
S&D, July 2005 1/25

A game semantics for proof search:

Preliminary results

Dale Miller & Alexis Saurin

INRIA-Futurs & LIX

16 July 2005

Outline

1. A neutral approach to proof and refutation.

2. The noetherian Horn clause case.

3. Games for simple expressions.

4. Games for non-simple expressions.

5. Additive games and truth

6. Games for recursion.

S&D, July 2005 2/25

Review: Horn clauses

The syntactic variable A denotes atomic formulas: that is, a
formula with a predicate (a non-logical constant) as its head: the
formulas ⊥ and > and t = s are not atomic formulas.

A Horn goal G is any formula generated by the grammar:

G ::= > | ⊥ | t = s | A | G ∧G | G ∨G | ∃x G.

A Horn clause for the predicate p is a formula

∀x1 . . . ∀xn[p(x1, . . . , xn) ≡ G]

where n ≥ 0, p is an n-ary predicate symbol, and the G, the body, is
a Horn goal formula whose free variables are in {x1, . . . , xn}.
A Horn program is a finite set P of Horn clauses all for distinct
predicates.

S&D, July 2005 3/25

Review: noetherian Horn clauses

Define q ≺ p to hold for two predicates if q appears in the body of
the Horn clause for p.

P is noetherian if the transitive closure of ≺ is acyclic.

When P is noetherian, it can be rewritten to a logically equivalent
logic program P ′ for which the relation ≺ is empty: that is, there
are no atomic formulas in the body of clauses in P ′.
Repeatedly replace ≺-minimal predicates by their equivalent body.

Thus: in noetherian programs, atoms are not necessary.

S&D, July 2005 4/25

Prolog and noetherian Horn clauses

Assume that the noetherian Horn clause program P is loaded into
Prolog and we ask the query

?- G.

Prolog will respond by either reporting yes or no.

If yes then Prolog has a proof of G. Such a proof can be
represented in “usual” sequent calculus (say, of, Gentzen).

If no then there is a proof of ¬G in proof systems extended to deal
with the closed world assumption: Clark’s completion or more
recent work on definitions and fixed points in proof theory
(Schroeder-Heister & Hallnäs, Girard, and McDowell & Miller
&Tiu).

S&D, July 2005 5/25

Proof and refutation in one computation

This description of Prolog is a challenge to the conventional
understanding of logic-as-proof-search paradigm (Miller, et.al., in
late 1980’s).

Prolog did one computation which yielded a proof of G or a
refutation of G (i.e., a proof of ¬G).

Proof search states that you must select first what you plan to
prove and then proceed to prove that: i.e.,

start with either −→ G or with −→ ¬G.

How can we formalize this neutral approach?

Can this behavior of Prolog be extended to richer logics?

S&D, July 2005 6/25

A neutral approach to proof and refutation

Since a “neutral computation” could yield a proof of either G1 ∧G2

or ¬G1 ∨ ¬G2; or either ∃x.G or ∀x.¬G, we chose to compute with
a new language of neutral expressions.

N ::= 11 | N ×N | 00 | N + N | ·p t1 . . . tn | QxN

Here, 11 and 00 are the units of × and +, respectively.

The expression
·
p t1 . . . tn is will correspond to the literal pt1 . . . tn

or ¬pt1 . . . tn.

The variable x in the expression Qx.N is bound in the usual sense.

S&D, July 2005 7/25

First-order models, briefly

Let M be a first-order model in the usual sense.

• |M| denotes the domain of quantification of the model

• for every c ∈ |M| there is a parameter c̄ in the language of the
logic.

• An atomic formula p(t1, . . . , tn) is true if the n-tuple
〈tM1 , . . . , tMn 〉 ∈ pM.

Herbrand Models

Given a signature Σ, the model HΣ is such that |HΣ| is the set of
closed terms built from Σ and in which the sole predicate that is
interpreted is equality: HΣ |= t = s if and only if t and s are
identical closed terms.

S&D, July 2005 8/25

Rewriting neutral expressions

Given a model M we describe a nondeterministic rewriting of
multisets of neutral expressions.

11, Γ 7→ Γ N ×M, Γ 7→ N, M, Γ

N + M, Γ 7→ N, Γ N + M, Γ 7→ M, Γ

p(t1, ..., tn),Γ 7→ Γ, if M |= p(t1, ..., tn)

Qx.N, Γ 7→ N [t/x],Γ, where t ∈ |M|

Let 7→∗ be the reflective and transitive closure of 7→.

Since expressions simplify, rewriting always terminates. Since the
domain of quantification is infinite (all terms), rewriting can also be
infinitely branching.

Main question: Given N , does N 7→∗ {}?

S&D, July 2005 9/25

Main proposition for Horn clauses over HΣ

Proposition. Let N be a neutral expression. If N 7→∗ {} then
` [N]+. If N cannot be rewritten to {} then ` [N]−.

N [N]+ [N]−

00 0 >
11 1 ⊥

t
·= s t = s ¬(t = s)

N1 + N2 [N1]+ ⊕ [N2]+ [N1]− & [N2]−

N1 ×N2 [N1]+ ⊗ [N2]+ [N1]−
...

