A game semantics for proof search: Preliminary results Dale Miller & Alexis Saurin INRIA-Futurs & LIX 16 July 2005

Outline

- 1. A neutral approach to proof and refutation.
- 2. The noetherian Horn clause case.
- 3. Games for simple expressions.
- 4. Games for non-simple expressions.
- 5. Additive games and truth
- 6. Games for recursion.

Review: Horn clauses

The syntactic variable A denotes *atomic formulas*: that is, a formula with a predicate (a non-logical constant) as its head: the formulas \perp and \top and t = s are *not* atomic formulas.

A Horn goal G is any formula generated by the grammar:

 $G ::= \top \mid \bot \mid t = s \mid A \mid G \land G \mid G \lor G \mid \exists x G.$

A Horn clause for the predicate p is a formula

$$\forall x_1 \dots \forall x_n [p(x_1, \dots, x_n) \equiv G]$$

where $n \ge 0$, p is an n-ary predicate symbol, and the G, the **body**, is a Horn goal formula whose free variables are in $\{x_1, \ldots, x_n\}$.

A *Horn program* is a finite set \mathcal{P} of Horn clauses all for distinct predicates.

Review: noetherian Horn clauses

Define $q \prec p$ to hold for two predicates if q appears in the body of the Horn clause for p.

 \mathcal{P} is *noetherian* if the transitive closure of \prec is acyclic.

When \mathcal{P} is noetherian, it can be rewritten to a logically equivalent logic program \mathcal{P}' for which the relation \prec is empty: that is, there are no atomic formulas in the body of clauses in \mathcal{P}' .

Repeatedly replace \prec -minimal predicates by their equivalent body.

Thus: in noetherian programs, atoms are not necessary.

Prolog and noetherian Horn clauses

Assume that the noetherian Horn clause program $\mathcal P$ is loaded into Prolog and we ask the query

?- G.

Prolog will respond by either reporting yes or no.

If yes then Prolog has a proof of G. Such a proof can be represented in "usual" sequent calculus (say, of, Gentzen).

If **no** then there is a proof of $\neg G$ in proof systems extended to deal with the *closed world assumption*: Clark's completion or more recent work on *definitions* and *fixed points* in proof theory (Schroeder-Heister & Hallnäs, Girard, and McDowell & Miller &Tiu).

Proof and refutation in one computation

This description of Prolog is a challenge to the conventional understanding of logic-as-proof-search paradigm (Miller, *et.al.*, in late 1980's).

Prolog did *one* computation which yielded a proof of G or a refutation of G (i.e., a proof of $\neg G$).

Proof search states that you must select first what you plan to prove and then proceed to prove that: i.e.,

start with either $\longrightarrow G$ or with $\longrightarrow \neg G$.

How can we *formalize* this neutral approach?

Can this behavior of Prolog be *extended* to richer logics?

A neutral approach to proof and refutation

Since a "neutral computation" could yield a proof of either $G_1 \wedge G_2$ or $\neg G_1 \vee \neg G_2$; or either $\exists x.G$ or $\forall x.\neg G$, we chose to compute with a new language of *neutral expressions*.

$$N ::= \mathbf{1} \mid N \times N \mid \mathbf{0} \mid N + N \mid \dot{p} t_1 \dots t_n \mid \mathbf{Q} x N$$

Here, 1 and 0 are the units of \times and +, respectively.

The expression $p t_1 \dots t_n$ is will correspond to the literal $pt_1 \dots t_n$ or $\neg pt_1 \dots t_n$.

The variable x in the expression $\mathbf{Q}x.N$ is bound in the usual sense.

First-order models, briefly

Let \mathcal{M} be a *first-order model* in the usual sense.

- $|\mathcal{M}|$ denotes the domain of quantification of the model
- for every $c \in |\mathcal{M}|$ there is a *parameter* \overline{c} in the language of the logic.

• An atomic formula $p(t_1, \ldots, t_n)$ is true if the *n*-tuple $\langle t_1^{\mathcal{M}}, \ldots, t_n^{\mathcal{M}} \rangle \in p^{\mathcal{M}}$.

Herbrand Models

Given a signature Σ , the model \mathcal{H}_{Σ} is such that $|\mathcal{H}_{\Sigma}|$ is the set of closed terms built from Σ and in which the sole predicate that is interpreted is equality: $\mathcal{H}_{\Sigma} \models t = s$ if and only if t and s are identical closed terms.

