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Sequents

Let ∆ and Γ be finite (possibly empty) multisets of
propositional formulas.
A sequent is a pair

∆ −→ Γ,

where ∆ is the antecedent (left) and Γ is the
succedent (right).
The intended interpretation of ∆ −→ Γ is “If all
the formulas in ∆ hold, then some formula in Γ
holds.” That is,

B1, . . . , Bn −→ C1, . . . , Cm

denotes approximately the formula

(B1 ∧ · · · ∧Bn) ⊃ (C1 ∨ · · · ∨ Cm).

Soundness of the “Rule of Cases”

B, ∆ −→ Γ C, ∆ −→ Γ
B ∨ C, ∆ −→ Γ
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A Sequent Proof System: Structural Rules

Multiset union:

Γ, B := Γ ∪ {B} Γ1, Γ2 := Γ1 ∪ Γ2

Contraction

Γ, B,B −→ ∆
CL

Γ, B −→ ∆

Γ −→ ∆, B, B
CR

Γ −→ ∆, B

Weakening

Γ −→ ∆
WL

Γ, B −→ ∆

Γ −→ ∆
WR

Γ −→ ∆, B

The figure
Γ −→ ∆

Γ′ −→ ∆′

means that zero or more applications of weakening
and contraction rules have been used.
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A Sequent Proof System: Introduction Rules

∆′ −→ Γ′, B ∆′′ −→ Γ′′, C ∧-R
∆′, ∆′′ −→ Γ′, Γ′′, B ∧ C

B, ∆ −→ Γ ∧-L
B ∧ C, ∆ −→ Γ

C, ∆ −→ Γ ∧-L
B ∧ C, ∆ −→ Γ

B, ∆′ −→ Γ′ C, ∆′′ −→ Γ′′ ∨-L
B ∨ C, ∆′,∆′′ −→ Γ′, Γ′′

∆ −→ Γ, B ∨-R
∆ −→ Γ, B ∨ C

∆ −→ Γ, C ∨-R
∆ −→ Γ, B ∨ C

∆′ −→ Γ′, B C, ∆′′ −→ Γ′′ ⊃-L
B ⊃ C, ∆′, ∆′′ −→ Γ′,Γ′′

B, ∆ −→ Γ, C ⊃-R
∆ −→ Γ, B ⊃ C

∆ −→ Γ,⊥ ⊥-R
∆ −→ Γ, B

initial
B −→ B
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A Sequent Proof System: The Cut-Rule

∆′ −→ Γ′, B B, ∆′′ −→ Γ′′
cut

∆′, ∆′′ −→ Γ′,Γ′′

For example, having a proof of

∆′ −→ B and ∆′′, B −→ C

entails having a proof of ∆′, ∆′′ −→ C. Thus, if
−→ is seen as an implication, then cut corresponds
to modus ponens. The formula B is used as a
lemma.

Obviously, the use of the word “cut” here has
nothing to do with the control primitive called cut
in Prolog.
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Examples of Sequent Proofs

p −→ p

q −→ q r −→ r

q, q ⊃ r −→ r

p, q, p ⊃ (q ⊃ r) −→ r

p, p ∧ q, p ⊃ (q ⊃ r) −→ r

p ∧ q, p ∧ q, p ⊃ (q ⊃ r) −→ r

p ∧ q, p ⊃ (q ⊃ r) −→ r

p ⊃ (q ⊃ r) −→ (p ∧ q) ⊃ r

p −→ p ⊥ −→ ⊥
p, p ⊃ ⊥ −→ ⊥

p −→ (p ⊃ ⊥) ⊃ ⊥

p −→ p

p −→ ⊥, p

−→ p ⊃ ⊥, p

⊥ −→ ⊥
⊥ −→ p

(p ⊃ ⊥) ⊃ ⊥ −→ p, p

(p ⊃ ⊥) ⊃ ⊥ −→ p
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Some Definitions

A tree of inference rules is a proof of its root if all
leaves are initial.
A proof is atomically closed if for every initial
sequent B −→ B, the formula B is atomic or ⊥.
A proof is cut-free if it contains no occurrences of
the cut rule.

C-proof a sequent proof (classical)
I-proof a C-proof where all sequents have

singleton succedents (intuitionistic)
M-proof an I-proof with no occurrences of

the ⊥-R rule. (minimal)

∆ `C Γ if ∆ −→ Γ has a C-proof.
∆ `I Γ if ∆ −→ Γ has an I-proof.

∆ `M Γ if ∆ −→ Γ has an M-proof.

Negation is defined as ¬B := B ⊃ ⊥.
⊥ is not an atomic formula.
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Searching for Sequent Proofs

Given a sequent, find a proof of it, if possible.
◦ Classical propositional logic is NP-complete.
◦ Intuitionistic propositional logic is P-space

complete.

A problem with cut

∆′ −→ Γ′, B B, ∆′′ −→ Γ′′
cut

∆′, ∆′′ −→ Γ′,Γ′′

Notice that this is the only inference rule that does
not have the subformula property: any formula
occurring in a premise is a subformula of a formula
occurring in the conclusion. Such a property
clearly helps to constrain the search for proofs.

To use cut during a bottom-up search, we must
“invent” the new formula B. Such invention is
generally very difficult.
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Search: Splitting Contexts

∆′ −→ Γ′, B ∆′′ −→ Γ′′, C ∧-R
∆′, ∆′′ −→ Γ′, Γ′′, B ∧ C

B, ∆′ −→ Γ′ C, ∆′′ −→ Γ′′ ∨-L
B ∨ C, ∆′,∆′′ −→ Γ′, Γ′′

To use these rules, the multisets ∆′,∆′′ and Γ′, Γ′′

must be divided into the pair of multisets ∆′ and
∆′′, and Γ′ and Γ′′.

Given a multiset of n elements, there are 2n ways
to do this split. Liberal applications of weakening
and contraction (if available) can simplify this
problem.

Γ −→ ∆, B Γ −→ ∆, C

Γ, Γ −→ ∆, ∆, B ∧ C

Γ −→ ∆, B ∧ C
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Search: Problems with Structural Rules

Contraction and weakening can be used at any
point in a search. Contraction can be used
arbitrarily often (in the first-order setting, no
bound on contractions can be set).

Explicit weakening can be removed by using initial
sequents of the form

∆, B −→ B, Γ.

Some forms of contractions can be factored
into inference rules by modifying some rules.
For example, consider the following modified
introduction rules for conjunction.

