→ Γ, A ∆ −→ Γ,B

∆ −→ Γ,A ∧B
∧ R



These three inference rules can be specified in Forum using the clauses

(∧L1) bA ∧Bc ◦− bAc. (∧R) dA ∧Be ◦− dAe& dBe.
(∧L2) bA ∧Bc ◦− bBc.

We shall assume that a formula displayed in this manner actually denote the
formula you get when you add the modal ! to the universal closure of the for-
mula displayed. We use the convention that capital letters will generally serve
as variables.

Notice that the two clauses for left introduction can be written in the uncur-
ried for as

bA ∧Bc ◦− bAc ⊕ bBc.
Thus, these additive rules make use of two (dual) meta-level additive connectives:
& and ⊕. Similarly, the following two clauses encode the multiplicative version
of conjunction introduction rules:

(∧L) bA ∧Bc ◦− bAc .................................................
............
.................................. bBc. (∧R) dA ∧Be ◦− dAe ◦− dBe.

The equivalent, uncurried form of the right introduction is

dA ∧Be ◦− dAe ⊗ dBe.

Thus, these multiplicative rules make use of two (dual) meta-level multiplicative
connectives: ⊗ and .................................................

............
.................................. .

When using either the classical or intuitionistic (hybrid) encoding of an
object-level sequent, inference rules can place occurrences of the ? modality
where needed with the body of clauses. For example, the additive version of the
(∧R) rule for a classical sequent is encoded as

dA ∧Be ◦− ?dAe& ?dBe.

For additional examples, see Section 3.5.

3.3 Encoding quantifier introduction rules

Using the quantification of higher-order types that is available in Forum, it is
a simple matter to encode the inference rules for object-level quantifiers. For
example, if we use the linear scheme for representing sequents, then the left and
right introduction rules for object-level universal quantifier can be written as

(∀L) b∀Bc ◦− bBxc. (∀R) d∀Be ◦− ∀xdBxe.

Here, the symbol ∀ is used for both meta-level and object-level quantification:
at the object-level ∀ has the type (i → bool) → bool. Thus the variable B
above has the type i → bool. Consider the Forum sequent Ψ ; · −→ d∀Be, Θ; ·
where Ψ contains the above two clauses. Using decide! with the clause for (∀R)
would cause the search for a proof of the above sequent to be reduced to the



search for a proof of the sequent Ψ ; · −→ dBye, Θ; · where y is new. Here, the
meta-level eigen-variable y also serves the role of an object-level eigen-variable.
Dually, consider the Forum sequent Ψ ; · −→ b∀Bc, Θ; ·. Using the decide! with
the clause for (∀L) would cause proof search to reduce this sequent to the sequent
Ψ ; · −→ bBtc, Θ; · where t is a term of type i. If we restrict appropriately the
use of the type i, then terms of type i can be identified with object-level terms.

Notice that the clause for (∀L) is logically equivalent to the formula

b∀Bc ◦− ∃xbBxc.

Thus, these quantifier rules make use of two (dual) meta-level quantifiers.

3.4 The initial and cut rules

Up to this point, all the Forum clauses used to specify an inference figure have
been such that the head of the clause has been an atom. Clauses specifying the
cut and initial rules will have rather different structure. In particular, the initial
rule which asserts that the sequent B −→ B is provable, can be represented
simply by the following initial clause:

(Initial) bBc .................................................
............
.................................. dBe.

Notice that this clause has a head with two atoms and no body.
There appear to be several possible ways to encode the cut rule. As a proof

rule, cut is given as

∆1 −→ Γ1, B ∆2, B −→ Γ2

∆1,∆2 −→ Γ1, Γ2
Cut

Depending on how structural rules are used in this encoding, this cut rule can
be specified as one of the following clauses:

(Cut) ∀B(dBe −◦ bBc−◦ ⊥) (Cut1) ∀B(?dBe −◦ bBc−◦ ⊥)
(Cut2) ∀B(dBe −◦ ?bBc−◦ ⊥) (Cut3) ∀B(?dBe −◦ ?bBc−◦ ⊥)

Dual to the initial rule, these clauses have an empty head and two bodies. Other
variations on the cut rule also seem possible: namely, one or both of the −◦ can
be replaced with ⇒. The four displayed possibilities for the cut rule, however,
entail these other variations, for example:

?dBe −◦ bBc−◦ ⊥ ` ?dBe ⇒ bBc−◦ ⊥ .

As a result, we shall not consider these variations any further here.
Notice that the Initial and Cut clauses together proves that b·c and d·e are

duals of each other: that is, ∀B(bBc −◦ dBe) and ∀B(dBe −◦ bBc) are proved
from these two formulas.



3.5 Example Forum specifications

Consider a presentation of intuitionistic logic using the logical connective ⊃,
∩, ∪, ∀i, ∃i, fi, and ti. The usual LJ proof system of Gentzen [Gen69] can be
encoded as follows: rules for intuitionistic logic LJ and a cut rule (taken from
[MP]).

(⊃ L) bA ⊃ Bc ◦− dAe ◦− ?bBc. (⊃ R) dA ⊃ Be ◦− ?bAc .................................................
............
.................................. dBe.