Rewriting neutral expressions

Given a model \mathcal{M} we describe a nondeterministic rewriting of multisets of neutral expressions.

 $\mathbf{1}, \Gamma \mapsto \Gamma \qquad N \times M, \Gamma \mapsto N, M, \Gamma$ $N + M, \Gamma \mapsto N, \Gamma \qquad N + M, \Gamma \mapsto M, \Gamma$ $p(t_1, ..., t_n), \Gamma \mapsto \Gamma, \qquad \text{if } \mathcal{M} \models p(t_1, ..., t_n)$ $\mathbf{Q}x.N, \Gamma \mapsto N[t/x], \Gamma, \quad \text{where } t \in |\mathcal{M}|$

Let \mapsto^* be the reflective and transitive closure of \mapsto .

Since expressions simplify, rewriting always terminates. Since the domain of quantification is infinite (all terms), rewriting can also be infinitely branching.

Main question: Given N, does $N \mapsto^* \{\}$?

Main proposition for Horn clauses over \mathcal{H}_{Σ}

Proposition. Let N be a neutral expression. If $N \mapsto^* \{\}$ then $\vdash [N]^+$. If N cannot be rewritten to $\{\}$ then $\vdash [N]^-$.

N	$[N]^+$	$[N]^-$
0	0	Т
1	1	\perp
$\dot{t=s}$	t = s	$\neg(t=s)$
$N_1 + N_2$	$[N_1]^+ \oplus [N_2]^+$	$[N_1]^- \& [N_2]^-$
$N_1 \times N_2$	$[N_1]^+ \otimes [N_2]^+$	$[N_1]^- \Im [N_2]^-$
$\mathbf{Q}x.N$	$\exists x.[N]^+$	$\forall x.[N]^-$

The range of $[\cdot]^+$ is a familiar linearization of *Horn goal* formulas. The range of $[\cdot]^-$ is their negation.

Treatment of Equality

$$\frac{\mathbf{F} \Delta \theta}{\mathbf{F} - \tau(t = s), \Delta} \dagger \qquad \frac{\mathbf{F} \Delta \theta}{\mathbf{F} - \tau(t = s), \Delta} \ddagger$$

The proviso \dagger requires that t and s are unifiable and θ is their most general unifier ($\Delta \theta$ is the multiset resulting from applying θ to all formulas in Δ).

The proviso \ddagger requires that t and s are not unifiable.

The free variables of a sequent are also called *eigenvariables*, which are introduced by the usual rule for $\forall R$.

Extending this neutral approach

Can we extend this neutral approach to proof and refutation beyond simple Horn goal formulas?

Proof search alternates between two phases.

- *asynchronous* phase where all inference rules are invertible. No choices need to be made.
- *synchronous* phase where inference rules require choices. A path through a proof must be made.

These two phases arise from dual aspects of the same logical connective.

So far, we only have one phase, with no alternation possible.

- asynchronous phase: all paths starting at N do not end in $\{\}$.
- synchronous phase: there is a path $N \mapsto^* \{\}$.

Adding the switch operator

Now add the *switch* operator to the language of neutral expressions.

 $N ::= \dots | \uparrow N.$

Rewriting leaves switched expressions untouched.

Main question: Given N, does

$$N \mapsto^* \{ \uparrow N_1, \dots, \uparrow N_m \} = \uparrow \{N_1, \dots, N_m \}?$$

The motivation here:

(1) One player starts with her instructions N.

(2) She works on N in order to finish her "work", if possible.

(3) If she finishes successfully, she gives to the other player m instructions N_1, \ldots, N_m .

A class of *simple expressions* can be defined for which $m \leq 1$.

Games: Arenas, strategies, winning strategies

The pair $\langle P, \rho \rangle$ is an *arena*: P is a set of *positions* and ρ be a binary relationship on P that describes *moves*.

A *play* is a sequence $P_1.P_2....P_n$ of ρ -related moves.

If σ is a set of plays then the set $\sigma/N = \{S \mid N.S \in \sigma\}$.

A $\forall \exists$ -strategy for N is a prefixed closed set σ of plays such that $N \in \sigma$ and for all M such that $N \rho M$, the set σ/N is a $\exists \forall$ -strategy for M.

A $\exists \forall$ -strategy for N is a prefixed closed set σ of plays such that $N \in \sigma$ and for at most one position M such that $N \rho M$, the set σ/N is a $\forall \exists$ -strategy for M.

