
Meta-Programming in λProlog
UKALP meeting, Edinburgh, 10 April 1991

Dale Miller
dmi@lfcs.ed.ac.uk

University of Edinburgh and
University of Pennsylvania

Abstract

Meta-programming generally requires the manipulation of
data objects that contain internal abstractions. For examples,
formulas contain quantification and programs contain parameters
and local scopes. First-order terms are not well suited for
implementing such structures since the central notions of scope,
substitution, and bound and free variable occurrences are not
directly supported and must be implemented by a programmer.
Such implementations are often difficult to get correct and
seldom form a clean interface with other parts of a larger
system.
Since λProlog replaces first-order terms with λ-terms it offers
a new approach to meta-programming. In this tutorial, I will
present the basic principles of λProlog that make it suitable
for meta-programming. Several examples from theorem proving
and program transformation will be presented. Familiarity with
λProlog will not be assumed.

slides/ukalp 1

Overview

Part I: Requirements of Abstract Syntax
◦ Review differences between concrete and

abstract syntax.
◦ Motivate and define a new abstract syntax.

Part II: Logic Programming Language Design
◦ Describe a logic programming language that

incorporates this abstract syntax.

Part III: Example Meta-Programs
◦ Horn clause interpreter
◦ Prenex normal form
◦ Untyped λ-calculus, type inference, and λ-

conversion

slides/ukalp 2

Part I: Requirements of Abstract Syntax

Review of Concrete Syntax

Implementation
Strings, text (arrays or lists of characters)

Access
Parsers, editors

Good points
Readable, publishable
Simple computational models for implementation
(arrays, iteration)

Bad points
Contains too much information not important for
many manipulations:
◦ white space, infix/prefix notation, key words

Important information is not represented explicitly
◦ recursive structure
◦ function–argument relationship
◦ term–subterm relationship

slides/ukalp 3

Review of Abstract Syntax

Implementation
first-order terms, parse trees

Access
car/cdr/cons (Lisp)
first-order unification (Prolog) or matching (ML)

Good points
Recursive structure is immediate: recursion over
syntax is easy to specify.
Term–subterm relationship is identified with tree-
subtree relationship.
Algebra provides a model for many operations on
syntax.

Bad points
Requires higher-level language support: pointers,
linked lists, garbage collection, structure sharing.
Notions of scope, abstraction, substitution, and
free and bound variables occurrences are not
supported.

slides/ukalp 4

Immediate Notions Regarding Abstractions

Are Not Immediate

Using First-Order Terms

Bound variables are, like constants, global.

Thus, concepts like free and bound variables
occurrences are derivative notions.

Although alphabetic variants generally denote the
same intended object, the correct choice of such
variants is unfortunately very often important.

Substitution is generally difficult to implement
correctly.

An implementation of substitution for one data
structure, say first-order formulas, will not work for
another, say functional programs.

slides/ukalp 5

Computer Systems That Use a

Different Approach to Syntax

Mentor (Huet & Lang): second-order matching.

Isabelle (Paulson): fragment of intuitionistic logic
with quantification at higher-order types.

λProlog (Miller, Nadathur, Pfenning): a larger
fragment.

Elf (Pfenning): an implementation of LF in a style
similar to λProlog.

All these systems use first-order terms modulo the
equations of α, β, and η-conversion and, therefore,
employ aspects of “higher-order” unification.

All but the first permit contexts (signatures) to be
dynamic (resembling stacks).

slides/ukalp 6

Structure of First-Order Terms

Σ = {a : i, b : i, f : i → i, g : i → i → i}

Σ ` X : i

Σ ` f X : i

Σ ` X : i Σ ` Y : i

Σ ` g X Y : i

Σ ` a : i Σ ` b : i

Σ ` a : i

Σ ` f a : i Σ ` b : i

Σ ` g (f a) b : i

slides/ukalp 7

Structure of λ-Terms

Σ′ = Σ ∪ {h : (i → i) → i}

Γ ` U : i → i

Γ ` h U : i

Γ, x : i ` V : i

Γ ` λx.V : i → i

provided that Γ is an extension of Σ′ and x is not
in Γ.

