
March 2002 1

Higher-order quantification and proof search

Extended abstract

Dale Miller, Penn State University

Sept 2002: INRIA and École Polytechnique

Outline

1. Security protocols, multisets rewriting, linear logic.

2. Higher-order quantifier: encrypted data as an abstract datatype.

3. Higher-order quantifier: hiding names for continuations

4. Asynchronous, synchronous, and bipolar formulas

Full version of paper: AMAST 2002, 9-13 September 2002, Reunion Island.

March 2002 2

A Typical Protocol Specification

The following is a presentation of the Needham-Schroeder Shared Key Protocol.
Alice and Bob make use of a trusted server to help them establish their own
private channel for communications.

Message 1 A −→ S: A,B, nA

Message 2 S −→ A: {nA, B, kAB , {kAB , A}kBS
}kAS

Message 3 A −→ B: {kAB , A}kBS

Message 4 B −→ A: {nB}kAB

Message 5 A −→ B: {nB − 1}kAB

Here, A, B, and S are agents (Alice, Bob, server), and the k’s are encryption
keys, and the n’s are nonces.

One of our goals is to replace this specific syntax with one that is based on a
direct use of logic. We will then investigate if logic’s meta-theory can help in
reasoning about security.

March 2002 3

Motivating a more declarative specification

The notation A −→ B: M seems to indicate a “three-way synchronization”, but
communication here is asynchronous: Alice put a message on in a network and
Bob picks it up from the network. An intruder might get the message and read
and/or delete it.

Better seems to be a syntax like:

A −→A′ |M
B |M−→ B′

...
E |M−→E′ |M
More generally,

A |M1 | · · · |Mp −→ A′ |N1 | · · · |Nq

where p, q ≥ 0. One occurrence of the agent could be missing from the left (i.e.,
agent creation) or one can be missing from the right (i.e., agent deletion).

Execution of such specifications can be considered as multiset rewriting.

March 2002 4

Data, network messages, agent memory

All communicated items are given the type data.

〈〉 unit, empty pair, nil
〈x, y〉 pair, cons

〈x1, . . . , xn〉 pairing associated to the right

Integers, strings, nonces, etc, will be considered part of this one type. This may
not be realistic: richer typing can be accommodated if necessary. Doing so,
however, is not central to this talk.

A network message is an atomic formula [[M]] where [[·]] is a predicate with
an argument of type data.

The state of an agent is encoded as an atomic formulas, using a predicate of one
argument: the argument encodes its memory.

(Agenti Memory) |M1 | · · · |Mp −→ (Agenti+1 Memory’) |N1 | · · · |Nq

March 2002 5

Creation of new symbols

New symbols representing nonces (used to help guarantee “freshness”) and new
keys for encryption and session management are needed also in protocols. We
could introduced syntax such as:

a1 S −→ new k[a2 〈k, S〉 | [[{M}k]]]

This new operator looks a bit like a quantifier: it should support α-conversion
and seems to be a bit like reasoning generically. The scope of new is over the
body of this rule.

March 2002 6

Static distribution of keys

Consider a protocol containing the following messages.

...
Message i A −→ S: {M}k

Message j S −→ A: {P}k

...

How can we declare that a key, such as k, is only built into two specific agents.
This static declaration is critical for modularity and for establishing correctness
later. A local declaration can be used.

...

local k.

{
A −→ A′ | [[{M}k]]

S | [[{P}k]] −→ S′

}

...

This declarations also appears to be similar to a quantifier.

March 2002 7

Can we see our specifications as being logic?

Can we view the symbols we have introduced as logical connectives? In general,
we would not expect this, but if it is possible, there might be significant benefits
from this change of perspective.

syntax | −→ new local empty

disjunctive ...
............
.................................. ◦− ∀ ∃ ⊥

conjunctive ⊗ −◦ ∃ ∀ 1

The disjunctive approach allows this to fit into the “logic programming as
goal-directed search” paradigm and as a subset of the Forum presentation of
linear logic.

March 2002 8

Encrypted data as an abstract data type

The standard logic programming approach to abstract data types can be used to
capture encrypted data.

Encryption keys are coded as symbolic functions on data of type data → data

and they will be provided scope via the use of the local and new declarations.
We replace {M}k with just (k M).

To insert an encryption key into data, we will use the postfix coercion
constructor (·)◦ of type (data → data) → data.