............
.................................. [N2]−

Qx.N ∃x.[N]+ ∀x.[N]−

The range of [·]+ is a familiar linearization of Horn goal formulas.
The range of [·]− is their negation.

S&D, July 2005 10/25

Treatment of Equality

− t = t
− ∆θ

− ¬(t = s),∆
† − ¬(t = s), ∆

‡

The proviso † requires that t and s are unifiable and θ is their most
general unifier (∆θ is the multiset resulting from applying θ to all
formulas in ∆).

The proviso ‡ requires that t and s are not unifiable.

The free variables of a sequent are also called eigenvariables, which
are introduced by the usual rule for ∀R.

S&D, July 2005 11/25

Extending this neutral approach

Can we extend this neutral approach to proof and refutation
beyond simple Horn goal formulas?

Proof search alternates between two phases.

• asynchronous phase where all inference rules are invertible. No
choices need to be made.

• synchronous phase where inference rules require choices. A path
through a proof must be made.

These two phases arise from dual aspects of the same logical
connective.

So far, we only have one phase, with no alternation possible.

• asynchronous phase: all paths starting at N do not end in {}.
• synchronous phase: there is a path N 7→∗ {}.

S&D, July 2005 12/25

Adding the switch operator

Now add the switch operator to the language of neutral expressions.

N ::= . . . | lN.

Rewriting leaves switched expressions untouched.

Main question: Given N , does

N 7→∗ {lN1, . . . , lNm} = l{N1, . . . , Nm}?

The motivation here:

(1) One player starts with her instructions N .

(2) She works on N in order to finish her “work”, if possible.

(3) If she finishes successfully, she gives to the other player m

instructions N1, . . . , Nm.

A class of simple expressions can be defined for which m ≤ 1.

S&D, July 2005 13/25

Games: Arenas, strategies, winning strategies

The pair 〈P, ρ〉 is an arena: P is a set of positions and ρ be a
binary relationship on P that describes moves.

A play is a sequence P1.P2. · · · .Pn of ρ-related moves.

If σ is a set of plays then the set σ/N = {S | N.S ∈ σ}.
A ∀∃-strategy for N is a prefixed closed set σ of plays such that
N ∈ σ and for all M such that N ρ M , the set σ/N is a ∃∀-strategy
for M .

A ∃∀-strategy for N is a prefixed closed set σ of plays such that
N ∈ σ and for at most one position M such that N ρ M , the set
σ/N is a ∀∃-strategy for M .

A winning ∀∃-strategy is a ∀∃-strategy such that all its maximal
sequences are of odd length. A winning ∃∀-strategy σ is a
∀∃-strategy such that all maximal sequences are of even length.

S&D, July 2005 14/25

Games for simple expressions

Define [lN]− = [N]+ and [lN]+ = [N]−.

Let P be the set of neutral expressions. The move relation is
defined as: N ρ 00 if N 7→∗ {} and N ρ M if N 7→∗ {lM}.

Conjecture. Let N be a simple expression.
There is a winning ∀∃-strategy for N if and only if ` [N]−.
There is a winning ∃∀-strategy for N if and only if ` [N]+.

We have a number of examples supporting this Conjecture.

The Conjecture holds in the proposition case (when the model M
is not relevant).

S&D, July 2005 15/25

Example: finite sets

Encode 0, 1, 2, . . . as terms z, s(z), s(s(z)),

Let finite set A = {n1, . . . , nk} of natural numbers can be encoded
as A(x) = x

·= n1 + · · ·+ x
·= nk.

The expression A(n) has a winning ∃∀-strategy if and only if
n ∈ A. In that case, (n = n1)⊕ · · · ⊕ (n = nk) is provable.

The expression A(n) has a winning ∀∃-strategy if and only if
n /∈ A. In that case, ¬(n = n1) & · · ·& ¬(n = nk) is provable.

If A(x) and B(x) encode two finite sets A and B, then the
expressions A(x) + B(x) and A(x)×B(x) encode in the
intersection and union, respectively, of A and B.

S&D, July 2005 16/25

Example: subset

The expression Qx.(A(x)× lB(x)) encodes A ⊆ B.

Let P be the set {0, 2} and let Q be the set {0, 1, 2}. The
expression labeled P ⊆ Q, namely,

Qx.([(x ·= 0) + (x ·= 2)]× l[(x ·= 0) + (x ·= 1) + (x ·= 2)])

has a winning ∀∃-strategy. Thus the following are provable.

∀x.([¬(x = 0) & ¬(x = 2)] ...
............
.................................. [(x = 0)⊕ (x = 1) ∨ (x = 2)]).

∀x.([(x = 0)⊕ (x = 2)]−◦ [(x = 0)⊕ (x = 1) ∨ (x = 2)]).

The expression labeled Q ⊆ P , namely,

Qx.([(x ·= 0) + (x ·= 1) + (x ·= 2)]× l[(x ·= 0) + (x ·= 2)])

has a winning ∃∀-strategy. Thus the following is provable:

∃x.([(x = 0)⊕ (x = 1)⊕ (x = 2)]⊗ [¬(x = 0) & ¬(x = 2)]).