Γ −→ ∆, B Γ −→ ∆, C ∧-R
Γ −→ ∆, B ∧ C

B,C, ∆ −→ Γ ∧-L
B ∧ C,∆ −→ Γ
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Search: Permutations of Inference Rules

The order in which inference rules are applied is
often not important. Consider the following two
proof fragments.

a, b, c, ∆ −→ Γ a, b, d, ∆ −→ Γ ∨-L
a, b, c ∨ d, ∆ −→ Γ ∧-L
a ∧ b, c ∨ d, ∆ −→ Γ

a, b, c, ∆ −→ Γ ∧-L
a ∧ b, c,∆ −→ Γ

a, b, d, ∆ −→ Γ ∧-L
a ∧ b, d, ∆ −→ Γ ∨-L

a ∧ b, c ∨ d, ∆ −→ Γ

Thus, ∨-L permutes over ∧-L.
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The Cut-Elimination Theorem

A sequent ∆ −→ Γ has a C-proof (resp., I-proof,
M-proof) if and only if ∆ −→ Γ has a cut-free C-
proof (I-proof, M-proof). [Gentzen, 1935]

This theorem is proved by permuting cuts upwards
through a proof. Consider for example the
following two proof fragments.

∆1 −→ B, Γ1 ∆2 −→ C,Γ2

∆1, ∆2 −→ B ∧ C, Γ1,Γ2

∆3, B −→ Γ3

∆3, B ∧ C −→ Γ3 cut
∆1,∆2, ∆3 −→ Γ1, Γ2, Γ3

∆1 −→ B, Γ1 ∆3, B −→ Γ3 cut
∆1,∆3 −→ Γ1, Γ3

∆1,∆2, ∆3 −→ Γ1, Γ2, Γ3

Removing cuts in this way can cause proofs to
grow very large (super-exponential).
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A Simplified Sequent System

Let Γ and ∆ denote sets of formula with Γ, B

denoting the set union Γ ∪ {B}. Notice that
Γ, a matches with the set {a, b, c} in two ways:
Γ := {b, c} and Γ := {a, b, c}.
∆ −→ Γ, B ∆ −→ Γ, C ∧-R

∆ −→ Γ, B ∧ C

B, C, ∆ −→ Γ ∧-L
B ∧ C, ∆ −→ Γ

B, ∆ −→ Γ C, ∆ −→ Γ ∨-L
B ∨ C,∆ −→ Γ

∆ −→ Γ, B ∨-R
∆ −→ Γ, B ∨ C

∆ −→ Γ, C ∨-R
∆ −→ Γ, B ∨ C

∆ −→ Γ1, B C, ∆ −→ Γ2 ⊃-L
B ⊃ C, ∆ −→ Γ1, Γ2

B, ∆ −→ Γ, C ⊃-R
∆ −→ Γ, B ⊃ C

∆ −→ Γ,⊥ ⊥-R
∆ −→ Γ, B

initial
B, ∆ −→ B, Γ
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Natural Deduction

The existence of permutations suggests that
sequent proofs contain too much information.
More compact representations of proofs are
possible.

Classical Logic expansion trees
Intuitionistic Logic natural deduction

Linear Logic proof nets

View the statement ∆ −→ B as meaning: there
exists an argument from the assumptions of Γ to
the conclusion B. The notion of argument can be
formalized using natural deduction.

Cut-elimination for I-proofs corresponds (roughly)
to normalization for natural deduction (not studied
here).
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Natural Deduction (continued)

There are three cut-free proofs of the sequent

a, a ⊃ b, a ⊃ (b ⊃ c) −→ c.

All three proofs provide essentially the same
argument:

g : a ⊃ (b ⊃ c) x : a

(g x) : b ⊃ c

f : a ⊃ b x : a

(f x) : b

(g x (f x)) : c

As we shall see, this natural deduction proof is
isomorphic to the simply typed λ-term

λx : a λf : a → b λg : a → b → c. (g x (f x)).
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Lecture 2:

Sequents for Quantificational Logic

and

A Definition of Logic Programming
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Implicational Fragment of Intuitionistic Logic

Γ −→ B C, Γ −→ E ⊃-L
B ⊃ C, Γ −→ E

B, Γ −→ C ⊃-R
Γ −→ B ⊃ C

initial
B, ∆ −→ B

The propositional Horn clause

a1 ∧ . . . ∧ an ⊃ a0

can be written in this fragment of logic as

a1 ⊃ . . . ⊃ an ⊃ a0.

Let p be a propositional letter and let Γ be a set of
Horn clauses. Proofs of Γ −→ p contain only the
inference rules ⊃-L and initial.
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Simply Typed λ-Terms

This small proof system can be used to give simple
types to certain λ-terms. Consider sequents of the
form

t1 : τ1, . . . , tn : τn −→ t0 : τ0

where t0, . . . , tn are λ-terms and τ0, . . . , τn are
“types”, that is, propositional formulas using only
⊃ (function type).

∆ −→ t : α ft : β, ∆ −→ s : γ

f : α ⊃ β, ∆ −→ s : γ

x : α, ∆ −→ t : β

∆ −→ λx.t : α ⊃ β

∆, t : α −→ t : α
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Types for Quantificational Logics

i individuals (terms)
o booleans (formulas)

i → i → i function of 2 arguments
(i → i) → i “functional” of 1 arguments

i → o predicate of 1 argument
(i → o) → o predicate of predicates of 1 argument

Permitting other non-boolean primitive types is
straightforward.

The order of a type is the count of the nesting of
arrows (implications) to the left.

order(i) = 0

order(i → i) = 1

order(i → i → i) = 1

order((i → i) → i) = 2

order(i → (i → i) → i) = 2
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Signatures

Signatures (or type assignments) are finite sets

c1 : τ1, . . . , cn : τn

where c1, . . . , cn are distinct tokens and τ1, . . . , τn

are types (propositional formulas over →).

When a token is declared in a signature, we shall
consider it to be a constant.

t is a Σ-term of type τ if Σ −→ t : τ is provable
using the proof system for simply typed λ-terms.

If Σ contains only “Horn clause” types and if
Σ −→ t : α is provable (for α a primitive type)
then t is a first-order term.
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Σ-Formulas

Let Σ0 be the following signature for the logical
connectives.

⊥ : o

∧ : o → o → o

∨ : o → o → o

⊃ : o → o → o

∀τ : (τ → o) → o

∃τ : (τ → o) → o

(for all simply types τ not containing o). B is a
Σ-formula if

Σ0, Σ −→ B : o

is provable.

Abbreviate ∀τ (λx.B) and ∃τ (λx.B) as ∀τx.B and
∃τx.B, respectively.
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Sequents for Quantificational Logic

Let Σ be a signature and let ∆∪Γ be a finite set of
Σ-formulas. The triple

Σ ; ∆ −→ Γ

is a sequent for quantificational logic.

The notation Σ + (c : τ) is meaningful only if Σ
does not assign a type to c, in which case it means
Σ ∪ {c : τ}.

