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Abstract
We present a type system over language definitions that
classifies parts of the operational semantics of a language in
input, and models a common language design organization.
The resulting typing discipline guarantees that the language
at hand is automatically type sound.

Thanks to the use of types to model language design, our
type checker has a high-level view on the language being
analyzed and can report messages using the same jargon of
language designers.

We have implemented our type system in the lang-n-check
tool, and we have applied it to derive the type soundness of
several functional languages, including those with recursive
types, polymorphism, exceptions, lists, sums, and several
common types and operators.

CCS Concepts: • Software and its engineering→ Formal
language definitions; • Theory of computation → Type
theory.

Keywords: Extrinsic type systems, type soundness, func-
tional languages

ACM Reference Format:
Matteo Cimini, Dale Miller, and Jeremy G. Siek. 2020. Extrinsi-
cally Typed Operational Semantics for Functional Languages. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering (SLE ’20), November 16–17, 2020,
Virtual, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3426425.3426936

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00
https://doi.org/10.1145/3426425.3426936

1 Introduction
Type systems play a major role in program analysis. Can they
play a similar role in language analysis, i.e. the analysis of
the meta-theoretic properties of programming languages?

The research line on intrinsic typing has long investigated
this question, and has demonstrated that type systems can
be an effective tool for the analysis of languages. In this ap-
proach, a language is implemented within a host type theory
with strong meta-theoretic properties [Church 1940; Harper
and Stone 2000; Poulsen et al. 2017; Rouvoet et al. 2020]. If
the implementation type checks then the language is type
sound. For example, if we can make a language definition
type check within a type theory with exhaustive pattern-
matching that is strongly normalizing then the progress
theorem automatically holds.
In this paper, we take a different perspective in the type

checking of languages for their soundness: we intend to use
types and type systems in the same way they are used in
program analysis [Cardelli 2004; Pierce 2002], i.e., to model
a high-level organization and discipline to ensure that some
property holds. The most common way to perform type
checking is with an external function that analyzes programs,
that is, an extrinsic type system. Our goal is to present an
extrinsic type system that accepts or rejects a programming
language definition (syntax, type system, operational seman-
tics) and guarantees that accepted languages are type sound.

AMeta Type System for Type Soundness. To avoid nam-
ing confusion, we use the term meta type system for a type
system that analyzes a language definition rather than a
program1. Our main contribution is a meta type system
that ensures that the various parts of a language definition
(value declarations, typing rules, reduction rules, evaluation
contexts, and so on) are all in order so that type sound-
ness automatically holds. Our meta type system models a
high-level organization and discipline that are not novel.
Conversely, they capture invariants that language designers
have been using for a long time, and makes them explicit
and formally defined. For example, our meta type system
traverses the grammar and typing rules of the language at

1The word extrinsic can be confusing when we dive in the technical part of
the paper, as our meta type system needs to analyze a type system which is
itself extrinsic. We therefore say meta type system.
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hand in order to apply the common classification of oper-
ators as introduction forms (such as λx : T .e in the simply
typed λ-calculus (STLC)), elimination forms (such as appli-
cation), derived operators (such as let and letrec), errors
and error handlers (such as try). This classification paves the
way for a high-level analysis of a language definition. For
example, our meta type system can check the β-rule of STLC
(λx : T .e ) v −→ e[v/x ] in the following way. (Below, the
Classification meta-variable contains information about the
role of operators and characterizes values. The application
operator is named as app, funType is the function type, and
Section 3.2 presents complete details.)

Classification ⊢ app : elim funType
Classification ⊢ (λx : T . e ) : value funType

Contexts ⊢ app : {1,2}

Contexts
| Classification

⊢ (app (λx : T . e ) v ) −→ e[v/x ]

This is a meta-level typing rule that type checks a reduction
rule. Here, the first line of premises says that the type of
the operator app is “elim funType”, which means that the
application is an elimination form of the function type, previ-
ously classified as such inClassification by other parts of the
meta type system. It then requires that the argument being
eliminated, which is highlighted and is sometimes called the
principal argument [Harper 2012], be a value of the function
type, which we check by making sure that the abstraction
is of type “value funType”. This materializes a common de-
sign in programming languages in which elimination forms
manipulate values of some data type. As exemplified above,
it is typical to apply this approach by assigning a principal
argument to an elimination form of a type and then by defin-
ing its reduction rules by case analysis on the values of that
type.
The meta-level typing rule above also checks that the

arguments at positions 1 and 2 must be evaluation contexts
for the application, as those arguments need to be evaluated
for the β-rule to apply. Contexts ⊢ app : {1,2} enforces that
the definition of evaluation contexts for application have E
in both the first and second sub-expression positions, as in
the grammar: E ::= (app E e ) | (app v E) | · · · .
Analogously, if the language at hand had lists and the

reduction rule head (cons v1 v2) −→ v1, our meta type
system would use an instance of the rule above and detect
that head is an elimination form for lists. It would then check
that (cons v1 v2) is a value for lists, and that the evaluation
contexts are defined appropriately.