Σ′, x : i ` x : i

Σ′, x : i ` x : i

Σ′, x : i ` f x : i

Σ′, x : i ` g x (f x) : i

Σ′ ` λx.g x (f x) : i → i

Σ′ ` h (λx.g x (f x)) : i

Σ′ ` f (h (λx.g x (f x))) : i

slides/ukalp 8

Designing a New Notion of Abstract Syntax

First: Recursion over terms with abstraction
requires signatures (contexts) to be dynamically
augmented.

Second: Equality of terms is (at least) α-
conversion.

Since terms are not freely generated, simple
destructuring is not a sensible operation.

λx(fxx) λy(fyy)

x (fxx) y (fyy)

This, of course, suggests unification modulo α-
conversion.

slides/ukalp 9

Unification Modulo β0-Conversion

∀ : (i → b) → b r : i → b

∧ : b → b → b s : i → b

⊃ : b → b → b t : b

∀λx(P ∧Q) = ∀λy((ry ⊃ sy) ∧ t)

This pair has no unifiers (modulo α-conversion).

∀λx(Px ∧Q) = ∀λy((ry ⊃ sy) ∧ t)

This pair has one unifier:

{P 7→ λw(rw ⊃ sw), Q 7→ t}

provided a wee bit of β-conversion is permitted.

∀λx([λw(rw ⊃ sw)x] ∧ t) = ∀λy((ry ⊃ sy) ∧ t)

(λx.B)x = B β0-conversion

slides/ukalp 10

Some Matching Examples

Logic variables (meta-variables) can be applied
only to distinct, λ-bound variables.

a : i f : i → i g : i → i → i

(1) λxλy(f(Hx)) λuλv(f(fu))
(2) λxλy(f(Hx)) λuλv(f(fv))
(3) λxλy(g(Hyx)(f(Lx))) λuλv(gu(fu))
(4) λxλy(g(Hx)(Lx)) λuλv(g(gau)(guu))

(1) H 7→ λw(fw)
(2) match failure
(3) H 7→ λyλx.x L 7→ λx.x

(4) H 7→ λx.(gax) L 7→ λx.(gxx)

slides/ukalp 11

Restriction on Functional Logic Variables

fun F y z = t

Σ ` . . . ∀x . . . ∃F . . . ∀y . . .∀z . . . [. . . F y z = t . . .]

F 7→ λyλz.t

Under β0 the λ-expression λx.B has a very weak
functional interpretation:

◦ λx.B takes an increment of a signature to a
term over the incremented signature.

slides/ukalp 12

Properties of β0-Unification

Such unification is decidable and most general
unifiers exist if unifiers exist.

η-conversion can be added and these properties
persist. (α-conversion is assumed)

β0-unification appears to be the simpliest extension
to first-order unification that “respects” bound
variables.

β0-unification does not require type information to
determine unifiers or the possibility of unifiers.

βη-unification of simply typed λ-terms (sometimes
called “higher-order” unification) can be encoded
directly as logic programming using only β0η-
unification.

When functional variables are restricted, β is
conservative over β0.

slides/ukalp 13

Higher-Order Abstract Syntax

Implementation
α-equivalence classes of βη-normal λ-terms of
simple types

Access
β0-unification (Lλ) or matching (MLλ)

Good points
Bound variable names are inaccessible so many
technical problems regarding them disappear.

Substitution is easy to support for every data
structure containing abstracted variables.

Semantics should be provided by proof theory,
logical relations, and Kripke models.

Bad points
Requires higher-level support: dynamic contexts,
extended first-order unification, and a richer notion
of equality.
No robust, well-defined, and available programming
language supports this notion of syntax.

slides/ukalp 14

Part II: Logic Programming Language Design

Sublanguages of λProlog

hohh

hhω Elf

Lλ

hohc fohh

fohc

ho higher-order: predicate and
function quantification

fo first-order
hc Horn clauses
hh hereditary Harrop formulas
hhω hohh without predicate

quantification
Lλ hhω without full β-conversion

slides/ukalp 15

Higher-Order Hereditary Harrop Formulas

hohh was an attempt to find a very rich logic
that supported a “goal-directed” interpretation.
λProlog has been designed on top of this language.