(∩L1) bA ∩Bc ◦− ?bAc. (∩R) dA ∩Be ◦− dAe& dBe.
(∩L2) bA ∩Bc ◦− ?bBc. (∪R1) dA ∪Be ◦− dAe.
(∪L) bA ∪Bc ◦− ?bAc& ?bBc. (∪R2) dA ∪Be ◦− dBe.
(∀iL) b∀iBc ◦− ?bBxc. (∀iR) d∀iBe ◦− ∀xdBxe.
(∃iL) b∃iBc ◦− ∀x ?bBxc. (∃iR) d∃iBe ◦− dBxe.
(fiL) bfic ◦− >. (tiR) dtie ◦− >.
(Cut) ⊥ ◦− ?bBc ◦− dBe. (Initial) bBc .................................................

............
.................................. dBe.

Theorems that state that one’s encoding of a proof system matches the original
proof system are often called adequacy theorems. The following such theorem is
easily proved by induction of the structure of proofs.
Adequacy Theorem The sequent B1, . . . , Bn −→ B0 has an LJ-proof [Gen69]
if and only if the sequent LJ; · −→ dB0e; bB1c, . . . , bBnc has a Forum proof. The
sequent B1, . . . , Bn −→ has an LJ-proof if and only if LJ; · −→ ·; bB1c, . . . , bBnc
has a Forum proof (n ≥ 0).

A number of other proof systems have been specified in Forum using this
particular style of encoding. For example, Gentzen’s LK and LJ [Gen69], lin-
ear logic, LKQ and LKT [DJS95], an optimization of LJ [LSS93,Dyc92], and
Girard’s LU [Gir93].

3.6 Advantages of such encodings

The encoding of an object-level proof system as Forum clauses has certain advan-
tages over encoding them as inference figures. For example, the Forum specifica-
tions do not deal with context explicitly and instead they focus on the formulas
that are directly involved in the inference rule. The distinction between making
the inference rule additive or multiplicative is achieved in inference rule figures by
explicitly presenting contexts and either splitting or copying them. The Forum
clause representation achieves the same distinction using meta-level additive or
multiplicative connectives. Object-level quantifiers can be handled directly using
the meta-level quantification. Similarly, the structural rules of contraction and
thinning can be captured together using the ? modal.

Since the encoding of proof systems is natural and direct, we might hope to
be able to use the rich meta-theory of linear logic to help in drawing conclusions
about object-level proof systems. An example of this kind of meta-level reason
is given in [Mil96] where it is shown how a sequent calculus presentation of
intuitionistic logic can be transformed into a natural deduction presentation by
simple linear logic equivalences.



Since the encodings of object-level encodings result in logic programs (in the
sense of Forum) and since there is significant knowledge and tools available to
provide automatic and interactive tools to compute with those logic programs,
encodings such as those described here can be important for the automation of
various proof systems. In this paper, we explore automation of questions such
as: Does one object-level sequent follow from the encoding of a proof system?
Does one proof system’s encoding entail another proof system’s encoding? Can
cut elimination be proved for the encoded logic? The last question has also been
discussed by Avron and Lev [AL01] but their setting is limited the specification
of propositional logics based on classical and additive maintenance of context.

There are, of course, some disadvantages to using linear logic as a meta-
theory, the principle one being that it will not be possible to capture proof
systems requiring non-commutativity. As we shall see, however, significant and
interesting proof systems can be encoded into linear logic and for these systems,
broad avenues of meta-level reasoning and automation should be available.

4 Entailments between introduction rules

We now address the problem of how easy it is to prove that the encoding of
some inference rules imply the encoding of some other inference rules. For this
purpose, we need to make definitions that restrict flat Forum formulas further
so that they encode object-level inference rules. We shall assume that we have
fixed a set Q of unary meta-level predicates all of type bool → o. Object-level
logical constants will also be assumed to be fixed. These constants will have
types of order 0, 1, or 2 and all will build terms of type bool. Examples of
object-level constants at various orders are: order 0, true and false; order 1,
conjunction and implication; and order 2, universal and existential quantifiers.
We shall also assume that object-level quantification is first-order and over one
domain, denoted at the meta-level by i.

Definition 1. An introduction clause is a closed flat formula of the form

∀x1 . . . ∀xn[q(¦(x1, . . . , xn)) ←↩ B1 ←↩ B2 ←↩ . . . ←↩ Bm],

where n,m ≥ 0, ¦ is an object-level connective of arity n (n ≥ 0), and q is a
meta-level predicate. Furthermore, an atom occurring in a body of this clause
is either of the form p(xi) or p(xi(y)) where p is a meta-level predicate and
1 ≤ i ≤ n. In the first case, xi has a type of order 0 while in the second case xi

has a type of order 1 and y is a variable quantified (universally or existentially)
in a body of this clause (in particular, y is not in {x1, . . . , xn}).

Notice that all the encodings of inference rules we have presented so far
are examples of introduction clauses: the predicates b·c and d·e are examples of
meta-level predicates. Encodings of inference rules are also allowed to have other
predicates defined for, say, side conditions, as long as they can be described using
such clauses.



Definition 2. A premise atom is an atomic formula of the form q(t), where q
is a meta-level predicate and t is a term of type bool with a variable as its head
symbol. A conclusion atom is an atomic formula of the form q(¦(x1, . . . , xn)),
where q is a meta-level predicate, ¦ is an object-level connective of arity n, and
x1, . . . , xn is a list of variables.

