
SOS08, 6 July 2008 1/23

Formalizing SOS specifications in logic

Dale Miller, INRIA-Saclay & LIX, École Polytechnique

Based on technical results in:

• M & Tiu: “Generic Judgments”, lics03, ToCL 2005

• Tiu: Model Checking for π-Calculus, concur05

• Ziegler, M, Palamidessi: A congruence format for name-passing, sos05

• Gacek, M, Nadathur: Combining generic judgments with recursive

definitions, lics08.

Collaboration between the INRIA team Parsifal, the University of

Minnesota, and the Australian National University.

SOS08, 6 July 2008 2/23

The overview of the next 10−6 century

Brief remarks about the uses of logic in computing

Making syntax more abstract and declarative

The π-calculus as an example and counterexample

The ∇-quantifier

More about the π-calculus

SOS08, 6 July 2008 3/23

Roles of Logic in the Specification of Computation

Logics are generally used in one of two approaches.

Computation-as-model: Computations are mathematical

structures representing computations via nodes, transitions, and

states (for example, Turing machines, etc). Logic is used in an

external sense to make statements about those structures. E.g.

Hoare triples, modal logics.

Computation-as-deduction: Pieces of logic are used to model

elements of computation directly.

Functional programming. Programs are proofs and computation is

proof normalization (λ-conversion, cut-elimination).

Logic programming. Programs are theories and computation is the

search for (cut-free) sequent proofs. The dynamics of computation

are captured by changes to sequents that occur during proof search.

SOS08, 6 July 2008 4/23

Two “logic programming” approaches:

Processes-as-formulas

• Combinators of process calculus are mapped to logical

connectives: for example, | is ⊗ and restriction is ∃.

• Substructural logics (e.g., linear logic, multiset rewriting) are

often needed.

This approach to specification is exciting but limited.

If P ⊢ Q means (multi-step) transition, then ⊢ P ≡ Q is the finest

equivalence possible: hence, this style approach does not capture

bisimulation (a more fine equivalence).

SOS08, 6 July 2008 5/23

Two “logic programming” approaches:

Processes-as-terms

Processes are modelled using terms: e.g., | and + are binary terms

constructors.

This more conventional approach (involves intuitionistic or classical

logic). Sometimes called the relational approach to SOS.

We focus here on this style of semantic specification and the

challenges to make logic expressive enough.

Two goals of this work: to use

• proof theory approaches to specify meaning for SOS, and

• automated deduction techniques to build tools for supporting SOS

specification and reasoning.

SOS08, 6 July 2008 6/23

Some tools we’re building for SOS

Since we need to support binding in terms and formulas, these

tools were built from scratch and implement aspects of higher-order

unification and various extensions to Horn clauses.

Animation: λProlog (1989) work well to animate many SOS

specifications: particularly, using the Teyjus (2008) implementation.

Model Checking: Bedwyr (2006) is a deduction system that can

be used as a model checker. Successful examples: completely

declarative bisimulation checker for the finite π-calculus.

Theorem Proving: To prove richer properties about possibly

infinite systems, we are implementing some theorem provers: Abella

and Taci. Example theorems: open bisimulation is a congruence,

subject-reduction theorems.

SOS08, 6 July 2008 7/23

The evolving nature of specifications

Denotational Semantics: computationally similar to functional

programming (Scheme, ML, etc).

Structural Operational Semantics: computationally similar to logic

programming, especially if the paradigm is generalized to

• treat λ-bindings in terms,

• explicit fixed point constructions (closed-world assumption), and

• various extension to Horn clauses.

Teaching of SOS: Logic programming can be used to animate and

experiment with SOS specifications: especially a modern updating

of Prolog including typing, modules, higher-order quantification

(λProlog and Teyjus again).

SOS08, 6 July 2008 8/23

Making syntax more abstract

Syntax as strings: White space, infix/prefix, parentheses. Much too

concrete. Church and Gödel did meta-theory in logic viewing

formulas as strings. Despite this choice, they achieved interesting

results!

Syntax as parse trees: Parse string and remove white space,

infix/prefix distinctions, etc. Organize as trees to encode recursive

structures.

Syntax as λ-trees: Bound variable names are still treated too

concretely. Treat these modulo αβη-conversion. Requires more

support from logic than is provided by Horn clauses.

SOS08, 6 July 2008 9/23

Example: encoding finite π calculus

Concrete syntax of π-calculus processes:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

Three syntactic types: n for names, a for actions, and p for

processes. The type n may or may not be inhabited.

Three constructors for actions: τ : a and ↓ and ↑ (for input and

output actions, resp), both of type n → n → a.

Abstract syntax for processes uses λ-bindings: (y)Py is coded using

a constant nu : (n → p) → p as nu(λy.Py) or just (nu P). Input

prefix x(y).Py is encoded using a constant in : n → (n → p) → p as

in x (λy.Py) or just (in x P). Other constructions are encoded

similarly.

