S&D, July 2005 1/25

A game semantics for proot search:

Preliminary results

Dale Miller & Alexis Saurin
INRIA-Futurs & LIX
16 July 2005

Outline
1. A neutral approach to proof and refutation.
. The noetherian Horn clause case.
. Games for simple expressions.
. Games for non-simple expressions.
. Additive games and truth

. Games for recursion.

S&D, July 2005 2/25

Review: Horn clauses

The syntactic variable A denotes atomic formulas: that is, a
formula with a predicate (a non-logical constant) as its head: the

formulas 1 and T and ¢t = s are not atomic formulas.

A Horn goal G is any formula generated by the grammar:

G:=T|L|t=s|A|GANG|GVG|IxG.

A Horn clause for the predicate p is a formula
Vay ... Ve, [p(ey, ..., z,) = G]

where n > 0, p is an n-ary predicate symbol, and the G, the body, is

a Horn goal formula whose free variables are in {x1,...,z,}.

A Horn program is a finite set P of Horn clauses all for distinct

predicates.

S&D, July 2005 3/25

Review: noetherian Horn clauses

Define q¢ < p to hold for two predicates if ¢ appears in the body of
the Horn clause for p.

P is noetherian it the transitive closure of < is acyclic.

When P is noetherian, it can be rewritten to a logically equivalent

logic program P’ for which the relation < is empty: that is, there

are no atomic formulas in the body of clauses in P’.
Repeatedly replace <-minimal predicates by their equivalent body.

Thus: in noetherian programs, atoms are not necessary.

S&D, July 2005 4/25

Prolog and noetherian Horn clauses

Assume that the noetherian Horn clause program P is loaded into

Prolog and we ask the query
7- G.
Prolog will respond by either reporting yes or no.

If yes then Prolog has a proof of G. Such a proof can be

represented in “usual” sequent calculus (say, of, Gentzen).

If no then there is a proof of =G in proof systems extended to deal
with the closed world assumption: Clark’s completion or more

recent work on definitions and fized points in proof theory
(Schroeder-Heister & Hallnéas, Girard, and McDowell & Miller
&Tiu).

S&D, July 2005 5/25

Proof and refutation in one computation

This description of Prolog is a challenge to the conventional

understanding of logic-as-proof-search paradigm (Miller, et.al., in
late 1980’s).

Prolog did one computation which yielded a proof of G or a
refutation of G (i.e., a proof of =G).

Proof search states that you must select first what you plan to

prove and then proceed to prove that: i.e.,
start with either — G or with — —G.

How can we formalize this neutral approach?

Can this behavior of Prolog be extended to richer logics?

S&D, July 2005 6/25

A neutral approach to proof and refutation

Since a “neutral computation” could yield a proof of either G1 A G5
or (G V =Go; or either dz.G or Vx.—(G, we chose to compute with

a new language of neutral expressions.

N:=1|NxN|O|N+N|pt;...t,| QN

Here, 1 and 0 are the units of X and +, respectively.

The expression pt; ...t, is will correspond to the literal pt; ...t,

or = pty...1,.

The variable x in the expression Qz.N is bound in the usual sense.

S&D, July 2005 7/25

First-order models, briefly

Let M be a first-order model in the usual sense.
e | M| denotes the domain of quantification of the model

e for every ¢ € | M| there is a parameter ¢ in the language of the

logic.

e An atomic formula p(tq,...,t,) is true if the n-tuple

(t -t € p™.

Herbrand Models

Given a signature X, the model Hy is such that |Hy| is the set of
closed terms built from > and in which the sole predicate that is
interpreted is equality: Hy =t = s if and only if ¢t and s are

identical closed terms.

S&D, July 2005

Rewriting neutral expressions

Given a model M we describe a nondeterministic rewriting of

multisets of neutral expressions.
1,T'— T NxMTI'— N,M,T
N+ M,I'— N, T N+ MT'— M,T
p(t1, ..., tn), [— T, if M E=op(ty,....,tn)

Qxz.N,T'— N[t/x],T", wheret € | M|

Let —™* be the reflective and transitive closure of —.

Since expressions simplify, rewriting always terminates. Since the

domain of quantification is infinite (all terms), rewriting can also be

infinitely branching.
Main question: Given N, does N —* {}7

8/25

S&D, July 2005 9/25

Main proposition for Horn clauses over Hy

Proposition. Let N be a neutral expression. If N —* {} then
= [N]*™. If N cannot be rewritten to {} then - [N]~.