Definition 3. Let Π be a Forum proof of the sequent Ψ ; ∆ −→ Γ ;Υ , where Ψ is
a set of flat clauses that are either initial, one of the cut clauses, an introduction
clause, or a flat goal, ∆ and Γ are multisets of flat goals, and Υ is a set of atoms.
The depth of a Forum proof Π is defined as the maximum number of occurrences
of the rules decide or decide! on a branch of Π.

Notice that if Π is a proof of a sequent of the form Ψ ; ∆ −→ Γ ;Υ , following
the restrictions of the definition above, then all sequents in Π are such that the
left classical context is equal to Ψ , the right classical context is always a set of
atoms, and the two linear contexts are always multisets of flat goals.

It is also a simple matter to see that it is possible to search through all Forum
proofs of such sequents which are bounded in depth. The Forum proof system
is designed so that the only essential choices that need to be made are those
involved with the decide, decide!, and decide? inference rules.

The following lemma can be used to build a decision procedure for certain
kinds of inferences between introduction clauses.

Lemma 2. Let Ψ be a set containing introduction clauses and possibly the initial
clause. Let C be an introduction clause. If the sequent Ψ ; · −→ C; · has a proof,
it has a proof of depth 3 or less.

Proof We first argue that a sequent of the form

Ψ,∆1; ∆2 −→ A1;A2, (∗)
where ∆1 is a set and ∆2 is a multiset of flat goals over premise atoms and A1 is
a multiset and A2 is a multiset of premise atoms, is provable if and only if it is
provable with a proof of depth 2 or less. This sequent can only be proved using
decide or decide!. Let B be the formula that is selected in one of these decide
rules. If B is the initial clause, then this proof must have depth 1. Clearly, B
is not an introduction clause from Ψ since eventually an instance of the head of
that clause must be in either A1 or in A2, which is impossible since the instance
of a conclusion atom cannot be a premise atom. Thus, B must be from either
∆1 or ∆2. A simple argument by structural induction of flat goals shows that in
either of these cases, the depth of a proof is limited by 2. In particular, consider
the case when B is ? A, for some premise atom A. Then ∆2 and A1 must be
empty and the proof has the shape

Ψ, ∆1; · A−→ ·;A2

initial?

Ψ, ∆1;A −→ ·;A2
decide

Ψ, ∆1; · ? A−→ ·;A2

?L



Observe that the only rule that can be applied to the middle sequent is decide,
since the left linear context is not empty. Also, note that since A is atomic, it
must be in A2 and the last rule on the above proof has to be initial?. The depth
in this case is exactly 2. The other cases of depending on the structure of B are
similar and simpler.

Now consider a provable sequent of the form

Ψ, ∆1; ∆2 −→ A; ·, (∗∗)

where ∆1 is a set and ∆2 is a multiset of flat goals over premise atoms and A
is a conclusion atom. This sequent can be proved only using decide! with an
introduction clause from Ψ since the atoms in ∆1 and ∆2 are premise atoms.
The result of completing the backchaining leaves possibly several sequents that
need to be proved, but all of these are of form (∗) above. Thus, sequents of the
form (∗∗) can be proved in height 3 or less.

Finally, a sequent of the form Ψ ; · −→ C; · has a proof if and only if the
right-rules for Forum reduce it to sequents of the form (∗∗) above. Thus, such a
sequent is provable if and only if it has a proof of depth 3 or less.

Lemma 2 shows that deciding whether or not one inference rule is derivable
from other inference rules is rather simple: if such a derivation is possible, a very
shallow proof witnesses that fact.

5 Canonical and coherent proof systems

In the inference systems we shall consider, the set of meta-level predicates Q
is exactly the set {b·c, d·e}. In Section 7, we consider the LU proof system of
Girard [Gir93] and there we will use additional meta-level predicates.

Definition 4. Fix Q to be the set {b·c, d·e}. A canonical proof system is a set
P of flat Forum clauses such that (i) the initial clause is a member of P, (ii)
exactly one cut clause is a member of P, and (iii) all other clauses in P are
introduction clauses with the additional restriction that, for every pair of atoms
of the form bT c and dSe in a body, the head variable of T differs from head
variable of S. A formula that statisfies condition (iii) is also called a canonical
clause.

Definition 5. Consider a canonical proof system P and an object-level connec-
tive, say, ¦ of arity n ≥ 0. Consider all the (uncurried) formulas in P that
specify a left-introduction rule for ¦. These would be of the form

∀x̄(b¦(x1, . . . , xi)c ◦− L1) · · · ∀x̄(b¦(x1, . . . , xi)c ◦− Lp) (p ≥ 0)

Similarly, consider all the (uncurried) formulas in P that specify a right-intro-
duction rule for ¦. These would be of the form

∀x̄(d¦(x1, . . . , xi)e ◦− R1) · · · ∀x̄(d¦(x1, . . . , xi)e ◦− Rq) (q ≥ 0)



All of these p+ q displayed formulas can be replaced by the following two clauses

∀x̄(b¦(x1, . . . , xi)c ◦− L1 ⊕ · · · ⊕ Lp) and ∀x̄(d¦(x1, . . . , xi)e ◦− R1 ⊕ · · · ⊕Rq)

(An empty ⊕ is written as the linear logic additive false 0.) We shall say that
these last two formulas represent the introduction rules for ¦ in their defini-
tion form. While these formulas are not generally formulas of Forum, they are
equivalent to the p + q Forum formulas.