Various aspects of hohh have been used to
understand the following with a logic programming
setting.
◦ higher-order programming
◦ modules, abstract data types
◦ hypothetical reasoning
◦ meta-programming

For particular tasks, weaker languages might
supply a tighter fit. For meta-programming, Lλ

is a very tight fit (maybe too tight).

slides/ukalp 16

Some λProlog Syntax

kind list type -> type.

type nil list A.

type ’::’ A -> list A -> list A.

type memb A -> list A -> o.

memb X (X :: L).

memb X (Y :: L) :- memb X L.

kind i type.

type sterile i -> o.

type bug i -> o.

type in i -> i -> o.

type dead i -> o.

sterile J :- pi b\((bug b, in b J) => dead b).

∀J(∀b((bug b ∧ in b J) ⊃ dead b) ⊃ sterile J).

slides/ukalp 17

Interpreting => and pi in Goals

Use the syntax

K ; P ?- G.

to mean “attempt a proof of G from signature K

and program P.”
To prove an implication, add the hypothesis to the
program and prove the conclusion:

K ; P ?- D => G. reduces to
K ; P, D ?- G.

To prove a universal quantifier, pick a new
constant and prove that instance of the quantified
goal:

K ; P ?- pi x\ G. reduces to
K, c ; P ?- G [c/x].

slides/ukalp 18

Enforcing the Scope of Constants

When reducing

K ; P ?- pi x\ G to K, c ; P ?- G [c/x],

all currently free, logic variables of P and G must be
restricted so that they are not instantiated with a
term containing the scoped constant c.

... ?- pi c\(append (1 :: 2 :: nil) c K).

requires the unification K == (1 :: 2 :: c), which
must fail.

... ?- pi c\(append (1 :: 2 :: nil) c (H c)).

requires the unification (H c) == (1 :: 2 :: c).
This has two possible unifiers

H == w\(1 :: 2 :: c)

H == w\(1 :: 2 :: w)

of which only the second is permitted.

slides/ukalp 19

The Sterile Jar Problem

sterile Y :- pi X\(bug X=> in X Y=> dead X).

dead X :- heated Y, in X Y, bug X.

heated j.

?- sterile j

?- pi X\(bug X => in X j => dead X)

?- bug b => in b j => dead b

bug b ?- (in b j) => (dead b)

in b j ?- dead b

?- heated j, in b j, bug b

?- heated j

?- in b j

?- bug b

slides/ukalp 20

Meta-Level Properties of => and pi

If M is both a goal formula and a definite clause,
then

if K ; P ?- M and K ; P ?- M => G

then K ; P ?- G.

Similarly, if K ; P ?- pi x\G and t is some
(K-)term, then

K ; P ?- G [t/x].

These results follow from the fact that the
interpretation given for the logical connectives is
sound and complete for intuitionistic logic and that
intuitionistic logic has the cut-elimination property.
For example, if it is provable that g is a bug in jar
j, then it is provable that g is dead.

slides/ukalp 21

The Lλ-Restriction in λProlog

Notice the equivalences

λx.t = λx.s if and only if∀x.t = s

A functional variable F that can become a logic
variable must have occurrence only of the form
(Fx1 . . . xn) where x1 . . . xn are distinct variables
that are either
◦ λ-bound, or
◦ are universally bound (at the goal level) in the

scope of the binding occurrence of F .

∀i→jx∀iy(p (x y) ⊃ p (f y))

is an example of both a goal and program clause
for hohh; it is only a legal goal in Lλ. As a clause
of Lλ, it has a subterm occurrence (x y) where
both x and y can become logic variables.
First-order Horn clauses are both goals and clauses
in Lλ.

slides/ukalp 22

Lλ and Abstract Syntax

We shall now argue that Lλ directly supports much
of higher-order abstract syntax.
It is possible to weaken Lλ in the following two
ways and still maintain this support:
◦ Remove meta-level typing. β0-unification can

be done without types.
◦ Remove implications (=>) in goals. Hypotheses

can be passed around as arguments to
predicates. Such a reduction is rather
unpleasant, however, and might be best left to
a compiler.