Take a proof system for propositional logic and
attach “Σ ;” to all sequents in it. For example,

Σ ; B, ∆ −→ Γ Σ ; C, ∆ −→ Γ ∨-L
Σ ; B ∨ C, ∆ −→ Γ
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Inference Rules for Quantifiers

Σ −→ t : τ Σ ; ∆, B[t/x] −→ Γ ∀-L
Σ ; ∆,∀τx B −→ Γ

Σ −→ t : τ Σ ; ∆ −→ Γ, B[t/x] ∃-R
Σ ; ∆ −→ Γ, ∃τx B

Σ + c : τ ; ∆, B[c/x] −→ Γ ∃-L
Σ ; ∆,∃τx B −→ Γ

Σ + c : τ ; ∆ −→ Γ, B[c/x] ∀-R
Σ ; ∆ −→ Γ, ∀τx B

Here, c is not declared in Σ. Such an occurrence of
c is called an eigen-variable of the proof.

Σ ; ∆ −→ Γ, B
λ

Σ ; ∆ −→ Γ, B′

Σ ; B, ∆ −→ Γ
λ

Σ ; B′,∆ −→ Γ

where B and B′ differ only up to α, β, and η

conversions. Generally this rule will not be written
and we treat formulas in sequents as equivalence
classes modulo λ-conversion.
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Empty Types?

Generally in first-order logic it is assumed that
there alway exist terms over a given signature.
This is not necessarily true here. For example,
there are no Σ-terms of type i for

Σ = {p : i → o, f : i → i}.

In a sense, the type i is empty.

Notice that the sequent

Σ′ + p : i → o ; ∀ix.px −→ ∃ix.px

is provable if and only if there exists a Σ′-term.

In a higher-order setting there are good reasons to
consider empty types.
Formalizations of classical logic generally consider
only signatures Σ for which there are Σ-terms.
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Unification and the Sequent Calculus

Attempting to use free or “logic” variables with
unification to delay the selection of substitution
terms in building proofs is complicated by the fact
that signatures may vary with proofs.
Let Σ = {a : i, p : i → o}.

Σ −→ X : i

Σ + b : i ; p X −→ p b

Σ + b : i ; −→ p X ⊃ p b

Σ ; −→ ∀y(p X ⊃ p y)

Σ ; −→ ∃ix∀iy(p x ⊃ p y)

Here, X denotes of “logical variable” (not a
variable of the logic). It is impossible to complete
this proof: X must be instantiated to b but b is
not a Σ-term.

Logic variables introduced before eigen-variables
are introduced (in a bottom-up reading) cannot be
instantiated with those eigen-variables.
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First-Order Horn Clauses are

First-Order in Two Senses

First-order Horn clauses can be written as

∀x1 . . . ∀xn(A1 ∧ . . . ∧Am ⊃ A0)

where n ≥ 0,m ≥ 0. Here, A′is are atomic formulas
and quantification is over primitive types.
Thus, quantification is first-order. Constants range
over the types

τ ::= o | i | i → τ,

where o denotes booleans (formulas) and i denotes
individuals.
First-order Horn Clauses can also be defined as

D ::= A | A ⊃ D | ∀x.D.

Notice that implications are allowed to be nested
to the right but not to the left (just as in τ .)
Thus, logical connective structure is first-order.
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Logic Programming Considered Abstractly

Programs and goals are written using logic syntax.

Computation is the process of “proving” that a
given goal follows from a given program.

The notion of “proving” should satisfy at least two
properties:
◦ It should have such meta-theoretic properties

as cut-elimination and/or sound and complete
model theory. That is, it should be the basis
for declarative programming.

◦ The interpretation of logical connectives in
goals should have a fixed “search” semantics:
that is, the interpretation of logical connectives
is independent of context. We shall argue that
this is a central feature of logic programming.

Our analysis here will be blind to issues of control
and unification.
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Search Semantics for the Logical Connectives

Let the notation Σ;P `O G denotes the fact that
some idealized interpreter succeeds when given
a signature Σ, a program P, and a goal G. The
following are intended to fix the interpretation of
logical connectives in goal formulas.

◦ Σ;P `O G1∧G2 iff Σ;P `O G1 and Σ;P `O G2.

◦ Σ;P `O G1 ∨G2 iff Σ;P `O G1 or Σ;P `O G2.

◦ Σ;P `O ∃τx.G iff there is a Σ-term t of type τ

such that Σ;P `O G[t/x].

◦ Σ;P `O D ⊃ G iff Σ;P, D `O G.

◦ Σ;P `O ∀τx.G iff for any token c not in Σ,
Σ + c : τ ;P `O G[c/x].
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Uniform Proofs

Uniform proofs are an attempt to formalize this
notion of “search semantics”.

A sequent proof Ξ is uniform if Ξ is an I-proof and
whenever a sequent occurrence in Ξ has a non-
atomic righthand side, that sequent occurrence is
the conclusion of a right-introduction rule.

In other works, when building proofs bottom-up,
do right rules before left rules, and do left rules
only when the righthand side is atomic.

The search for uniform proofs is goal-directed
(succedent-directed).

Roughly speaking: A logic can be considered
an “abstract logic programming language”
if restricting to uniform proofs does not lose
completeness.
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Abstract Logic Programming Languages

A triple 〈D,G,`〉 is an abstract logic programming
language (ALPL) if
◦ D and G are sets of formulas
◦ ` is a provability relation using sequents, and
◦ if Σ is a signature, and G ∈ G and P is a finite

subset of D, and P ∪ {G} is a set of Σ-formulas,
then

Σ;P ` G iff Σ ; P −→ G has a uniform proof.

Example: Horn Clauses
◦ Let D1 be the set of first-order Horn Clauses.
◦ Let G1 be the set of conjunctions of atomic

formula.
◦ Let `1 be either `C , `I , or `M .

Then 〈D1,G1,`1〉 is an ALPL.
This fact can be proved by converting any cut-
free proof of Σ ; P −→ G into a uniform proof
by using enough permutations.
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Uniform Proofs Involving Horn Clauses

Let P be a set of Horn clauses. A uniform proof
of Σ ; P −→ G never contains a sequent that
has an implication or a universal quantifier in the
succedent. As a result, all sequents in such a proof
have the same signature and the same program.

Thus, in logic programming based on Horn clauses,
both the program and the set of constants remain
constant during the search for a proof.

This has the advantage that implementations can
be relatively static and that unification does not
need to be concerned with occurrences of eigen-
variables.

The disadvantage is that programs and signatures
are global: modular programming and abstract
data types are not accounted for in Horn clauses.
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Examples of non-ALPLs

The following sequents do not have uniform proofs
(signatures are not displayed)

p ∨ q −→ q ∨ p

[p(a) ∧ p(b)] ⊃ q −→ ∃x(p(x) ⊃ q)
p ⊃ q(a),¬p ⊃ q(b) −→ ∃x.q(x)

−→ p ∨ (p ⊃ q)

although

p ∨ q `M q ∨ p

[p(a) ∧ p(b)] ⊃ q `C ∃x(p(x) ⊃ q)
p ⊃ q(a),¬p ⊃ q(b) `C ∃x.q(x)

`C p ∨ (p ⊃ q)
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Lecture 3:

Hereditary Harrop Formulas

and

Their Uses in Programming
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Harrop Formulas

A Harrop Formula is a formula that has no strictly
positive occurrences of ∨ and ∃.