The use of higher-order types means that we will also use the equations of
αβη-conversion (a well studied extension to logic programming with robust
implementations).

∃ k.

[
a1 S ◦− ∀n. a2 〈k◦, S〉 ...

............
.................................. [[k n]]

a2 〈k◦, S〉 ...
............
.................................. [[(k M)]] ◦− . . .

]

March 2002 9

A Linear Logic Specification of Needham-Schroeder

∃kas∃kbs{
a S ◦− ∀na. a1 〈na, S〉... [[〈a, b, na〉]].
a1 〈N,S〉... [[(kas〈N, b, K,En〉]] ◦− a2 〈N, K, S〉... [[En]].

a2 〈Na, Key◦, S〉... [[(Key Nb]]) ◦− a3 〈〉... [[(Key 〈Nb, S〉)]].
b 〈〉... [[(kbs 〈Key◦, a〉]] ◦− ∀nb. b1 〈nb,Key◦〉... [[(Key nb)]].

b1 〈Nb, Key〉... [[(Key〈Nb, S〉)]] ◦− b2 S.

s 〈〉... [[〈a, b, N〉]] ◦− ∀k. s 〈〉... [[(kas〈N, b, k◦, kbs〈k◦, a〉〉)]].
}
When “executed via proof search,” all higher-order quantification is essentially
trivial: either generates an eigenvariable or is instantiated with an eigenvariable.

Outermost universal quantifiers around individual clauses have not been written
but are assumed for variables (tokens starting with a capital letter).

March 2002 10

Relating implementation and specification

A property of NS should be that Alice can communicate to Bob a secret with the
help of a server. That is, the clause

∀x [a 〈x〉 ...
............
.................................. b 〈〉 ...

............
.................................. s 〈〉 ◦− a3 〈〉 ...

............
.................................. b2 〈x〉 ...

............
.................................. s 〈〉]

can be seen as part of the specification of this protocol.

If we call the above clause SPEC and the formula for Needham-Schroeder NS,
then it is a simple calculation to prove that NS ` SPEC in linear logic.

Of course, a kind of converse is more interesting and harder. At least a trivial
thing is proved trivially.

Should not logical entailment be a center piece of logical specifications?

March 2002 11

A simple logical equivalence

Consider the following two clauses:

a ◦− ∀k.[[(k m)]] and a ◦− ∀k.[[(k m′)]].

These two clause show that Alice can take a step that generates a new
encryption key and then outputs either the message m or m′ in encrypted form.
These two clauses seem “observationally similar”.

More surprisingly

a ◦− ∀k.[[(k m)]] a` a ◦− ∀k.[[(k m′)]].

That is, they are logically equivalent! In particular, the sequent

∀k.[[(k m)]] −→ ∀k.[[(k m′)]]

is proved by using the eigenvariable c on the right and the term λw.(c m′) on the
left.

March 2002 12

More logical equivalences

If we allow local (∃) abstractions of predicates, then other more interesting
logical equivalences are possible.

For example, 3-way synchronization can be implemented using 2-way
synchronization with a hidden intermediary.

∃ x.

{
a

...
............
.................................. b ◦− x

x
...

............
.................................. c ◦− d

...
............
.................................. e

}
a` a

...
............
.................................. b

...
............
.................................. c ◦− d

...
............
.................................. e

Intermediate states of an agent can be taken out entirely.

∃ a2, a3.

a1
...

............
.................................. [[m0]] ◦− a2

...
............
.................................. [[m1]]

a2
...

............
.................................. [[m2]] ◦− a3

...
............
.................................. [[m3]]

a3
...

............
.................................. [[m4]] ◦− a4

...
............
.................................. [[m5]]

 a`

a1
...

............
.................................. [[m0]] ◦− ([[m1]] ◦− ([[m2]] ◦− ([[m3]] ◦− ([[m4]] ◦− ([[m5]]

...
............
.................................. a4)))))

This suggests an alternative syntax for agents.

March 2002 13

Needham-Schroeder revisited

(Out) ∀na.[[〈alice, bob, na〉]]◦−
(In) (∀Kab∀En.[[kas〈na, bob, Kab◦, En〉]]◦−
(Out) ([[En]]◦−
(In) (∀Nb.[[(Kab Nb)]]◦−
(Out) [[(Kab(Nb, secret))]]))).