SOS08, 6 July 2008 10/23

π-calculus: one step transitions

The “free action” arrow ·
·

−−→ · relates p and a and p.

The “bound action” arrow ·
·

−−⇀ · relates p and n → a and n → p.

P
A

−−→ Q free actions, A : a (τ , ↓ xy, ↑ xy)

P
↓x

−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x

−−⇀ M bound output action, ↑ x : n → a, M : n → p

Some small-step rules presented as formulas:

output–act: ∀x, y, P. ⊤ ⊃ x̄y.P
↑xy

−−→ P

input–act: ∀x, M. ⊤ ⊃ x(y).My
↓x

−−⇀ M

match: ∀x, P, Q, α. P
α

−−→ Q ⊃ [x = x]P
α

−−→ Q

res: ∀P, Q,α. ∀x(Px
α

−−→ Qx) ⊃ (x)Px
α

−−→ (x)Qx

SOS08, 6 July 2008 11/23

Proving positives but not negatives

The following can be proved.

Adequacy Theorem: The following are provable from the

specification of the π-calculus

P
A

−−→ P ′ P
↑X

−−⇀ M P
↓X

−−⇀ M

if and only if the “corresponding” transition holds in the π-calculus.

But:

You cannot prove interesting negations, even if you turn

specification into “bi-conditionals” (
△

=). E.g., there is no proof of

∀x∀A∀P. ¬[(y)[x = y].x̄x.0
A

−−→ P]

Say good-bye to proving bisimulation.

The fault is in the use of eigenvariables at the meta-level.

SOS08, 6 July 2008 12/23

Problem: eigenvariables collapse

An attempt to prove ∀x∀y.P x y first introduces two new and

different eigenvariables c and d and then attempts to prove P c d.

Eigenvariables have been used to encode names in π-calculus

[Miller93], nonces in security protocols [Cervesato, et.al. 99],

reference locations in imperative programming [Chirimar95], etc.

Since ∀x∀y.P x y ⊃ ∀z.P z z is provable, it follows that the

provability of ∀x∀y.P x y implies the provability of ∀z.P z z. That

is, there is also a proof where the eigenvariables c and d are

identified.

Thus, eigenvariables are unlikely to capture the proper logic behind

things like nonces, references, names, etc.

SOS08, 6 July 2008 13/23

Generic judgments and a new quantifier

Gentzen’s introduction rule for ∀ on the left is extensional: ∀x

mean a (possibly infinite) conjunction indexed by terms.

The quantifier ∇x.B x provides a more “intensional”, “internal”,

or “generic” reading. It uses a new local context in sequents.

Σ : B1, . . . , Bn −→ B0

⇓

Σ : σ1 ⊲ B1, . . . , σn ⊲ Bn −→ σ0 ⊲ B0

Σ is a list of distinct eigenvariables, scoped over the sequent and σi

is a list of distinct variables, locally scoped over the formula Bi.

The expression σi ⊲ Bi is called a generic judgment. Equality

between judgments is defined up to renaming of local variables.

SOS08, 6 July 2008 14/23

The ∇-quantifier

The left and right introductions for ∇ (nabla) are the same.

Σ : (σ, x : τ) ⊲ B, Γ −→ C

Σ : σ ⊲ ∇τx.B, Γ −→ C

Σ : Γ −→ (σ, x : τ) ⊲ B

Σ : Γ −→ σ ⊲ ∇τx.B

Standard proof theory design: Enrich context and add connectives

dealing with these context.

Quantification Logic: Add the eigenvariable context; add ∀ and ∃.

Linear Logic: Add multiset context; add multiplicative connectives.

Also: hyper-sequents, calculus of structures, etc.

Such a design, augmented with cut-elimination, provides

modularity of the resulting logic.

SOS08, 6 July 2008 15/23

Properties of ∇

This quantifier moves through all propositional connectives:

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x.⊤ ≡ ⊤ ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x.⊥ ≡ ⊥ ∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx

It moves through the quantifiers by raising them.

∇xα∀yβ .Bxy ≡ ∀hα→β∇xα.Bx(hx)

∇xα∃yβ .Bxy ≡ ∃hα→β∇xα.Bx(hx)

Consequence: ∇ can always be given atomic scope within formulas,

at the “cost” of raising quantifiers. Finally,

(∇x̄.t = s) iff (λx̄.t) = (λx̄.s).

SOS08, 6 July 2008 16/23

Non-theorems

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx†

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx†

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

† These are theorems using the “new” quantifier of Pitts. (More

comparisons later.)

SOS08, 6 July 2008 17/23

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a

sequent has a proof if and only if it has a cut-free proof. (Tiu 2003:

also when induction and co-induction are added.)