H ::= A | B ⊃ H | H1 ∧H2 | ∀τx.H

where A ranges over atomic formulas and B ranges
over arbitrary formulas.
Theorem. Let P be a finite set of (closed)
Harrop formulas. Then all the following hold.
◦ Σ;P `I B1 ∧B2 iff Σ;P `I B1 and Σ;P `I B2.
◦ Σ;P `I ∃τx.B iff there is a Σ-term t of type τ

such that Σ;P `I B[t/x].
◦ Σ;P `I B1 ∨B2 iff Σ;P `I B1 or Σ;P `I B2.
◦ Σ;P `I B1 ⊃ B2 iff Σ;P, B1 `I B2.
◦ Σ;P `I ∀τx.B iff for any token c not in Σ,

Σ + c : τ ;P `I B[c/x].

Thus, proofs involving Harrop formulas are
“uniform at the root”.
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Hereditary Harrop Formulas

Hereditary Harrop formulas have no positive
occurrences of ∨ and ∃.

G ::=A | G1 ∧G2 | G1 ∨G2 | ∃τx.G | ∀τx.G | D ⊃ G

D ::=A | G ⊃ D | D1 ∧D2 | ∀τx.D

Let D2 be the collection of closed D-formulas and
let G2 be the collection of closed G-formulas.

Theorem. 〈D2,G2,`I〉 and 〈D2,G2,`M 〉 are
essentially the same abstract logic programming
language.

Given some simple equivalences, hereditary Harrop
formulas can be simplified to just

D ::= A | D1 ∧D2 | D1 ⊃ D2 | ∀τx.D,

that is, the set freely generated from ∧,⊃, ∀τ .
(Even the conjunction can be removed.)
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Uniform Proofs Involving

Hereditary Harrop Formulas

Let P be a set of hereditary Harrop Formulas. In
a uniform proof of Σ ; P −→ G, signatures and
programs can increase as the search for a proof
continues.

Thus, programs and signatures are not global –
they are now like stacks. This supports modular
programming and abstract data types. Attempting
to prove

P −→ D1 ⊃ (G1 ∧ (D2 ⊃ G2))

will causes the two subgoals

P, D1 −→ G1 and P, D1, D2 −→ G2

Implementations are more involved since this
language is more dynamic. Unification must be
modified to handle eigen-variables. The close-world
assumption is no longer valid.
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Re-implementing Consult

Let classify, scanner, misc be the name of files
containing logic programs.
Consider solving the goal

misc => ((classify => (G1, scanner => G2)), G3).

An interpreter will need to consider showing
◦ G1 from misc and classify,
◦ G2 from misc, classify, and scanner, and
◦ G3 from misc.

Logic programs becomes accessible and disappears
in a stack-disciplined fashion.
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Importing Modules

module M1

P1

module M2(x)

P2(x)

module M3(y, z)
import M1 M2(y)
P3(z)

Here, the modules M2 and M3 are parametric
modules. That is, they can be identified with logic
programs containing free variables.

The import keyword in M3 is elaborated as
follows: For each clause of the form

∀w̄(G ⊃ A)

in P3 replace it with one of the form

∀w̄((M1 ∧M2(y)) ⊃ G) ⊃ A)

slides/acireale/root 38



A Mechanism for Abstract Data Types

Consider solving the goal

∃x ∀y (D(y) ⊃ G(x)).

◦ Substitution terms determined for x cannot
contain the constant introduced for y.

◦ ∀ provides a means for hiding data in modules.

Allow existential quantifiers around program
clauses. Such existential quantifiers are interpreted
as follows:

(∃x D) ⊃ G ≡ ∀x (D ⊃ G)

provided x is not bound in G (otherwise, rename x

first).
This is intuitionistically (hence, classically) valid.
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Stacks as Abstract Data Types

Let stack and ∃empty ∃stk stack′ stand for the
following expression:

∃empty ∃stk [ emptystack(empty) ∧
∀s∀x(push(x, s, stk(x, s))) ∧
∀s∀x(pop(x, stk(x, s), s))]

?- ∃x(stack ⊃ ∃y[G(x, y)])

?- ∃x ∀empty ∀stk (stack′ ⊃ ∃y[G(x, y)])

module stack.

local empty, stk.

emptystack(empty).

push(X,S,stk(X,S)).

pop(X,stk(X,S),S).
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The Sterile Jar Problem

sterile Y :- pi x\(bug x => in x Y => dead x).

dead X :- heated Y, in X Y, bug X.

heated j.

Read the string “pi x\” as ∀x.

?- sterile j

?- pi x\(bug x => in x j => dead x)

?- bug b => in b j => dead b

bug b ?- (in b j) => (dead b)

in b j ?- dead b

?- heated j, in b j, bug b

?- heated j

?- in b j

?- bug b

slides/acireale/root 41



Meta-Level Properties of ⊃ and ∀ Goals

If M is both a goal formula and a definite clause
(contains no occurrences of ∨ or ∃), then

Σ;P ` M and Σ;P ` M ⊃ G implies Σ;P ` G.

Similarly, if

Σ;P ` ∀τx.G and t is a Σ-term of type τ ,

then Σ;P ` G[t/x]. Here, G[t/x] denotes the
λ-normal form of substituting t for x in G. In
particular, if new λ-redexes are formed by this
substitution, these are also removed.

These results follow from the cut-elimination
theorem or from appropriate model-theoretic
semantics.

For example, if it is provable that g is a bug in
sterile jar j, then it is provable that g is dead.
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Kripke Models for Propositional Formulas

Consider propositional formulas over just the
logical constants ∧ and ⊃. Let 〈W,≤〉 be a
partially ordered set. A Kripke model over 〈W,≤〉
is a mapping K from W to sets of atomic formulas
such that

∀w1, w2 ∈ W(w1 ≤ w2 ⊃ K(w1) ⊆ K(w2)).

Satisfaction in a Kripke model is defined by
induction of the structure of formulas.
◦ K, w |= A if A is atomic and A ∈ K(w).
◦ K, w |= B1 ∧B2 if K,w |= B1 and K, w |= B2.
◦ K, w |= B1 ⊃ B2 if forall w′ ∈ W such that

w ≤ w′, if K, w′ |= B1 then K, w′ |= B2.

The condition for truth of an implication is strong:
not only must the implication be true in the
current world w but also in all worlds “above” it.
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A Kripke Model as a Canonical Model

When attempting to prove a goal from a program,
larger programs may need to be considered. Thus,
to assign a meaning to one logic program suggests
that meaning must also be assigned simultaneously
to all larger programs.