Definition 6. Consider a canonical proof system P and an object-level connec-
tive, say, ¦ of arity n ≥ 0. Let the formulas

∀x̄(b¦(x1, . . . , xn)c ◦− Bl) and ∀x̄(d¦(x1, . . . , xn)e ◦− Br)

be the definition form for the left and right introduction rules. Let C be the cut
clause that appears in P. The object-level connective ¦ has dual left and right
introduction rules if !C ` ∀x̄(Bl −◦Br−◦ ⊥) in linear logic.

Definition 7. A canonical system is called coherent if the left and right intro-
duction rules for each object-level connective are duals.

Example 1. Consider the specification of LJ in Section 3.5. The introduction
rules for ∩, for example, in definition form are the two formulas

∀A∀B(bA ∩Bc ◦− ?bAc ⊕ ?bBc) and ∀A∀B(dA ∩Be ◦− dAe& dBe).
The definition form for the introduction rules for the other logical connectives
can be computed easily. In the end, to determine that the LJ specification is
coherent, the following must be proved:

(⊃) ! Cut2 ` ∀A∀B[(?bAc ⊕ ?dBe)−◦ (dAe& dBe)−◦ ⊥]
(∩) ! Cut2 ` ∀A∀B[(dAe ⊗ ?bBc)−◦ (?bAc .................................................

............
.................................. dBe)−◦ ⊥]

(∪) ! Cut2 ` ∀A∀B[(?bAc& ?bBc)−◦ (dAe ⊕ dBe)−◦ ⊥]
(∀i) ! Cut2 ` ∀B[∃x(?bBxc)−◦ ∀xdBxe−◦ ⊥]
(∃i) ! Cut2 ` ∀B[∀x(?bBxc)−◦ ∃xdBxe−◦ ⊥]
(ti) ! Cut2 ` 0−◦ >−◦ ⊥
(fi) ! Cut2 ` > −◦ 0−◦ ⊥

All of these sequents have simple Forum proofs.

Definition 8. A Forum proof is said to encode an object-level cut-free proof if
no occurrence of the decide! inference rule is used on a cut clause.

Definition 9. The degree d(B) of an object-level formula B is the number of
occurrences of object-level logical connectives in B. Thus, d(A) = 0 if and only
if A is atomic. Logical constants of arity 0 have degree 1. If a cut-clause is used
in a decide! rule in a Forum proof, then the degree of that occurrence of decide!
is the degree of the object-level formula used to instantiate that occurrence of
the cut clause. The degree of a Forum proof Π, written as d(Π), is the multiset
of the degree of all occurrences of decide! in the proof. Thus, a Forum proof Π
encodes a cut-free object-level proof if and only if d(Π) is the empty multiset.



We now show that, for coherent systems, it is possible to exchange a Forum
proof by another one with a smaller degree: here we use the multiset well-ordering
[DM79] induced by the ordering on non-negative integers.

Lemma 3. Let P be a coherent system, Ψ be a set, ∆ be a multiset of flat goals
which contain no occurrences of object-level logical constants, and Γ be a multiset
and Υ be a set of atomic formulas. If there is a Forum proof Π of the sequent
P, Ψ ; ∆ −→ Γ ; Υ such that d(Π) contains a positive integer, then there is a proof
of the same sequent with smaller multiset order.

Proof We shall first assume that the cut clause in P is the clause without the
? modal. Let Π be a Forum proof for P, Ψ ; ∆ −→ Γ ; Υ such that d(Π) contains
a positive integer. There is thus a subproof of Π of the form

Π1

P, Ψ ;∆1 −→ bDc, Γ1; Υ ′
Π2

P, Ψ ; ∆2 −→ dDe, Γ2; Υ ′

P, Ψ ; ∆1,∆2
dDe−◦bDc−◦⊥−−−−−−−−→ Γ1, Γ2; Υ ′

P, Ψ ; ∆1,∆2
∀B(dBe−◦bBc−◦⊥)−−−−−−−−−−−→ Γ1, Γ2; Υ ′

P, Ψ ; ∆1,∆2 −→ Γ1, Γ2; Υ ′

where D = ¦(D1, . . . , Dn) for some object-level connective ¦, n ≥ 0, and Υ ⊆ Υ ′.
We may assume that the occurrences of bDc in Π1 and of dDe in Π2 are

principal formulas in their respective proofs: that is, these proofs end with a
decide or decide! rule and these atoms are the ones rewritten by the backchaining
step. If this is not the case, the decide or decide! rule together with the cut clause
can be permuted upward in the Forum proof.