Our full meta type system captures design principles that
are based on the above as well as other common language
design invariants. It applies to functional languages with
a typing relation of the form Γ ⊢ e : T and a reduction
relation of the form e −→ e based on small-step semantics
and evaluation contexts. Ultimately, we have proved that

1 Expression E ::= x | (abs T (x)E) | (absT (X)E) | (app E E)

2 | (appT E T) | (tt) | (ff) | (if E E E)

3 Type T ::= (bool) | (arrow T T) | (all (X)T)

4 Value V ::= (abs T (x)E) | (absT (X)E) | (tt) | (ff)

5 Error ::=

6 Context C ::= [] | (app C e) | (app v C) | (appT C T)

7 | (if C e e)

8
9 Gamma |- (abs T1 E) : (arrow T1 T2) <==

10 Gamma , x : T1 |- E : T2.

11 Gamma |- (absT E) : (all T) <== Gamma , X |- E : T.

12 Gamma |- (app E1 E2) : T2 <== Gamma |- E1 : (arrow T1 T2)

13 /\ Gamma |- E2 : T1.

14 Gamma |- (appT E T1) : T2[T1/X] <== Gamma |- E : (all T2).

15 Gamma |- (tt) : (bool).

16 Gamma |- (ff) : (bool).

17 Gamma |- (if E1 E2 E3) : T <== Gamma |- E1 : (bool)

18 /\ Gamma |- E2 : T

19 /\ Gamma |- E3 : T.

20
21 (app (abs T E) V) --> E[V/x].

22 (appT (absT E) T) --> E[T/X].

23 (if (tt) E1 E2) --> E1.

24 (if (ff) E1 E2) --> E2.

Figure 1. Example input of lang-n-check: language defini-
tion of System F with booleans. We do not mention binding
variable in lines such as 21 and 22 because x is the bound
expression variable by default in the tool, and X is the type
variable by default.

languages that conform to our meta type system are type
sound.

Implementation: lang-n-check. Wehave implemented
our meta type system in the lang-n-check tool [Cimini
2015]. The tool works with language definitions such as that
in Figure 1, which contains the operational semantics of Sys-
tem F [Girard 1972; Reynolds 1974] with booleans. Language
definitions use a domain-specific language that is close to
pen&paper definitions in textbooks [Harper 2012; Pierce
2002] and research papers. The reason for this is that we
wish to use the tool in courses on programming languages.

Language definitions that type check are type sound.What
happens if our meta type system fails? One of the differences
between our approach and intrinsic typing is that since we
directlymodel language designwith types then themeta type
checker has a high-level view on the language being analyzed
and can report messages using the same jargon of language
designers. For example, if we forgot the context (if C e e)
at line 7, lang-n-check would reject the specification with
the error message “The principal argument of the elimination
form if is not declared as evaluation context, hence some
programs may get stuck”. We are not aware of intrinsic type
systems for languages whose type error messages refer to
terms such as “principal argument” and “elimination form”.
We have applied lang-n-check to a plethora of func-

tional languages and checked their type soundness, including
the simply typed λ-calculus and its variants with integers,
booleans, pairs, lists, sums, tuples, fix, let, letrec, unit,
universal types, recursive types, option types, exceptions, list
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operations such as append, map, mapi (also depends on the
position in the list of the current element being processed),
filter, filteri, range, list length, reverse, and the recursor of nat-
ural numbers (natrec).We have also considered different eval-
uation strategies for the features mentioned above: call-by-
value, call-by-name and a parallel reduction strategy (both
function and argument can evaluate non-deterministically),
as well as lazy pairs, lazy lists, and lazy tuples, and both left-
to-right and right-to-left evaluations. lang-n-check com-
piles the languages that type check successfully into the
Abella theorem prover [Baelde et al. 2014] and automatically
generates their machine-checked proof of type soundness.
This gives us high confidence that, besides the theoretical
guarantees of our paper, also our implementation is reliable.

CloselyRelatedWork. Cimini reports that lang-n-check
has been used to teach programming languages theory [Ci-
mini 2019]. We would like to clearly distinguish that work
from this paper. That work briefly (and incompletely) de-
scribes the capabilities of lang-n-check2, makes the point
that error messages are informative, sets forth the thesis that
a tool such as lang-n-check can be beneficial in a teach-
ing context, and describes the studies that have been made,
and that are to be made in the future. This paper, instead,
provides a formal meta type system, gives a complete de-
scription of the organization principles that guide the meta
type system, provides a proof of correctness, and reports on
the many languages that have been checked as type sound
using lang-n-check.

Intrinsic vs Extrinsic Typing? So Far, Intrinsic Wins.