Kripke models provide an ideal setting for
assigning meaning.

Let W be the set of all finite sets of formulas
(propositional, over ∧ and ⊃). Use inclusion ⊆ as
the order relation.
Define K0 as: K0(w) = {A atomic |w ` A}.
Theorem:

Cut-elimination holds for this propositional logic
if and only if

forall w ∈ W and formula B, B has a cut-free
proof from w if and only if K0, w |= B.
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Kripke Models for First-Order Logic

Assign to every world a set of individuals using a
function D from worlds to sets of terms so that

∀w1, w2 ∈ W(w1 ≤ w2 ⊃ D(w1) ⊆ D(w2)).

Add the following rule for satisfaction.
◦ K, w |= ∀x.B if forall w′ ∈ W such that w ≤ w′,

if t ∈ D(w′) then K, w′ |= B[t/x].
A canonical model for the logic containing ∧, ⊃,
and ∀ can built in the following fashion:
◦ W is the set of pairs of the form 〈Σ, w〉 where

Σ is a signature and w is a finite set of Σ-
formulas.

◦ 〈Σ, w〉 ≤ 〈Σ′, w′〉 if Σ ⊆ Σ′ and w ⊆ w′.
◦ D0(〈Σ, w〉) is the set of all Σ-terms.
◦ K0(〈Σ, w〉) is the set of all atomic A such that

Σ, w ` A.

A similar theorem to that on the preceding slide
can be proved here.
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A Need for λ-Terms in a Logic Program

Consider proving the goal

?- ∀L (append (cons a nil) L V ) ∧ (g V ).

This reduces to first trying

?- append (cons a nil) l V

where l is new. This is solvable if and only if V

unifies with (cons a l) which is not possible for all
the following reasons:
◦ the constant l is introduced after (in a bottom-

up reading) the free variable V ;
◦ l is not permitted to leave its scope;
◦ the value of V should be independent of the

choice of constant used to instantiate ∀L.

One can argue, however, that an interesting value
has been computed and that the current language
is too weak to capture it. That is, the language is
really not closed.
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λ-Abstraction as Discharging of

Scoped Constants

Instead, consider the query

?- ∀L (append (cons a nil) L (V L)) ∧ (g V ).

Here, V is a variable of higher-type. This reduces
to first trying

?- append (cons a nil) l (V l)

where l is new. This is solvable if and only if

(V l) unifies (cons a l)

which is possible. Of the two possible unifiers

V =λw(cons a w) and

V =λw(cons a l)

only the first is legal.
Notice the first solution is essentially the result of
discharging the scoped constant l from the term
(cons a l).
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Lecture 4:

Computing with λ-Terms

and

Meta-Programming
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Structure of First-Order Terms

Let’s first review the structure of first-order terms.

Σ = {a : i, b : i, f : i → i, g : i → i → i}

Σ ` X : i

Σ ` f X : i

Σ ` X : i Σ ` Y : i

Σ ` g X Y : i

Σ ` a : i Σ ` b : i

Notice that signatures do not change in these
inference rules.

Σ ` a : i

Σ ` f a : i Σ ` b : i

Σ ` g (f a) b : i
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Structure of λ-Terms

Σ′ = Σ ∪ {h : (i → i) → i}

Γ ` U : i → i

Γ ` h U : i

Γ, x : i ` V : i

Γ ` λx.V : i → i

provided that Γ is an extension of Σ′ and x is not
in Γ.

Σ′, x : i ` x : i

Σ′, x : i ` x : i

Σ′, x : i ` f x : i

Σ′, x : i ` g x (f x) : i

Σ′ ` λx.g x (f x) : i → i

Σ′ ` h (λx.g x (f x)) : i
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Designing a New Notion of Abstract Syntax

First: Recursion over terms with abstraction
requires signatures (contexts) to be dynamically
augmented.

Second: Equality of terms should be at least α-
conversion.

Since terms are not freely generated, simple
destructuring is not a sensible operation.

λx(fxx) = λy(fyy)

x (fxx) 6= y (fyy)

This, of course, suggests unification modulo α-
conversion.
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Unification Modulo αβ0-Conversion

∀ : (i → b) → b r : i → b

∧ : b → b → b s : i → b

⊃ : b → b → b t : b

∀λx(P ∧Q) = ∀λy((ry ⊃ sy) ∧ t)

This pair has no unifiers (modulo α-conversion).

∀λx(Px ∧Q) = ∀λy((ry ⊃ sy) ∧ t)

This pair has one unifier:

{P 7→ λw(rw ⊃ sw), Q 7→ t}

provided a wee bit of β-conversion is permitted.

∀λx([λw(rw ⊃ sw)x] ∧ t) = ∀λy((ry ⊃ sy) ∧ t)

(λx.B)x = B β0-conversion
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Some Matching Examples

a : i f : i → i g : i → i → i

(1) λxλy(f (H x)) λuλv(f (f u))
(2) λxλy(f (H x)) λuλv(f (f v))
(3) λxλy(g (H y x) (f (L x))) λuλv(g u (f u))
(4) λxλy(g (H x) (L x)) λuλv(g (g a u) (g u u))

(1) H 7→ λw(f w)
(2) match failure
(3) H 7→ λyλx.x L 7→ λx.x

(4) H 7→ λx.(g a x) L 7→ λx.(g x x)
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Lλ-Unification

An Lλ-unification problem is a finite set of
equations between simply typed λ-terms such
that occurrences of free variables of higher-order
type are applied to distinct λ-bound variables.
(Dropping this restriction yields higher-order
unification.)

Properties

Lλ-unification is decidable and most general
unifiers exist if unifiers exist.

Lλ-unification appears to be the simplest extension
to first-order unification that “respects” bound
variables.

Lλ-unification does not require type information to
determine unifiers or the possibility of unifiers.

βη-unification of simply typed λ-terms (sometimes
called “higher-order” unification) can be encoded
directly as logic programming using only Lλ-
unification.
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Lλ in a Logic Programming Language

To incorporate λ-terms into a logic programming
language we must take (at least) three steps.
◦ Perform Lλ-unification.
◦ Permit universal quantification and implications

in goals. This permits for dynamically changing
contexts.

◦ Modify the restriction: higher-order variables
can be applied to at most distinct variables
that are λ-bound or universally quantified
negatively. For example,

∀iX∀i→iF (∀iy(p y ⊃ p λw(F w y)) ⊃ q F X)

is legal while the following is not legal.