Theorem: For a fixed formula B,

⊢ ∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem: If we restrict to Horn specification (no implication or

negations in the body of the clauses) then

1. ∀ and ∇ are interchangeable in specifications.

2. For a fixed B, ⊢ ∇x.B x ⊃ ∀x.B x.

SOS08, 6 July 2008 18/23

Returning to the π-calculus

Replace ∀ in premises with ∇: e.g.,

res: ∀P, Q.[∇x(Px
α

−−→ Qx) ⊃ (x)Px
α

−−→ (x)Qx]

We can now prove

∀w∀A∀P. ¬.(x)[w = x].w̄w.0
A

−−→ P

This proof requires observing that the equation

λx.w = λx.x.

has no solution for any instance of w (unification failure).

SOS08, 6 July 2008 19/23

π-calculus: encoding (bi)simulation

sim P Q
△

= ∀A∀P ′ [P
A

−−→ P ′ ⊃ ∃Q′.Q
A

−−→ Q′ ∧ sim P ′ Q′] ∧

∀X∀P ′ [P
↓X

−−⇀ P ′ ⊃ ∃Q′.Q
↓X

−−⇀ Q′ ∧ ∀w.sim(P ′w)(Q′w)] ∧

∀X∀P ′ [P
↑X

−−⇀ P ′ ⊃ ∃Q′.Q
↑X

−−⇀ Q′ ∧∇w.sim(P ′w)(Q′w)]

This definition clause is not Horn and helps to illustrate the

differences between ∀ and ∇.

Bisimulation (bisim) is easy to write: it has 6 cases.

The early version of bisimulation is a change in quantifier scope.

SOS08, 6 July 2008 20/23

Learning something from our encoding

Theorem: For the finite π-calculus we have:

P is open bisimilar to Q if and only if ⊢I ∀x̄.bisim P Q.

P is late bisimilar to Q if and only if

∀w∀y(w = y ∨ w 6= y) ⊢I ∇x̄.bisim P Q.

Should one assume this instance of excluded middle?

The Bedwyr prover, which implements ∇ and fixed point extensions

to logic, can prove bisimulation for (finite) π-calculus. Note that

this is an implementation of a logic that can be used for a range of

SOS-related tasks.

SOS08, 6 July 2008 21/23

Modal logics

Tiu [concur05] specified modal logics for the π-calculus:

P |= 〈↑X〉A
△

= ∃P ′(P
↑X

−−⇀ P ′ ∧∇y.P ′y |= Ay).

P |= [↑X]A
△

= ∀P ′(P
↑X

−−⇀ P ′ ⊃ ∇y.P ′y |= Ay).

P |= 〈↓X〉A
△

= ∃P ′(P
↓X

−−⇀ P ′ ∧ ∃y.P ′y |= Ay).

P |= 〈↓X〉lA
△

= ∃P ′(P
↓X

−−⇀ P ′ ∧ ∀y.P ′y |= Ay).

P |= 〈↓X〉eA
△

= ∀y∃P ′(P
↓X

−−⇀ P ′ ∧ P ′y |= Ay).

P |= [↓X]A
△

= ∀P ′(P
↓X

−−⇀ P ′ ⊃ ∀y.P ′y |= Ay).

P |= [↓X]lA
△

= ∀P ′(P
↓X

−−⇀ P ′ ⊃ ∃y.P ′y |= Ay).

P |= [↓X]eA
△

= ∃y∀P ′(P
↓X

−−⇀ P ′ ⊃ P ′y |= Ay).

SOS08, 6 July 2008 22/23

Generalizing format rules for mobility: tyft

In the first order case:

· · · [Pi
Ai−→ Yi] · · ·

(f X1 . . . Xn)
A

−→ Q

Here, X1, . . . , Xn, Y1, . . . , Ym are distinct (first-order) variables.

This format generalizes naturally to the following:

· · · ∇u1 . . .∇uk[Pi
Ai−→ (Yiu1 . . . un)] · · ·

(f X1 . . . Xn)
A

−→ Q

The distinct variables X1, . . . , Xn, Y1, . . . , Ym are bound universally

around the inference rule.

This format guarantees that open bisimulation is a congruence.

Alternations between ∀ and ∇ leads to the notion of distinctions

that are used to define open bisimulation.

SOS08, 6 July 2008 23/23

Future Work

Develop more examples. Currently we deal with many aspects of

the π-calculus, λ-calculus, functional and imperative programming.

Improve the automatic model checker (Bedwyr) and the interactive

provers (Abella, Taci).

Modularity of reasoning depends of achieving suitable abstractions

over SOS theories: more use of higher-order logic (and maybe

linear logic) may help here.

How to implement late bisimulation? How to automate effectively

the instances of the excluded middle for equality?

What is a good model-theoretic semantics for ∇?