N

t=s
N1 + Ny
N1 X Ny

Qx.N

The range of [|T is a familiar linearization of Horn goal formulas.

The range of [-|~ is their negation.

S&D, July 2005 10/25

Treatment of Equality

— A6

f

— =(t=35),A :

The proviso { requires that ¢ and s are unifiable and @ is their most
general unifier (A# is the multiset resulting from applying 6 to all

formulas in A).
The proviso i requires that ¢ and s are not unifiable.

The free variables of a sequent are also called eigenvariables, which

are introduced by the usual rule for VR.

S&D, July 2005 11/25

Extending this neutral approach

Can we extend this neutral approach to proof and refutation
beyond simple Horn goal formulas?

Proof search alternates between two phases.

e asynchronous phase where all inference rules are invertible. No

choices need to be made.

e synchronous phase where inference rules require choices. A path

through a proof must be made.

These two phases arise from dual aspects of the same logical

connective.
So far, we only have one phase, with no alternation possible.
e asynchronous phase: all paths starting at N do not end in {}.

e synchronous phase: there is a path N —* {}.

S&D, July 2005 12/25

Adding the switch operator

Now add the switch operator to the language of neutral expressions.
N:=...|]N.

Rewriting leaves switched expressions untouched.

Main question: Given N, does

N —* {IN1,..., [N} = {1, ..., N;u}?

The motivation here:
(1) One player starts with her instructions N.
(2) She works on N in order to finish her “work”, if possible.

(3) If she finishes successfully, she gives to the other player m
instructions Ny, ..., N,,.

A class of simple expressions can be defined for which m < 1.

S&D, July 2005 13/25

Games: Arenas, strategies, winning strategies

The pair (P, p) is an arena: P is a set of positions and p be a

binary relationship on P that describes mowes.
A play is a sequence P;.P5. - --.P, of p-related moves.

If o is a set of plays then the set 6/N ={S | N.S € o}.

A Vd-strategy for N is a prefixed closed set o of plays such that
N € o and for all M such that N p M, the set o/N is a IV-strategy
for M.

A JV-strategy for N is a prefixed closed set o of plays such that
N € o and for at most one position M such that N p M, the set
o/N is a V3-strategy for M.

A winning V3-strategy is a V3-strategy such that all its maximal
sequences are of odd length. A winning 3V-strategy o is a

Vd-strategy such that all maximal sequences are of even length.

S&D, July 2005 14/25

Games for simple expressions

Define [[N]~ = [N]* and [[N]* = [N]~.

Let P be the set of neutral expressions. The move relation is
defined as: N p 0 if N —*{} and N p M if N —* {JM}.

Conjecture. Let N be a simple expression.

There is a winning V3-strategy for N if and only if F [V]
There is a winning 3V-strategy for N if and only if - [N]™.

We have a number of examples supporting this Conjecture.

The Conjecture holds in the proposition case (when the model M

is not relevant).

S&D, July 2005 15/25

Example: finite sets

Encode 0,1,2,... as terms z, s(z), s(s(2)),

Let finite set A = {ny,...,n,} of natural numbers can be encoded
as A(x) =x=n1+ - +x =nyg.

The expression A(n) has a winning 3V-strategy if and only if

n € A. In that case, (n =n1) ®--- @B (n = nyg) is provable.

The expression A(n) has a winning V3-strategy if and only if
n ¢ A. In that case, 7(n =nq1) & --- & =(n = ny) is provable.

If A(x) and B(x) encode two finite sets A and B, then the
expressions A(x) + B(x) and A(x) x B(x) encode in the

intersection and union, respectively, of A and B.

S&D, July 2005 16/25

Example: subset

The expression Qx.(A(z) X [B(x)) encodes A C B.

Let P be the set {0,2} and let @) be the set {0,1,2}. The
expression labeled P C (), namely,

Qa.([(x = 0) + (2 = 2)] x J[(x = 0) + (a =
has a winning V3-strategy. Thus the following are provable.
Vo ([(z=0)&—~(z=2)] B[z =0)@ (x=1)V (z
Ve ((z=0)@ (z=2)] o[(z=0)® (x=1)V (z =
The expression labeled Q C P, namely,
Qu.([(@ = 0)+ (z = 1) + (¢ = 2)] x [z = 0) + (z =
has a winning IV-strategy. Thus the following is provable:
Te((z=0)@(x=1) @ (z=2)]0[(z=0) & ~(x

S&D, July 2005 17/25

Games for non-simple expressions

We do not know yet how to define games for general expressions.