(Out) ⊥◦−
(In) (∀Kab.[[(kbs(Kab◦, alice))]]◦−
(Out) (∀nb.[[(Kab nb)]]◦−
(In) ([[(Kab(nb, secret))]]◦−
(Cont) b secret))).

(Out) ⊥⇐
(In) (∀N.[[〈alice, bob, N〉]]◦−
(Out) (∀key.[[kas〈N, bob, key◦, kbs(key◦, alice)〉]])).

March 2002 14

Two classes of connectives

The logical connectives of linear logic can be classified as

asynchronous ⊥, ...
............
.................................. , ∀, The right introduction rules for these are invertible.

These rules yield structural equivalences.

synchronous 1, ⊗, ∃, The right introduction rules for these are not
invertible. These rules yield interaction with the environment.

These connectives are de Morgan duals of each other. For example, if an
asynchronous connectives appears on the left of the sequent arrow, it acts
synchronously.

We shall only write asynchronous connectives but write them on both sides of
the sequent arrow (yielding both behaviors). We also use implications:

B −◦ C ≡ B⊥ ...
............
.................................. C and B ⇒ C ≡ !B −◦ C

March 2002 15

Alternation of synchronous and asynchronous connectives

A bipolar formula is a formula in which no asynchronous connectives is in the
scope of a synchronous connective. That is, there is an outer layer of
asynchronous connectives followed by an inner layer of synchronous connectives.

The multiset rewriting clauses are bipolars, for example,

a
...

............
.................................. b ◦− c

...
............
.................................. d ≡ a

...
............
.................................. b

...
............
.................................. (c⊥ ⊗ d⊥).

Andreoli showed how to compile arbitrary alternation of syn/asyn connectives
into bipolars by introducing new predicate symbols. He also argued for only
using bipolars for proof search.

March 2002 16

Avoiding bipolars has some advantages

Only one predicate is need, namely, [[·]]. The other predicates (used as “line
numbers” in a protocol) are not needed.

The scope of variables within a formula encodes an agent’s memory.

Agents now look much more like process calculus expressions with input and
output prefixes. The formula a ◦− (b ◦− (c ◦− (d ◦− k))) can denote either

ā || (b. (c̄ || (d. . . .))) or a. (b̄ || (c. (d̄ || . . .)))
depending on if it appears on the right or the left of the sequent arrow. Writing
it and its negation without linear implications:

a
...

............
.................................. (b⊥ ⊗ (c ...

............
.................................. (d⊥ ⊗ . . .))) resp, a⊥ ⊗ (b ...

............
.................................. (c⊥ ⊗ (d ...

............
.................................. . . .)))

Value passing, name generation, and scope extrusion (ie, dynamic distribution of
nonces and keys) are available.

There is a strict alternation of input and output phases. If an agent skips a
phase, the adjacent phases can be merged:

a ◦− (⊥◦− (b ◦− k)) ≡ (a ...
............
.................................. b) ◦− k.

March 2002 17

The general setting for specifying agents

A = atomic formulas

H = A |⊥| H ...
............
.................................. H | ∀x. H

K = H | H ◦− K | ∀x. K

Let A denote a multiset of atoms (ie, network messages). Let Γ and ∆ be a
multiset of “agents” (K-formulas). Since Γ will appear on the right, it contains
outputting agents and since ∆ will appear on the left, it contains inputting
agents.

The two rules involving proof search with agents are then given as follows:

∆,K −→ Γ,H,A
∆ −→ H ◦− K, Γ,A

H −→ A1 ∆ −→ Γ,K,A2

∆,H ◦− K −→ Γ,A1,A2

If in the definition of K-formulas above we write H ◦− H instead of H ◦− K, we
are restricting our selves to bipolars again.

March 2002 18

Conclusions

1. Linear logic can be used to specify the execution of this level of abstraction
for security protocols. See: Cervesato, Durgin, Lincoln, Mitchell, and
Scedrov in “A meta-notation for protocol analysis” [CSFW, June 1999].

2. Encryption can be seen as an abstract datatype.

3. Multiset rewriting and an asynchronous processes calculi are essentially
equivalent modulo the treatment of agent continuation.

4. To what extent can common proof theoretical techniques be used to reason
about protocol correctness issues?

(a) Cut and cut-elimination are basic tools.

(b) Higher-type quantification make protocols more declarative and offer new
avenues for reasoning about protocols; they may not make proof search
more complicated.

(c) Induction and fixed points (definitions) will certainly be needed to
strength reasoning further.