∀iX∀i→iF (∀iy(p y ⊃ p λw(F w X)) ⊃ q F X)
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The Signature of a First-Order Object-Logic

kind term, form type.

type all, some (term -> form) -> form.

type and, imp form -> form -> form.

type a term.

type f term -> term.

type g term -> term -> term.

type p term -> form.

type q term -> term -> form.

type term term -> o.

type atom form -> o.

term a.

term (f X) :- term X.

term (g X Y) :- term X, term Y.

atom (p X) :- term X.

atom (q X Y) :- term X, term Y.
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Recognizing Object-Level Horn Clauses

type quanfree, conj, hornc form -> o.

quanfree A :- atom A.

quanfree (and B C) :- quanfree B, quanfree C.

quanfree (imp B C) :- quanfree B, quanfree C.

conj (and B C) :- conj B, conj C.

conj A :- atom A.

hornc A :- atom A.

hornc (imp A G) :- atom A, conj G.

hornc (all C) :- pi x\(term x => hornc (C x)).

?- hornc (all u\(all v\(imp (p u)

(and (q v a) (q a u)))))

{C = u\(all v\(imp (p u)(and (q v a)(q a u))))}

term d ?- hornc (all v\(imp (p d)

(and (q v a) (q a d))))

{C = v\(imp (p d) (and (q v a) (q a d)))}

term e ?- hornc (imp (p d)

(and (q e a) (q a d))))
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Implementing Object-Level Equality

type copytm term -> term -> o.

type copyfm form -> form -> o.

copytm a a.

copytm (f X) (f U) :- copytm X U.

copytm (g X Y) (g U V) :-

copytm X U, copytm Y V.

copyfm (p X) (p U) :- copytm X U.

copyfm (q X Y) (q U V) :-

copytm X U, copytm Y V.

copyfm (and X Y) (and U V) :-

copyfm X U, copyfm Y V.

copyfm (imp X Y) (imp U V) :-

copyfm X U, copyfm Y V.

copyfm (all X) (all U) :-

pi y\(pi z\(copytm y z => copyfm (X y)(U z))).

copyfm (some X) (some U) s:-

pi y\(pi z\(copytm y z => copyfm (X y)(U z))).

[[t, s : term]] = copytm t s

[[t, s : form]] = copyfm t s

[[t, s : τ -> σ]] = ∀x∀y([[x, y : τ ]] ⊃ [[t x, s y : σ]])
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Implementing Object-Level Substitution

type subst (term -> form) -> term -> form -> o.

subst M T N :-

pi c\(copytm c T => copyfm (M c) N).

Here, the first argument of subst is an abstraction
over formulas. Compare this to the somewhat
simpler specification (which is not in Lλ):

subst M T (M T).

type uni_instan form -> term -> form -> o.

uni_instan (all B) T C :- subst B T C.

Using meta-level β-conversion:

uni_instan (all B) T (B T).
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Partial Correctness of hornc and subst

Theorem. Instantiating a Horn clause with a
term results in a Horn clause.
Proof. Assume ` term t and ` hornc (all w\h).
Thus,
` pi x\(term x => hornc h[x/w])

` term t => hornc h[t/w]

` hornc h[t/w]

Theorem. If ` subst (w\d) t s then s is d[t/w].
Proof. First note that ` copytm u v if and only if
u and v are equal terms.
` subst (w\d) t s

` pi x\(copytm x t => copytm d[x/w] s)

` copytm t t => copytm d[t/w] s

` copytm d[t/w] s

The converse of this theorem is also easy to prove.
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Reversing Substitutions

subst F a (q a a)

This query yields four answer substitutions for F:

w\(q w w) w\(q w a) w\(q a w) w\(q a a).

copytm a a.

copyfm (q X Y)(q U V) :- copytm X U,copytm Y V.

?- subst F a (q a a).

?- pi c\(copytm c a => copyfm (F c) (q a a)).

copytm c a. ?- copyfm (F c) (q a a).

{F c = (q (F1 c) (F2 c))}

copytm c a ?- copytm (F1 c) a, copytm (F2 c) a.

copytm c a ?- copytm (F1 c) a.

{F1 c = c} or {F1 c = a}

F1 = w\w or F1 = w\a

Much of full higher-order unification can be
understood as reversing substitution in this
manner.

slides/acireale/root 61



Additional Examples

The following programs make use of meta-level β-
conversion to do object-level substitution.

type double (term -> term) -> term -> term -> o.

double F X (F (F X)).

type mapfun (term -> term) ->

term list -> term list -> o.

mapfun F nil nil.

mapfun F (cons X L) (cons (F X) K) :-

mapfun F L K.

To make substitution explicit, write instead:

type substterm (term -> term) ->

term -> term -> o.

substterm M T N :-

pi c\(copytm c T => copytm (M c) N).

double F X S :-

substterm F X T, substterm F T S.

mapfun F (cons X L) (cons T K) :-

substterm F X T, mapfun F L K.
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Interpreting Object-Level Horn Clauses

type interp list form -> form -> o.

type instan form -> form -> o.

type backchain list form -> form -> form -> o.

interp Cs (and B C) :- interp Cs B, interp Cs C.

interp Cs A :- atom A, memb D Cs,

instan D E, backchain Cs E A.

instan (all A) B :-

pi x\(copytm x T => instan (A x) B).

instan B C :- quanfree B, copyfm B C.

backchain Cs A A.

backchain Cs (imp A G) A :- interp Cs G.
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Higher-Order Programming

If the restrictions on higher-order variables in
Lλ are removed, then an implementation of
the resulting logic requires full meta-level β-
conversion and higher-order unification. Some
forms of predicate variable quantification can
also be permitted. This provides for higher-order
programming.

type mappred (A -> B -> o) ->

(list A) -> (list B) -> o.

mappred P nil nil.
mappred P (X::L1) (Y: L2) :- P X Y,

mappred P L1 L2.
type sublist (A ->o) ->(list A) ->(list A)-> o.

sublist P (X::L) (X::K) :- P X, sublist P L K.

sublist P (X::L) K :- sublist P L K.

sublist P nil nil.

The terms “higher-order Horn clauses” and
“higher-order hereditary Harrop” formulas permit
full meta-level β-conversion and predicate variables
quantification.
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Lecture 5:

A Brief Introduction to Linear Logic

and a

Linear Refinement of

Hereditary Harrop Formulas
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Removing Contraction and Weakening

The two presentations of ∧-L:

B, ∆ −→ Γ ∧-L
B ∧ C, ∆ −→ Γ

C, ∆ −→ Γ ∧-L
B ∧ C, ∆ −→ Γ

B,C, ∆ −→ Γ ∧-L
B ∧ C,∆ −→ Γ

are equivalent rules in the presence of contraction
and weakening. If we remove these structural
rules, then the notion of conjunction splits into two
different connectives:

& additive conjunction (“with”)
⊗ multiplicative conjunction (“tensor”)

Similarly, disjunction splits into two different
connectives

⊕ additive disjunction (“plus”)
t multiplicative disjunction (“par”)

Linear implication, written as −◦, is treated as a
multiplicative connective.
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A Proof Systems for Linear Logic

(without the exponentials)