A winning $\forall \exists$ -strategy is a $\forall \exists$ -strategy such that all its maximal sequences are of odd length. A winning $\exists \forall$ -strategy σ is a $\forall \exists$ -strategy such that all maximal sequences are of even length.

Games for simple expressions

Define $[\uparrow N]^- = [N]^+$ and $[\uparrow N]^+ = [N]^-$.

Let P be the set of neutral expressions. The move relation is defined as: $N \rho \oplus if N \mapsto^* \{\}$ and $N \rho M if N \mapsto^* \{\uparrow M\}$.

Conjecture. Let N be a simple expression. There is a winning $\forall \exists$ -strategy for N if and only if $\vdash [N]^-$. There is a winning $\exists \forall$ -strategy for N if and only if $\vdash [N]^+$.

We have a number of examples supporting this Conjecture. The Conjecture holds in the proposition case (when the model \mathcal{M} is not relevant).

Example: finite sets

Encode $0, 1, 2, \ldots$ as terms $z, s(z), s(s(z)), \ldots$

Let finite set $A = \{n_1, \dots, n_k\}$ of natural numbers can be encoded as $A(x) = x \stackrel{\cdot}{=} n_1 + \dots + x \stackrel{\cdot}{=} n_k$.

The expression A(n) has a winning $\exists \forall$ -strategy if and only if $n \in A$. In that case, $(n = n_1) \oplus \cdots \oplus (n = n_k)$ is provable.

The expression A(n) has a winning $\forall \exists$ -strategy if and only if $n \notin A$. In that case, $\neg (n = n_1) \& \cdots \& \neg (n = n_k)$ is provable.

If A(x) and B(x) encode two finite sets A and B, then the expressions A(x) + B(x) and $A(x) \times B(x)$ encode in the intersection and union, respectively, of A and B.

Example: subset

The expression $\mathbf{Q}x.(A(x) \times \uparrow B(x))$ encodes $A \subseteq B$.

Let P be the set $\{0,2\}$ and let Q be the set $\{0,1,2\}$. The expression labeled $P \subseteq Q$, namely,

$$\mathbf{Q}x.([(x \doteq 0) + (x \doteq 2)] \times \mathbf{1}[(x \doteq 0) + (x \doteq 1) + (x \doteq 2)])$$

has a winning $\forall \exists$ -strategy. Thus the following are provable.

$$\forall x.([\neg(x=0) \& \neg(x=2)] \And [(x=0) \oplus (x=1) \lor (x=2)]).$$

$$\forall x.([(x=0) \oplus (x=2)] \multimap [(x=0) \oplus (x=1) \lor (x=2)]).$$

The expression labeled $Q \subseteq P$, namely,

$$\mathbf{Q}x.([(x \doteq 0) + (x \doteq 1) + (x \doteq 2)] \times 1[(x \doteq 0) + (x \doteq 2)])$$

has a winning $\exists \forall$ -strategy. Thus the following is provable:

$$\exists x.([(x=0)\oplus (x=1)\oplus (x=2)]\otimes [\neg (x=0)\& \neg (x=2)]).$$

Games for non-simple expressions

We do not know yet how to define games for general expressions. Nor do we have any "computer science motivated" examples that indicate the need for non-simple expressions.

It is clear that such games cannot be determinate: that is, not all games will have either a winning $\forall \exists$ -strategy or a winning $\exists \forall$ -strategy.

For example, $\uparrow 1 \times \uparrow 1$ should yield a game with *stuck states* since neither 1 $\Re 1$ nor $\perp \otimes \perp$ are provable.

Additive Games and Truth

Hintikka showed that games can characterize truth in first-order logic.

Two players P and O play on the same formula:

• if that formula is a conjunction, then player P would choose one of the conjuncts;

- if is a universal quantifier, then player P would pick an instance;
- \bullet if the formulas is a disjunction, then player O picks a disjunct; and

• if the formula is an existential quantifier, play O picks an instance.

In our setting, such a game is purely additive: that is, the neutral expressions for such games contain no occurrences of \times and 1.

Additive Games and Truth

Define two mappings, $f(\cdot)$ and $h(\cdot)$, from classical formulas in negation normal form (formulas where negations have only atomic scope) into additive neutral expressions.