It does not seem possible to remove universal
quantification or simplify β0-unification to be
simply first-order unification.

slides/ukalp 23

Part III: Example Meta-Programs

The Signature of a First-Order Object-Logic

kind term type.

kind form type.

type all (term -> form) -> form.

type some (term -> form) -> form.

type and form -> form -> form.

type imp form -> form -> form.

type a term.

type f term -> term.

type g term -> term -> term.

type p term -> form.

type q term -> term -> form.

slides/ukalp 24

A Few Very Simple Programs

type term term -> o.

type atom form -> o.

term a.

term (f X) :- term X.

term (g X Y) :- term X, term Y.

atom (p X) :- term X.

atom (q X Y) :- term X, term Y.

type quant_free form -> o.

quant_free A :- atom A.

quant_free (and B C) :-

quant_free B, quant_free C.

quant_free (imp B C) :-

quant_free B, quant_free C.

slides/ukalp 25

Recognizing Object-Level Horn Clauses

type hornc form -> o.

type conj form -> o.

hornc (all C) :- pi x\(term x => hornc (C x)).

hornc (imp G A) :- atom A, conj G.

hornc A :- atom A.

conj (and B C) :- conj B, conj C.

conj A :- atom A.

?- hornc (all u\(all v\(imp (p u)

(and (q v a) (q a u)))))

{C = u\(all v\(imp (p u)(and (q v a)(q a u))))}

term d ?- hornc (all v\(imp (p d)

(and (q v a) (q a d))))

slides/ukalp 26

Implementing Object-Level Equality

type copytm term -> term -> o.

type copyfm form -> form -> o.

copytm a a.

copytm (f X) (f U) :- copytm X U.

copytm (g X Y) (g U V) :-

copytm X U, copytm Y V.

copyfm (p X) (p U) :- copytm X U.

copyfm (q X Y) (q U V) :-

copytm X U, copytm Y V.

copyfm (and X Y) (and U V) :-

copyfm X U, copyfm Y V.

copyfm (imp X Y) (imp U V) :-

copyfm X U, copyfm Y V.

copyfm (all X) (all U) :-

pi y\(pi z\(copytm y z => copyfm (X y)(U z))).

copyfm (some X) (some U) s:-

pi y\(pi z\(copytm y z => copyfm (X y)(U z))).

[[t, s : term]] = copytm t s

[[t, s : form]] = copyfm t s

[[t, s : τ -> σ]] = ∀x∀y([[x, y : τ]] ⊃ [[t x, s y : σ]])

slides/ukalp 27

Implementing Object-Level Substitution

type subst (term -> form) -> term -> form -> o.

subst M T N :-

pi c\(copytm c T => copyfm (M c) N).

Here, the first argument of subst is an abstraction
over formulas. Compare this to the somewhat
simpler specification:

subst M T (M T).

type uni_instan form -> term -> form -> o.

uni_instan (all B) T C :- subst B T C.

Using meta-level β-conversion:

uni_instan (all B) T (B T).

slides/ukalp 28

Several Additional Examples

The following programs make use of meta-level β-
conversion to do substitution.

type double (term -> term) -> term -> term -> o.

double F X (F (F X)).

type mapfun (term -> term) ->

term list -> term list -> o.

mapfun F nil nil.

mapfun F (cons X L) (cons (F X) K) :-

mapfun F L K.

To make substitution explicit, write instead:

type substterm (term -> term) ->

term -> term -> o.

substterm M T N :-

pi c\(copytm c T => copytm (M c) N).

double F X S :-

substterm F X T, substterm F T S.

mapfun F (cons X L) (cons T K) :-

substterm F X T, mapfun F L K.

slides/ukalp 29

Reversing Substitutions

subst F a (g a a)

This query yields four answer substitutions for F:

w\(g w w) w\(g w a) w\(g a w) w\(g a a).

copytm a a.

copytm (g X Y) (g U V) :-

copytm X U, copytm Y V.

?- substterm F a (g a a).

?- pi c\(copytm c a => copytm (F c) (g a a)).

copytm c a. ?- copytm (F c) (g a a).

{F c = (g (F1 c) (F2 c))}

copytm c a ?- copytm (F1 c) a, copytm (F2 c) a.

copytm c a ?- copytm (F1 c) a.