We can distinguish three cases. In one case, Π1 ends in a decide of an initial
clause: thus Γ1 is dDe, ∆1 is empty, the displayed proof fragment above can be
replaced by Π2, and the degree of the resulting proof decreases. In another case,
Π2 ends in a decide of an initial clause, Γ2 is bDc, ∆2 is empty, the displayed
proof fragment above can be replaced by Π1, and the degree of the resulting proof
decreases. The only other case is that Π1 and Π2 end in a decide or decide! rule
selecting some formula from P, Ψ , and ∆1 or ∆2, respectively. Since D must
contain an object level logical constant and since the formulas in Ψ , ∆1, and ∆2

do not contain such constants, the only possible selections are of formulas from
P. Thus, there are clauses

∀x̄.b¦(x1, . . . , xi)c ◦− Bl and ∀x̄.d¦(x1, . . . , xi)e ◦− Br

in P such that Π1 and Π2 are the following two proofs:

Π ′
1

P, Ψ ; ∆1 −→ θBl, Γ1; Υ ′

P, Ψ ;∆1 −→ bDc, Γ1; Υ ′

Π ′
2

P, Ψ ;∆2 −→ θBr, Γ2; Υ ′

P, Ψ ; ∆2 −→ dDe, Γ2; Υ ′

where θ is the appropriate substitution for the variables in x̄. (Here we have
assumed that the clauses in P are written in the logically equivalent uncurried



form). Finally, since P is a coherent system, we know that Cut; θBl, θBr −→⊥; ·
is provable.

Using the soundness and completeness theorem for Forum (Theorem 1) the
three sequents

!P, ! Ψ,∆1 ` θBl, Γ1, ?Υ ′ !P, !Ψ, ∆2 ` θBr, Γ2, ? Υ ′ ! Cut, θBl, θBr `⊥
are provable in linear logic. Using cut twice, we can then conclude that

!P, ! Ψ,∆1,∆2 ` Γ1, Γ2 ? Υ ′

is provable in linear logic (remember that Cut ∈ P) and by cut-elimination in
linear logic and Theorem 1, we have that

P, Ψ ; ∆1,∆2 −→ Γ1, Γ2; Υ ′

has a Forum proof. The process of translating to and from linear logic and using
cut-elimination in linear logic will not change the degree of the Forum proof
except to replace the one selected occurrence with possibly several smaller uses
of decide! with Cut in the proof of ! Cut, θBl, θBr `⊥. As a result, the degree of
the overall proof has reduced.

If the cut clause in P has the modal ?, the result follows with a slightly
different proof.

As an immediate corollary of this lemma, if the sequent P, Ψ ;∆ −→ Γ ; Υ
(assuming the restrictions of this lemma) has a proof with a degree containing
a positive integer, that sequent has a proof with a degree that contains at most
zeros. That is, this lemma shows how to reduce object-level cuts to only object-
level atomic cuts. The following result shows that, in fact, these cuts can be
removed.

Lemma 4. Let C be a canonical clause that encodes an introduction rule and
let P be a coherent system. If !P ` C in linear logic then there is an object-level
cut-free Forum proof of P; · −→ C; ·.
Proof Given that !P ` C in linear logic, there is a Forum proof of the sequent
P; · −→ C; ·. Applying right introduction rules to this sequent forces the sequent
P, Ψ ; ∆ −→ A; ·, where Ψ is a set and ∆ is a multiset of premise atoms and A
is a conclusion atom, to have a Forum proof Π. Given that all clauses in Ψ are
flat clauses, a simple induction show that every sequent occurring in Π is of the

form P, Ψ ; ∆′ {B}−→ Γ ; Υ where ∆′ ⊆ ∆, Γ is a multiset of flat goals, Υ is a set of
atomic formulas and {B} indicates that a flat clause labeling the arrow might
be present.

Using Lemma 3, we can conclude that Π contains only atomic object level
cuts. We now argue that these cuts can be removed. If Π is not object-level
cut-free, there is a subproof of Π of the form

Π1

P, Ψ ;∆1 −→ bDc, Γ1; Υ ′
Π2

P, Ψ ; ∆2 −→ dDe, Γ2; Υ ′

P, Ψ ; ∆1, ∆2
∀B(dBe−◦bBc−◦⊥)−−−−−−−−−−−→ Γ1, Γ2; Υ ′

P, Ψ ;∆1,∆2 −→ Γ1, Γ2; Υ ′
decide!



where Π1 and Π2 are object-level cut-free Forum proofs, Υ ⊆ Υ ′, and D is an
object-level atomic formula.

We can distinguish three possibilities for the last inference rules of Π1 and Π2.
If Π1 ends a decide! with the initial clause then ∆1 is empty and Γ1 is the multiset
set containing just dDe. In that case, the entire displayed proof can be replaced
by Π2, which removes one decide! on a cut-clause. Similarly, if Π2 ends a decide!
with the initial clause, then the displayed proof can be replaced by Π1. Finally,
the last inference rules of Π1 and Π2 could be (meta-level) left-introduction
rules: in Π1 a formula could be selected from Ψ or ∆1 for backchaining and in
Π2 a formula could be selected from Ψ or ∆2 for backchaining. In these cases,
the formula bDc would be a subformula of a formula in Ψ or ∆1 and dDe would
be a subformula of a formula in Ψ or ∆2. Then both bDc and dDe occur in
bodies of the clause C, something that is explicitly ruled out by the definition
of canonical proof systems (Definition 4).

For the case where another cut rule is present in P, the analysis is the same
except that either one or both of bDc and dDe could be in the right classical
context and references to the Forum rule initial might need to be initial?.

This result is important since it provides a way of controlling the use of cut
clauses during proof search. In general, it is desirable to control meta-level proof
search when clauses with empty head are available. Using the decide inference
rule with such clauses can produce redundant steps in a proof, in a possibly
endless process. The same behavior can be observed at the object-level with the
use of a cut rule.

Next, we describe a decision procedure for determining if a proof system is
derivable from another.