∆′ −→ Γ′, B ∆′′ −→ Γ′′, C

∆′, ∆′′ −→ Γ′,Γ′′, B ⊗ C

B, C, ∆ −→ Γ
B ⊗ C, ∆ −→ Γ

∆ −→ Γ, B ∆ −→ Γ, C

∆ −→ Γ, B & C

B, ∆ −→ Γ

B & C, ∆ −→ Γ

C, ∆ −→ Γ

B & C, ∆ −→ Γ

B, ∆′ −→ Γ′ C, ∆′′ −→ Γ′′

B t C, ∆′, ∆′′ −→ Γ′,Γ′′
∆ −→ B,C, Γ

∆ −→ B t C, Γ

B, ∆ −→ Γ C, ∆ −→ Γ
B ⊕ C, ∆ −→ Γ

∆ −→ Γ, C

∆ −→ Γ, B ⊕ C

∆ −→ Γ, B

∆ −→ Γ, B ⊕ C
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A Proof Systems for Linear Logic (continued)

∆′ −→ Γ′, B C, ∆′′ −→ Γ′′

B −◦ C, ∆′,∆′′ −→ Γ′, Γ′′

B, ∆ −→ Γ, C

∆ −→ Γ, B −◦ C

B −→ B 0, ∆ −→ Γ ∆ −→ >, Γ

Here, ∆ and Γ are multisets of propositional
formulas.

Only a fragment of propositional linear logic is
presented here. In particular, the exponentials and
linear negation, (−)⊥, are not yet addressed.
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Examples

a −→ a a −→ a

a −→ a & a

−→ a−◦ a & a

a −→ a

b −→ b c −→ c

b, b−◦ c −→ c

a−◦ b, b−◦ c, a −→ c

a −→ a

b −→ b d −→ d

b, b−◦ d −→ d c −→ c

b t c, b−◦ d −→ d, c

b t c, b−◦ d −→ d t c

a−◦ (b t c), b−◦ d, a −→ d t c

There are no proofs of

a−◦ (a⊗ a) (a⊗ b)−◦ (a & b)

or their converses.
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The Exponentials ! and ?

Without contraction and weakening, linear logic
would would be very weak. Contraction and
weakening are introduced via logical connectives
and not by structural rules.

! “of course”
? “why not”

B, ∆ −→ Γ

!B, ∆ −→ Γ
∆ −→ Γ

!B, ∆ −→ Γ

!B, !B, ∆ −→ Γ

!B, ∆ −→ Γ

∆ −→ B, Γ

∆ −→ ?B, Γ
∆ −→ Γ

∆ −→ ?B, Γ

∆ −→ ?B, ?B, Γ

∆ −→ ?B, Γ

!∆ −→ B, ?Γ

!∆ −→ !B, ?Γ

B, !∆ −→ ?Γ

?B, !∆ −→ ?Γ

The notion of intuitionistic implication B ⊃ C is
coded as

!B −◦ C.
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Examples

a −→ a

a & b −→ a

!(a & b) −→ a

!(a & b) −→ ! a

b −→ b

a & b −→ b

!(a & b) −→ b

!(a & b) −→ ! b

!(a & b), !(a & b) −→ ! a⊗ ! b

!(a & b) −→ ! a⊗ ! b

a −→ a

! a −→ a

! a, ! b −→ a

b −→ b

! b −→ b

! a, ! b −→ b

! a, ! b −→ a & b

! a, ! b −→ !(a & b)

! a⊗ ! b −→ !(a & b)

Set 1 :=!> and ⊥ :=?0. Then a ⊗ 1 is linearly
equivalent to a and a t ⊥ is linearly equivalent to
a.
Set B⊥ := B −◦ ⊥.
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Aspects of Intuitionistic Contexts

Theorem Proving
+ Contexts manage hypotheses and eigen-

variables elegantly.
− Contraction cannot be controlled naturally.

Linguistics
+ Relative clauses are sentences with noun phrase

gaps: (NP ⊃ SENT ) ⊃ REL.
− Gap extraction must be non-vacuous.

Data Bases
+ Contexts can act as databases and support

query answering by deduction.
− Contexts cannot naturally be “edited” or

updated.
Object State
+ Objects can have their state and methods

hidden in a context.
− Updating an object’s state is not possible

declaratively.
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A Linear Refinement of Contexts

In intuitionistic contexts, all formulas can be used
any number of times. To make a linear refinement,
replace

!D1, . . . , !Dn −→ G

with the more general

R1, . . . , Rm, !D1, . . . , !Dn −→ G.

Now, there will be multiplicative and additive
versions of some of the logical connectives.
If ⊗ and ! are permitted to occur freely, many
provable sequents would not have uniform proofs.
For example, the sequents

a⊗ b −→ b⊗ a a, a−◦ ! b −→ ! b

are provable in linear logic but do not have
uniform proofs.
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A Sublanguage for Logic Programming

Consider the set of formulas freely generated from

>, &,−◦,⇒, ∀

where B ⇒ C is ! B −◦ C.

Γ;A −→ A

Γ, B; ∆, B −→ C

Γ, B; ∆ −→ C Γ;∆ −→ >

Γ;∆, Bi −→ C

Γ;∆, B1 & B2 −→ C

Γ;∆ −→ B Γ; ∆ −→ C

Γ;∆ −→ B & C

Γ;∆1 −→ B Γ;∆2, C −→ E

Γ;∆1, ∆2, B −◦ C −→ E

Γ;∆, B −→ C

Γ; ∆ −→ B −◦ C

Γ; ∅ −→ B Γ;∆, C −→ E

Γ;∆, B ⇒ C −→ E

Γ, B; ∆ −→ C

Γ; ∆ −→ B ⇒ C
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Introducing Positive Occurrences of ⊗,⊕,1,>

Γ ; ∆1 −→ P

Γ ; ∆2 −→ Q Γ ; R −→ R

Γ ; ∆2, Q−◦R −→ R

Γ ; ∆1, ∆2, P −◦Q−◦R −→ R

This suggests that tensors ⊗ in goals can be
specified using the following higher-order clause.

∀P∀Q[P −◦Q−◦ (P ⊗Q)]

Similarly, other logical constants can be specified
in goal positions.

∀P∀Q[P −◦ (P ⊕Q)]

∀P∀Q[Q−◦ (P ⊕Q)]

> ⇒ 1

∀P [P ⇒ ! P ]
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Embedding Hereditary Harrop Formulas

Girard has presented a mapping of intuitionistic
logic into linear logic, part of which is given as:

(A)0 = A, where A is atomic,
(true)0 = 1,

(B1 ∧B2)0 = (B1)0 & (B2)0,
(B1 ⊃ B2)0 = !(B1)0 −◦ (B2)0

A “tighter” translation holds in our setting.