{F1 c = a} or {F2 c = a}

slides/ukalp 30

Interpreting Object-Level Horn Clauses

type interp list form -> form -> o.

type instan form -> form -> o.

type backchain list form -> form -> form -> o.

interp Cs (and B C) :- interp Cs B, interp Cs C.

interp Cs A :- atom A, memb D Cs,

instan D E, backchain Cs E A.

instan (all A) B :-

pi x\(copytm x T => instan (A x) B).

instan B C :- quant_free B, copyfm B C.

backchain Cs A A.

backchain Cs (imp G A) A :- interp Cs G.

slides/ukalp 31

Computing Prenex Normal Forms

?- prenex (and (all x\(q x x))

(all z\(all y\(q z y)))) P.

all z\(all y\(and (q z z) (q z y)))

all x\(all z\(all y\(and (q x x) (q z y))))

all z\(all x\(and (q x x) (q z x)))

all z\(all x\(all y\(and (q x x) (q z y))))

all z\(all y\(all x\(and (q x x) (q z y))))

type prenex form -> form -> o.

type merge form -> form -> o.

prenex B B :- atom B.

prenex (and B C) D :-

prenex B U, prenex C V, merge (and U V) D.

prenex (imp B C) D :-

prenex B U, prenex C V, merge (imp U V) D.

prenex (all B) (all D) :-

pi x\(term x => prenex (B x) (D x)).

prenex (some B) (some D) :-

pi x\(term x => prenex (B x) (D x)).

slides/ukalp 32

merge (and (all B) (all C)) (all D) :-

pi x\(term x => merge (and (B x)(C x))(D x)).

merge (and (all B) C) (all D) :-

pi x\(term x => merge (and (B x) C)(D x)).

merge (and B (all C)) (all D) :-

pi x\(term x => merge (and B (C x))(D x)).

merge (and (some B) C) (some D) :-

pi x\(term x => merge (and (B x) C)(D x)).

merge (and B (some C)) (some D) :-

pi x\(term x => merge (and B (C x))(D x)).

merge (imp (all B) (some C)) (some D) :-

pi x\(term x => merge (imp (B x)(C x))(D x)).

merge (imp (all B) C) (some D) :-

pi x\(term x => merge (imp (B x) C) (D x)).

merge (imp B (some C)) (some D) :-

pi x\(term x => merge (imp B (C x)) (D x)).

merge (imp (some B) C) (all D) :-

pi x\(term x => merge (imp (B x) C) (D x)).

merge (imp B (all C)) (all D) :-

pi x\(term x => merge (imp B (C x)) (D x)).

merge B B :- quant_free B.

slides/ukalp 33

The Untyped λ-Calculus

kind tm type.

type abs (tm -> tm) -> tm.

type app tm -> tm -> tm.

type copy tm -> tm -> o.

type subst (tm -> tm) -> tm -> tm -> o.

copy (abs M) (abs N) :-

pi x\(pi y\(copy x y => copy (M x) (N y))).

copy (app M N) (app P Q) :- copy M P, copy N Q.

subst M N P :- pi x\(copy x N => copy (M x) P).

bnorm (abs M) :- pi x\(head x => bnorm (M x)).

bnorm H :- hnorm H.

hnorm (app M N) :- hnorm M, bnorm N.

hnorm H :- head H.

slides/ukalp 34

Head Normal Form and β-Reduction

type hnf tm -> tm -> o.

hnf (abs M) (abs M).

hnf (app M N) P :-

hnf M (abs R), subst M N Q, hnf Q P.

type redex tm -> tm -> o.

type red1 tm -> tm -> o.

type reduce tm -> tm -> o.

redex (abs x\(app M x)) M.

redex (app (abs M) N) P :- subst M N P.

red1 M N :- redex M N.

red1 (app M N) (app P N) :- red1 M P.

red1 (app M N) (app M P) :- red1 N P.

red1 (abs M) (abs N) :-

pi x\(copy x x => red1 (M x) (N x)).

reduce M M :- bnorm M.

reduce M N :- red1 M P, reduce P N.

slides/ukalp 35

Simple Type Checking

kind ty type.

type arr ty -> ty -> ty.

type typeof tm -> ty -> o.

typeof (app M N) A :-

typeof M (arr B A), typeof N B.

typeof (abs M) (arr A B) :-

pi x\(typeof x A => typeof (M x) B).

slides/ukalp 36