Theorem 2. Let P be a coherent proof system. Let Ψ be a set of canonical
clauses together with a cut clause and the initial clause and let P be the formula
!C1& . . .&! Cm where Ψ = {C1, . . . , Cm}. If there is a proof in Forum of P; · −→
P ; · then it has a proof of depth less than or equal to 3.

Proof Clearly, P; · −→ P ; · is provable with depth less than or equal to 3 if
and only if for all C ∈ Ψ , the Forum sequent P; · −→ C; · is provable with depth
less than or equal to 3. Thus, we only need to prove this depth restriction for
P; · −→ C; · for C ∈ Ψ .

The case where C is the initial clause is trivial since C ∈ P. In the case that
C is a cut rule, the proof of P; · −→ C; · must look like

Π
P; bBc, dBe −→ ·; ·

P; · −→ ∀B.bBc −◦ dBe−◦ ⊥; ·

where B is an eigen-variable of the proof. Using Lemma 3, we may assume that
the rest of this proof contains only object-level atomic cuts. Furthermore, the
last inference rule of Π must be decide! using a cut rule. Thus, Π must be of



the form

P; · bBc−→ bDc; ·
initial

P; bBc −→ bDc; · decide
P; · dBe−→ dDe; ·

initial

P; dBe −→ dDe; · decide

P; bBc, dBe ∀B(dBe−◦bBc−◦⊥)−−−−−−−−−−−→ ·; ·
where D is some object-level atomic formula, which must be B. In this case, the
depth is 2. If another cut rule with occurrences of ? is present in P, the depth
is 3.

The remaining case is where C encodes an introduction rule. Then it follows
from Lemma 3 that the cut rule of P is not used. Lemmas 2 then provides us
with our conclusion: if the cut rule is removed from P, we are left with only the
initial rule and introduction clauses.

Notice that if the encoded proof system P entails the encoded system Ψ (as
describe in the above theorem), then a simple consequence of cut-elimination
at the meta-level is that whenever P proves a object-level sequent, the proof
system Ψ also proves that same sequent.

6 Cut-elimination for coherent systems

The cut-elimination theorem for a particular logic can often be divided into
two parts. The first part shows that a cut involving a non-atomic formula can
be replaced by possibly multiple cuts involving subformulas of the original cut
formula. This part of the proof works because left and right introduction rules
for each logical connective are duals (formalized here in Definition 6). The second
part of the proof argues how cuts with atomic formulas can be removed. Cut-
elimination for coherent object-level proof systems is proved similarly: Lemma 3
shows that non-atomic cuts can be removed and the following theorem proves
that object-level atomic cuts can also be removed.

Theorem 3. Let P be a coherent system and B be an object-level formula. If
!P ` B is provable (that is, if there is an object-level proof of B using the proof
system encoded as P), then there is an object-level cut-free proof of the Forum
sequent P; · −→ dBe; ·.
Proof Since dBe is an atomic meta-level formula and P contains only flat
formulas, the left linear context is empty for all sequents in the proof Π of
P; · −→ dBe; ·. Also, any formula that occurs in the right classical context of
any sequent in Π is atomic.

Assume that Π is not free of object-level cuts. That is, there is a subproof
of Π of the form

Π1

P; · −→ bDc, Γ1; Υ
Π2

P; · −→ dDe, Γ2;Υ

P; · ∀B(bBc−◦dBe−◦⊥)−−−−−−−−−−−→ Γ1, Γ2; Υ
P; · −→ Γ1, Γ2;Υ

decide!



such that Π1 and Π2 are object-level cut-free, Γ1 and Γ2 are multisets of atomic
formulas, and D is an object-level formula. As before, we may also assume that
bDc is a principal formula in Π1. By Lemma 3, we may assume that D is actually
an object-level atomic formula. Thus the last rule of Π1 must be decide! over
the Initial rule, since Π1 is cut-free and the heads of all the other clauses in
P (except Initial) have an object-level connective. Hence, Γ1 is dDe and the
subproof displayed above can be replaced by Π2, which is cut-free by hypothesis.
Thus, we have eliminated one instance of the use of the object-level cut rule. This
procedure shows that it is possible to eliminate all the top-most cuts. Continuing
in this manner, we can finally arrive at a object-level cut-free proof of P; · −→
dBe; ·.

To determine that a proof system satisfies cut-elimination, we can check if
its encoding as flat clauses is coherent, since this guarantees cut-elimination for
the encoded proof system (Theorem 3). Thus, the complete automation of proof
of cut-elimination for coherent systems is given by the following result:

Theorem 4. Determining whether or not a canonical proof system is coherent
is decidable. In particular, determining if a cut clause proves the duality of the
definitions of introduction rules for a given connective can be done by bounding
proof search to a depth of v + 2 where v is the maximum number of meta-level
atomic subformulas in the bodies of the introduction clauses.

Proof Assume that we have a given coherent proof system P. For every object-
level logical constant ¦, let the introduction rules be given in definition format
as

∀x̄(b¦(x1, . . . , xi)c ◦− Bl) and ∀x̄(d¦(x1, . . . , xi)e ◦− Br)

By coherence, Cut ` ∀x̄(Bl −◦ Br−◦ ⊥) in linear logic. Let C be the curried
form of ∀x̄(Bl −◦ Br−◦ ⊥) and consider the Forum sequent Cut; · −→ C; ·.
Various right rules will decompose this sequent to a set of sequents of the form
Cut, Ψ ;∆ −→ ·; · where Ψ is a set and ∆ is a multiset of flat goals that do
not contain any occurrences of object-level logical constants. Thus, we need to
describe a decision procedure for the Forum provability of such sequents.