 $f(B \land C) = f(B) + f(C)$ $f(B \lor C) = \uparrow h(B \lor C)$ $f(\top) = \mathbf{0}$ $f(\bot) = \uparrow h(\bot)$ $f(\forall x.B) = \mathbf{Q}x.f(B)$ $f(\exists x.B) = \uparrow h(\exists x.B)$ $f(\neg (p(t_1, \dots, t_n))) = \dot{p}(t_1, \dots, t_n)$ $f(A) = \uparrow h(A)$ $h(B \land C) = \uparrow f(B \land C)$ $h(B \lor C) = h(B) + h(C)$ $h(\top) = \uparrow f(\top)$ $h(\bot) = \mathbf{0}$ $h(\forall x.B) = \uparrow f(\forall x.B)$ $h(\exists x.B) = \mathbf{Q}x.h(B)$ $h(\exists x.B) = \downarrow f(A)$ $h(p(t_1, \dots, t_n)) = \dot{p}(t_1, \dots, t_n)$

Correctness of additive games with validity

Proposition. Let \mathcal{M} be a model and let f(E) = N, where E is a closed first-order formula. The formula E is true in \mathcal{M} if and only if there is a $\forall \exists$ -win for N.

Proof. By simple induction over the structure of formulas.

Extending for recursion

Extend expressions with the fixed point constructors $\{fix_n\}_{n\geq 0}$. In

 $(fix_n\lambda P\lambda x_1\dots\lambda x_n.M)$

the bound variable P is an n-ary recursive function. Extend \mapsto :

$$(\operatorname{fix}_n F t_1 \dots t_n), \Gamma \mapsto (F(\operatorname{fix}_n F) t_1 \dots t_n), \Gamma,$$

Extend the notions of winning strategies to infinite plays.

An *infinite play* is a *lose* for in a $\exists \forall$ -strategy while it is *win* for an $\forall \exists$ -strategy.

The *positive* translation of fix is the *least* fixed point operation μ ; *negative* translation of fix is the *greatest* fixed point operation ν .

Example: less-than-or-equal

The logic program

```
leq(z,N).
leq(s(P),s(Q)) :- leq(P,Q).
```

can be written rather directly (using the Clark completion) as the expression

$$(fix_2 \ \lambda leq\lambda n\lambda m[(n \doteq z) + \mathbf{Q}p\mathbf{Q}q.(n \doteq s(p) \times m \doteq s(q) \times leq(p,q))])$$

This expression, named L, has no \uparrow operator (it is just a Horn clause program).

```
L(n,m) has a winning \exists \forall-strategy if and only if n \leq m.
```

L(n,m) has a winning $\forall \exists$ -strategy if and only if n > m.

Example: maximum

We can now define the maximum of a set of numbers. Let A be a non-empty set of numbers and let A(n) be the expression encoding this set.

Let maxA(n) be the following expression:

 $A(n) \times (\mathbf{Q}m(A(m) \times (\mathbf{Q}m(m,n))))$

The expression maxA(n) as a winning $\forall \exists$ -strategy if and only if n is not in A or it is not the largest member of A. Similarly, maxA(n)as a winning $\exists \forall$ -strategy if and only if n is the largest member of A.

Example: bisimulation

Let $\delta \subseteq S \times \Lambda \times S$ be a finite transition on states S and labels Λ .

Encode this as the expression $\delta(x, y, z)$ given by

$$\sum_{p,a,q)\in\delta} (x \doteq p \times y \doteq a \times z \doteq q).$$

Bisimulation between two states can be defined using the following recursive expression

 $(\text{fix}_{2}\lambda\text{bisim}\lambda p\lambda q. [\mathbf{Q}a\mathbf{Q}p'.\delta(p,a,p') \times \mathbf{\uparrow}\mathbf{Q}q'(\delta(q,a,q') \times \mathbf{\uparrow}\text{bisim}(p',q'))] + [\mathbf{Q}a\mathbf{Q}q'.\delta(q,a,q') \times \mathbf{\uparrow}\mathbf{Q}p'(\delta(p,a,p') \times \mathbf{\uparrow}\text{bisim}(p',q'))])$

If Bisim names the above expression and if p and q are two states (members of S), then the game for the expression Bisim(p,q) is exactly the game usually used to describe bisimulation, eg., by C. Sterling.

Conclusions and Questions

- We have described a neutral approach to proof and refutation for an interesting and useful subset of logic (from the computer science point-of-view).
- Games and winning strategies provide a new way to look at proofs. This is not an approach to "full abstraction" for sequent proofs. We are hopeful for better "proof objects" than those.
- What is really going on with the multiplicatives?
- Can we extend this development to the modals (!, ?) of linear logic? To higher-order quantification?
- How does one implement the search for winning strategies using, say, unification?