Nor do we have any “computer science motivated” examples that

indicate the need for non-simple expressions.

It is clear that such games cannot be determinate: that is, not all
games will have either a winning Vd-strategy or a winning

JV-strategy.

For example, [1 x [1 should yield a game with stuck states since
neither 1 1 nor 1. ® L are provable.

S&D, July 2005 18/25

Additive Games and Truth

Hintikka showed that games can characterize truth in first-order

logic.
Two players P and O play on the same formula:

e if that formula is a conjunction, then player P would choose one

of the conjuncts;
e if is a universal quantifier, then player P would pick an instance;

e if the formulas is a disjunction, then player O picks a disjunct;

and

e if the formula is an existential quantifier, play O picks an

instance.

In our setting, such a game is purely additive: that is, the neutral

expressions for such games contain no occurrences of x and 1.

S&D, July 2005 19/25

Additive Games and Truth

Define two mappings, f(-) and h(-), from classical formulas in
negation normal form (formulas where negations have only atomic

scope) into additive neutral expressions.

S&D, July 2005 20/25

Correctness of additive games with validity

Proposition. Let M be a model and let f(F) = N, where E is a
closed first-order formula. The formula FE is true in M if and only
if there is a V3-win for V.

Proof. By simple induction over the structure of formulas.

S&D, July 2005 21/25

Extending for recursion

Extend expressions with the fixed point constructors {fix, },>0. In
(fixp APz ... Az . M)
the bound variable P is an n-ary recursive function. Extend -

(fix, Fty ... 1), T v (F(fixn F)t1 .. . t), T,

Extend the notions of winning strategies to infinite plays.

An infinite play is a lose for in a dV-strategy while it is win for an
Vd-strategy.

The positive translation of fix is the least fixed point operation u;

negative translation of fix is the greatest fixed point operation v.

S&D, July 2005 22/25

Example: less-than-or-equal

The logic program

leq(z,N).
leq(s(P),s(Q)) :- 1leq(P,Q).

can be written rather directly (using the Clark completion) as the

expression

(fixy Meginim[(n = z) + QpQq.(n = s(p) x m = s(q) x leq(p, q))])

This expression, named L, has no | operator (it is just a Horn

clause program).
L(n,m) has a winning 3V-strategy if and only if n < m.

L(n,m) has a winning V3-strategy if and only if n > m.

S&D, July 2005 23/25

Example: maximum

We can now define the maximum of a set of numbers. Let A be a
non-empty set of numbers and let A(n) be the expression encoding
this set.

Let maxA(n) be the following expression:

A(n) x 1Qm(A(m) x [L(m,n))

The expression maxA(n) as a winning V3-strategy if and only if n is
not in A or it is not the largest member of A. Similarly, maxA(n)

as a winning JV-strategy if and only if n is the largest member of A.

S&D, July 2005 24/25

Example: bisimulation

Let d C S x A xS be a finite transition on states S and labels A.
Encode this as the expression §(x,y, 2) given by

Z (x=pXxy=axz=q).

(p,a,q)€d

Bisimulation between two states can be defined using the following

recursive expression

(fixo AbisimApAq. [QaQp'.6(p,a,p") x [Qq'(6(q,a,q’) x | bisim(p’, q"))]
+ [QaQq'.0(q,a,q") x 1Qp'(6(p,a,p’) x [bisim(p',q"))])

If Bisim names the above expression and if p and ¢ are two states

(members of S), then the game for the expression Bisim(p, q) is

exactly the game usually used to describe bisimulation, eg., by C.

Sterling.

S&D, July 2005 25/25

Conclusions and Questions

We have described a neutral approach to proof and refutation
for an interesting and useful subset of logic (from the computer

science point-of-view).

Games and winning strategies provide a new way to look at
proofs. This is not an approach to “tull abstraction” for sequent

proofs. We are hopeful for better “proof objects” than those.
What is really going on with the multiplicatives?

Can we extend this development to the modals (!, 7) of linear

logic? To higher-order quantification?

How does one implement the search for winning strategies

using, say, unification?