Let Π be a proof for the sequent Cut, Ψ ; ∆ −→ ·; · above mentioned. Unless
∆ =⊥ or ⊥∈ Ψ and ∆ = ∅ (in which cases the proof is trivial), Π is not cut-free.
We claim that every cut formula is a subformula of some formula in Ψ or ∆. In
fact, no formula is added to the left-hand side of sequents in Π and the formulas
on the right-hand side of sequents are introduced by decide! on the cut rule.
Then Π has the form:

Π1

Cut, Ψ ; ∆′
1 −→ dBe, Γ1;Υ

...

. . .

Cut, Ψ ;∆1 −→ dBe; ·

Π2

Cut, Ψ ; ∆′
2 −→ bBc, Γ2; Υ

...

. . .

Cut, Ψ ; ∆2 −→ bBc; ·
Cut, Ψ ; ∆

∀B(bBc−◦dBe−◦⊥)−−−−−−−−−−−→⊥; ·
∀L,−◦L

Cut, Ψ ;∆ −→⊥; · decide!



where Π1 and Π2 are cut-free, ∆′
i ⊆ ∆i and Γ1 and Γ2 are multisets of atoms,

introduced after various applications of decide! on the cut rule. Let Γ ′1 = Γ1∪dBe.
Since Π1 is cut-free, its last rule has to be decide! selecting one formula from Ψ
(and in this case ∆′

1 is empty) or decide selecting one formula from ∆′
1 (∆′

1 is a
singleton). That is, the last inference rule of Π1 is of the form:

Cut, Ψ ; · D−→ Γ ′1;Υ
Cut, Ψ ;∆′

1 −→ Γ ′1;Υ

Hence every formula in Γ ′1 is a subformula of D, a formula in Ψ or in ∆′
1.

Moreover, all the formulas in Γ ′1 must follow from the formula D and hence the
number of formulas in Γ ′1 cannot exceed the number of the atomic subformulas
of D.

Note that the total number of formulas in Γ ′1 is exactly the number of cuts
applied in this path of the proof Π. Hence, for every branch of the proof, the
number of decide! on cut rules is less than or equal to the maximum number of
atomic subformulas of formulas in Ψ and ∆ and this is less or equal to v. Since
the number of decide or decide! in a branch of Π over a formula in Ψ or ∆ is at
most 2 (? has atomic scope), the maximum depth is v + 2.

A similar result holds if the cut rule in the proof system is one with the ?
modal.

For example, it is possible to prove coherence for LJ by bounding proof search
at depth 4 during the check for duality.

7 LU

In [Gir93], Girard introduced the sequent system LU (logic of unity) in which
classical, intuitionistic, and linear logics appear as fragments. In this logic, all
three of these logics keep their own characteristics but they can also communicate
via formulas containing connectives mixing these logics. The key to allowing
these logics to share one proof system lies in using polarities. In terms of the
encoding we have presented here, polarities allow the meta-level atom bBc be
replaced by ?bBc if B is positive and the meta-level atom dBe be replaced
by ?dBe if B is negative. This possibility of replacement is in contrast to the
examples of classical and intuitionistic sequent proof systems presented earlier
where b·c and d·e atoms are either all preceded by the ? modal or all are not
so prefixed. The neutral polarity is also available and corresponds to the case
where this replacement with a ? modal is not allowed. Many of the LU inference
rules for classical and intuitionistic connectives are specified in Figure 2. The
definition of the predicates pos(·), neg(·), and neu(·) can be directly obtained
from the various polarity tables given in [Gir93].

As noted before, LU is not canonical since the side conditions in its rules
require meta-level predicates other than simply b·c and d·e. For a future work,
we intend to generalize the notion of canonical clauses in order to handle more
general systems like LU. Still, it is possible to introduce the notions of coherence



Identity and structure
bBc .................................................

............
.................................. dBe.

⊥ ◦− bBc ◦− dBe.
dNe ◦− ?dNe ⇐ neg(N).
bP c ◦− ?bP c ⇐ pos(P ).

Conjunction
du ∧ ve ⇐ due ⇐ dve ⇐ pos(u)⊕ pos(v).
du ∧ ve ◦− due& dve ⇐ notpos(u) & notpos(v).
bu ∧ vc ◦− ?buc .................................................

............
.................................. ?bvc ⇐ pos(u)⊕ pos(v).

bu ∧ vc ◦− buc ⊕ bvc ⇐ notpos(u) & notpos(v).

Intuitionistic implication
du ⊃ ve ◦− ?buc .................................................

............
.................................. dve.

bu ⊃ vc ⇐ due ◦− bvc.
Quantifiers

d∀cue ◦− ∀x ?duxe.
b∀cuc ⇐ buxc.
d∃cue ⇐ duxe.
b∃cuc ◦− ∀x ?buxc.

Disjunction
du ∨ ve ◦− !due ⊕ !dve ⇐ notneg(u) & notneg(v).
du ∨ ve ◦− ?due .................................................