S&D, July 2005 17/25

Games for non-simple expressions

We do not know yet how to define games for general expressions.

Nor do we have any “computer science motivated” examples that
indicate the need for non-simple expressions.

It is clear that such games cannot be determinate: that is, not all
games will have either a winning ∀∃-strategy or a winning
∃∀-strategy.

For example, l11× l11 should yield a game with stuck states since
neither 1 ...

............
.................................. 1 nor ⊥⊗⊥ are provable.

S&D, July 2005 18/25

Additive Games and Truth

Hintikka showed that games can characterize truth in first-order
logic.

Two players P and O play on the same formula:

• if that formula is a conjunction, then player P would choose one
of the conjuncts;

• if is a universal quantifier, then player P would pick an instance;

• if the formulas is a disjunction, then player O picks a disjunct;
and

• if the formula is an existential quantifier, play O picks an
instance.

In our setting, such a game is purely additive: that is, the neutral
expressions for such games contain no occurrences of × and 11.

S&D, July 2005 19/25

Additive Games and Truth

Define two mappings, f(·) and h(·), from classical formulas in
negation normal form (formulas where negations have only atomic
scope) into additive neutral expressions.

f(B ∧ C) = f(B) + f(C) h(B ∧ C) = lf(B ∧ C)

f(B ∨ C) = lh(B ∨ C) h(B ∨ C) = h(B) + h(C)

f(>) = 00 h(>) = lf(>)

f(⊥) = lh(⊥) h(⊥) = 00

f(∀x.B) = Qx.f(B) h(∀x.B) = lf(∀x.B)

f(∃x.B) = lh(∃x.B) h(∃x.B) = Qx.h(B)

f(¬(p(t1, . . . , tn))) =
·
p(t1, . . . , tn) h(¬A) = lf(A)

f(A) = lh(A) h(p(t1, . . . , tn)) =
·
p(t1, . . . , tn)

S&D, July 2005 20/25

Correctness of additive games with validity

Proposition. Let M be a model and let f(E) = N , where E is a
closed first-order formula. The formula E is true in M if and only
if there is a ∀∃-win for N .

Proof. By simple induction over the structure of formulas.

S&D, July 2005 21/25

Extending for recursion

Extend expressions with the fixed point constructors {fixn}n≥0. In

(fixnλPλx1 . . . λxn.M)

the bound variable P is an n-ary recursive function. Extend 7→:

(fixnFt1 . . . tn), Γ 7→ (F (fixnF)t1 . . . tn), Γ,

Extend the notions of winning strategies to infinite plays.

An infinite play is a lose for in a ∃∀-strategy while it is win for an
∀∃-strategy.

The positive translation of fix is the least fixed point operation µ;
negative translation of fix is the greatest fixed point operation ν.

S&D, July 2005 22/25

Example: less-than-or-equal

The logic program

leq(z,N).

leq(s(P),s(Q)) :- leq(P,Q).

can be written rather directly (using the Clark completion) as the
expression

(fix2 λleqλnλm[(n ·= z) + QpQq.(n ·= s(p)×m
·= s(q)× leq(p, q))])

This expression, named L, has no l operator (it is just a Horn
clause program).

L(n,m) has a winning ∃∀-strategy if and only if n ≤ m.

L(n,m) has a winning ∀∃-strategy if and only if n > m.

S&D, July 2005 23/25

Example: maximum

We can now define the maximum of a set of numbers. Let A be a
non-empty set of numbers and let A(n) be the expression encoding
this set.

Let maxA(n) be the following expression:

A(n)× lQm(A(m)× lL(m,n))

The expression maxA(n) as a winning ∀∃-strategy if and only if n is
not in A or it is not the largest member of A. Similarly, maxA(n)
as a winning ∃∀-strategy if and only if n is the largest member of A.

S&D, July 2005 24/25

Example: bisimulation

Let δ ⊆ S × Λ× S be a finite transition on states S and labels Λ.

Encode this as the expression δ(x, y, z) given by
∑

(p,a,q)∈δ

(x .= p× y
.= a× z

.= q).

Bisimulation between two states can be defined using the following
recursive expression

(fix2λbisimλpλq. [QaQp′.δ(p, a, p′)× lQq′(δ(q, a, q′)× lbisim(p′, q′))]
+ [QaQq′.δ(q, a, q′)× lQp′(δ(p, a, p′)× lbisim(p′, q′))])

If Bisim names the above expression and if p and q are two states
(members of S), then the game for the expression Bisim(p, q) is
exactly the game usually used to describe bisimulation, eg., by C.
Sterling.

S&D, July 2005 25/25

Conclusions and Questions

• We have described a neutral approach to proof and refutation
for an interesting and useful subset of logic (from the computer
science point-of-view).

• Games and winning strategies provide a new way to look at
proofs. This is not an approach to “full abstraction” for sequent
proofs. We are hopeful for better “proof objects” than those.

• What is really going on with the multiplicatives?

• Can we extend this development to the modals (!, ?) of linear
logic? To higher-order quantification?

• How does one implement the search for winning strategies
using, say, unification?