(A)+ = (A)− = A, where A is atomic
(true)+ = 1 (true)− = >
(B1 ∧B2)+ = (B1)+ ⊗ (B2)+

(B1 ∧B2)− = (B1)− & (B2)−

(B1 ⊃ B2)+ = (B1)− ⇒ (B2)+

(B1 ⊃ B2)− = (B1)+ −◦ (B2)−

Thus, we should translate a :- b, c => d. as

[b⊗ (c ⇒ d)]−◦ a.
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How to Toggle a Switch

Let Γ contain the following clauses.

toggle(G) :- sw(V), flip(V,U), sw(U) -o G.

flip(on,off).

flip(off,on).

Γ ; sw(off)−→sw(V ) Γ ; −→flip(V,U)

Γ ; ∆,sw(U)−→G

Γ ; ∆−→sw(U)−◦G
Γ ; ∆,sw(off)−→sw(V )⊗flip(V,U)⊗sw(U)−◦G

Γ ; ∆,sw(off)−→toggle(G)
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The Modality of !

When ! appears in a goal, it behaves as a modal
operator. Consider the following proof fragment.

Γ ; D −→ G1

Γ ; ∅ −→ D −◦G1

Γ ; ∅ −→ !(D −◦G1) Γ ; ∆ −→ G2

Γ ; ∆ −→ !(D −◦G1)⊗G2

Contrast this to the proof fragment involving the
demo-predicate.

D −→ G1 P −→ G2

P −→ demo(D, G1) ∧G2
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Improving a Theorem

Below is a theorem prover for a propositional
intuitionistic object-logic. Here, erase is concrete
syntax for >.

pv (A and B) :- pv B & pv A.

pv (A imp B) :- hyp A -o pv B.

pv (A or B) :- pv A.

pv (A or B) :- pv B.

pv G :- hyp (A and B),

(hyp A -o hyp B -o pv G).

pv G :- hyp (A or B),

((hyp A -o pv G) & (hyp B -o pv G)).

pv G :- hyp (C imp B),

((hyp (C imp B) -o pv C) &

(hyp B -o pv G)).

pv G :- hyp false, erase.

pv G :- hyp G, erase.
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Permuting a List

load nil K :- unload K.

load (X::L) K :- (item X -o load L K).

unload nil.

unload (X::L) :- item X, unload L.

perm L K :- load L K.

Notice that the last clause defining perm is not
correct enough. There is nothing in its definition
that guarantees that when it is called there are no
items in the bounded context.
A better definition is

perm L K <= load L K.

or (using the “defined” logical constant bang)

perm L K :- bang(load L K).
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Parsing Relative Clauses

Correct: “whom Mary married ↑”
Correct: “whom Mary believed John married ↑”
Wrong: “whom Mary married Bill” because the
gap is not used: vacuous abstraction
Wrong: “whom Mary believed ↑ married Jill”
because subject extraction is not permitted here.

sent P1 P2 o- !(np P1 P0) x vp P0 P2.

vp P1 P2 o- tv P1 P0 x np P0 P2.

vp P1 P2 o- stv P1 P0 x sbar P0 P2.

np P1 P2 o- pn P1 P2.

sbar (that::P1) P2 o- sent P1 P2.

rel (whom::P1) P2 o-

all z\(np z z) -o sent P1 P2.

pn (mary::L) L.

pn (bob::L) L.

pn (jill::L) L.

tv (loves::L) L.

tv (married::L) L.

stv (believes::L) L.
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How to Split Bounded Contexts?

Γ ; ∆1 −→ B Γ ; ∆2, C −→ E

Γ ; ∆1, ∆2, B −◦ C −→ E

Γ ; ∆1 −→ B Γ ; ∆2 −→ C

Γ ; ∆1,∆2 −→ B ⊗ C

If ∆ = ∆1,∆2 contains n items, there are 2n ways
to form the partitions ∆1 and ∆2. How can we
delay partitioning during search?
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An Interpreter for the Propositional Fragment

An IO-context is a list made up of formulas, !’ed
formulas, or the special symbol del used to denote
a place where a formula has been deleted.

I{G}O: given resources I, a proof of G can be
built that returns the resources in O.

If !R is an element of an IO-context, it is never
removed. If R (without a !) is an element, it can
be replaced by del.

pickR(I, O,R) holds if R is a member of I and O

is the result of replacing that occurrence of R with
del; or ! R occurs in I, and I and O are equal.

subtensor(I, O): if O arises from replacing zero or
more non-!’ed components of I with del.
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An Input/Output Interpreter

I{1}I
subcontext(O, I)

I{>}O
I{G}I
I{! G}I

I{G1}M M{G2}O
I{G1 ⊗G2}O

I{G1}O I{G2}O
I{G1 & G2}O

R::I{G}del::O
I{R−◦G}O

!R::I{G} !R::O
I{R ⇒ G}O

pickR(I,O, A)
I{A}O

pickR(I,M, G−◦A) M{G}O
I{A}O

pickR(I, O,G ⇒ A) O{G}O
I{A}O

Notice that these are all first-order Horn clauses.
A Prolog implementation is immediate.

slides/acireale/root 84



Resource Indexed Models

Let 〈R, +, 0〉 be a commutative monoid: the
monoid of bounded resources.
Let 〈W,≤〉 be a partially ordered set: the set of
possible worlds.
A (propositional) Kripke interpretation is an order
preserving mapping from 〈W,≤〉 to the powerset of
the set atomic formulas.
A resource indexed model M is an R-indexed set of
Kripke interpretations, {Kr | r ∈ R}.
Satisfaction in a structure M = {Kr | r ∈ R} is
defined by:
◦ Kr, w |= >.
◦ Kr, w |= A if A is atomic and A ∈ Kr(w).
◦ Kr, w |= B1 & B2 if Kr, w |= B1 and

Kr, w |= B2.
◦ Kr, w |= B1 −◦B2 if ∀r′ ∈ R, ∀w′ ∈ W if w ≤ w′

and Kr′ , w
′ |= B1 then Kr+r′ , w

′ |= B2.
◦ Kr, w |= B1 ⇒ B2 if ∀w′ ∈ W if w ≤ w′ and

K0, w
′ |= B1 then Kr, w

′ |= B2.
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A Canonical Model Theorem

M |= B if ∀w ∈ W, K0, w |= B.
The Kripke interpretation K0 models truth in the
usual intuitionistic sense while Kr models truth
that has been moved out-of-phase.

Theorem

Let W be the set of all finite sets of formulas (over
>, &, −◦, and ⇒) and let ≤ be set inclusion.
Let R be the set of all finite multisets of such
formulas and let + be multiset union and 0 be the
empty multiset.
Define M = {Kr | r ∈ R} by

Kr(w) = {A | A is atomic and w; r `L A}.

Then the equivalence

∀w ∈ W ∀r ∈ R(w; r `L B iff Kr, w |= B)

holds if and only if the cut rules are admissible in
L.
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