............
.................................. ?dve ⇐ (pos(u) & neg(v))⊕ (neg(u) & notneu(v)).

du ∨ ve ◦− due .................................................
............
.................................. ? !dve ⇐ neg(u) & neu(v).

du ∨ ve ◦− ? !due .................................................
............
.................................. dve ⇐ neu(u) & neg(v).

bu ∨ vc ◦− ?buc& ?bvc ⇐ notneg(u) & notneg(v).
bu ∨ vc ⇐ buc ⇐ bvc ⇐ (pos(u) & neg(v))⊕ (neg(u) & notneu(v)).
bu ∨ vc ◦− buc ⇐ ?bvc ⇐ neg(u) & neu(v).
bu ∨ vc ⇐ ?buc ◦− bvc ⇐ neu(u) & neg(v).

Classical implication
du ⇒ ve ◦− ?buc .................................................

............
.................................. ?dve ⇐ (neg(u) & neg(v))⊕ (pos(u) & notneu(v)).

du ⇒ ve ◦− dve ⊕ buc ⇐ neg(u) & pos(v).
bu ⇒ vc ◦− due& bvc ⇐ neg(u) & pos(v).
bu ⇒ vc ⇐ due ⇐ bvc ⇐ (neg(u) & neg(v))⊕ (pos(u) & notneu(v)).

Fig. 2. LU rules



and duality in LU using extra clauses: these clauses play the role of the Cut rule
on determining the dual predicates for polarity.

Since in LU formulas have only one polarity, it is reasonable to consider the
clauses:

notpos(u) −◦ (neu(u)⊕ neg(u)).
notneg(u) −◦ (neu(u)⊕ pos(u)).
notneu(u) −◦ (neg(u)⊕ pos(u)).

pos(u) −◦ neg(u)−◦ 0.
pos(u) −◦ neu(u)−◦ 0.
neg(u) −◦ neu(u)−◦ 0.

The first three clauses define the predicates notpos(·), notneg(·) and notneu(·)
while the last three indicate that pos(·),neg(·) and neu(·) are dual predicates.
Let L be the set of clauses above. It is straightforward to prove the following for
LU: for every connective ¦ of LU, if the left and right introduction clauses for ¦
in their definition form are:

∀x̄(b¦(x1, . . . , xi)c ◦− Bl) and ∀x̄(d¦(x1, . . . , xi)e ◦− Br)

then

!L, ! Cut, !Pos, ! Neg ` ∀x̄(Bl −◦Br−◦ ⊥) (∗∗∗)

in linear logic. Here, Neg is the third and Pos the fourth clause in Figure 2. This
suggests that such an entailment might be used as a natural generalization of
coherence to this setting.

Example 2. Consider the definition form for the left and right introduction rules
for the conjunction:

du∧ve ◦− !(due&dve&(pos(u)⊕pos(v)))⊕((due&dve)⊗!(notpos(u)&notpos(v))).

bu∧vc ◦− (?buc .................................................
............
.................................. ?bvc⊗!(pos(u)⊕pos(v)))⊕buc⊕bvc⊗!(notpos(u)&notpos(v)).

Due to the ⊕ operator that occurs on Br and Bl, the proof of the sequent (∗∗∗)
will have four sub-proofs, two of them inferring the same polarity for each object-
level formula involved and the other two with incompatible polarities for at least
one formula. If the polarities are the same, the proof follows mostly as the usual
duality check described in Section 5 (some extra steps may be necessary due
to the compact way in which the set of rules of LU was written). On the other
hand, if dual polarities appear the proof follows easily and the only rules applied
are the last rules listed in L.

The intuitive way we motivated a notion of coherence for LU suggests that it
may be possible to extend the definitions and results obtained in earlier sections
to more elaborate proofs systems containing certain kinds of side conditions.



8 Conclusion and future work

We have argued here that the use of linear logic as a meta-logic for the spec-
ification of sequent calculi allows us to use some of the meta-theory of linear
logic to draw conclusions about the object-level proof systems. For example,
the notion of duality within coherent proof systems is basically the notion of
de Morgan duals in linear logic. The proof of Lemma 3, used to prove object-
level cut-elimination, makes a critical use of meta-level cut-elimination. We also
showed that for coherent proof systems, the question of whether or not one proof
system’s encoding entails another proof system’s encoding is decidable.

An implementation of Forum can also provide a vehicle for the implementa-
tion of a number of object-level proof systems. To experiment with the decision
procedures described in this paper, the authors used a simple and direct imple-
mentation of the Forum proof system within λProlog [NM88]: this implementa-
tion could then be used to do proof search restricted to bounded depth.

There are certainly numerous directions for future work related to what has
been presented here. For example, most sequent calculi remain complete when
restricting to atomically closed initial sequents. Checking the completeness of
such a restriction should certainly be handled using techniques such as those for
proving that coherent proofs systems satisfy cut-elimination. Also, there have
been various proposals for non-commutative variants of classical linear logic
[AR99,GS01,Ret97]: it would be interesting to see if these can be used to capture
non-commutative object-level logics in a manner done here.

Finally, while we addressed the question of whether or not an inference rule
is derivable from other inference rules, the more interesting and useful question
is whether or not an inference rule is admissible in another proof system. For
this, induction is generally required. It seems natural to consider adding to linear
logic forms of induction along the lines found in [MM00,Pim01].
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