We have described the difference between intrinsic and ex-
trinsic typing above, and also pointed out the benefits of
the latter. Where does extrinsic typing of languages stand as
compared to intrinsic typing?
A recent result by Poulsen et al has demonstrated that

intrinsic typing can be applied to practical languages, and in
particular to a large subset of Middleweight Java [Poulsen
et al. 2017]. Our work is limited to the functional realm, and
we acknowledge that the state of the art of intrinsic typing
is substantially ahead.
The research line of intrinsic typing can be seen as oc-

curring in two stages. Stage 1 laid down the idea and the
practice of intrinsic typing. Stage 2 demonstrated that in-
trinsic typing can scale, as was recently shown by Poulsen
et al 2017.
Research in extrinsic typing of languages may need to

follow a similar path. We believe that the research in this
paper helps to establish Stage 1. It has been challenging to
reach Stage 2 for intrinsic typing: we leave scaling up our
approach for future work.

2That paper refers to a tool with another name because lang-n-check is
used within a larger tool.

Summary of our Contributions. This paper makes the
following contributions.

1. We devise a new approach to language analysis based
on extrinsic typing of operational semantics. Our meta
type system models a common high-level organization
and discipline on language definitions that guarantee
their type soundness (Section 3).

2. We prove that language definitions accepted by our
meta type system are type sound (Section 4). In some
sense, this result proves that the invariants that lan-
guage designers have been using for years are correct
at some general scale.

3. We implement the meta type system in lang-n-check
(Section 5). We have applied the tool to derive the type
soundness of several functional languages, including
those with recursive types, polymorphism, exceptions,
lists, sums, and several common types and operators.

2 Language Definitions
We briefly review how languages are defined in small-step
operational semantics. This section serves to fix the termi-
nology that we use in the rest of the paper.

Figure 2 shows the definition of Fexc, which essentially is
System F extended with exceptions. The language defines a
series of syntactic categories defined by a BNF grammar. The
syntactic categories Type and Expression define the types
and the expressions of the language. Next, language design-
ers decide which expressions constitute values. These are the
results of successful computations. Values are defined with
the syntactic category Value. Similarly, language designers
designate which expression constitute the error, which is the
outcome when computations fail. The error is defined with
the syntactic category Error. Context defines the evaluation
contexts, which prescribe within what contexts reduction can
take place. Similarly, Error Context defines the error contexts,
which are those contexts in which we are allowed to detect
that an error has occurred. (They typically differ from evalu-
ation contexts when the language includes error handlers.)
Next, Fexc defines its type system with a relation of the

form Γ ⊢ e : T , which is inductively defined with a set of
inference rules. The dynamic semantics here is of the form
e −→ e and is also inductively defined by a set of inference
rules called reduction rules.
In the setting of small-step operational semantics and

languages with errors, the following is the statement of type
soundness. (−→∗ is the reflexive and transitive closure of
−→).

Definition 2.1 (Type Soundness). A language L is type
sound whenever for all expressions e , e ′, and types T , if
∅ ⊢ e : T and e −→∗ e ′ then either
• e ′ is a value such that ∅ ⊢ e ′ : T ,
• e ′ is an error, or
• there exists e ′′ such that e ′ −→ e ′′ and ∅ ⊢ e ′′ : T .
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Type T ::= ⊤ | T → T | ∀X .T
Expression e ::= x | λx : T .e | e e | ΛX .e | e [T ]

| raise e | try e with e
Value v ::= λx : T .e | ΛX .e
Error er ::= raise v
Context E ::= E e | v E | E [T ] | raise E | try E with e
Error Ctx F ::= F e | v F | F [T ] | raise F

Type System Γ ⊢ e : T

(t-var)
Γ,x : T ⊢ x : T

(t-abs)
Γ,x : T1 ⊢ e : T2

Γ ⊢ λx : T .e : T1 → T2

(t-app)
Γ ⊢ e1 : T1 → T2

Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2

(t-tabs)
Γ,X ⊢ e : T

Γ ⊢ ΛX .e : ∀X .T

(t-tapp)
Γ ⊢ e : ∀X .T2

Γ ⊢ (e [T1]) : T2[T1/X ]

(t-raise)
Γ ⊢ e : ⊤

Γ ⊢ raise e : T

(t-try)
Γ ⊢ e1 : T Γ ⊢ e2 : ⊤ → T

Γ ⊢ try e1 with e2 : T

Dynamic Semantics e −→ e

(λx : T .e ) v −→ e[v/x ] (beta)
ΛX .e [T ] −→ e[T /X ] (r-tappt)

try v with e −→ v (r-try-success)
try (raise v ) with e −→ (e v ) (r-try-raise)

e −→ e ′

E[e] −→ E[e ′]
(ctx) F [er ] −→ er (err-ctx)

Figure 2. Type system and dynamic semantics of Fexc.

3 A Meta Type System for Type Soundness
We work with a formal representation for language defini-
tions. We define a language definition L as an 8-tuple

(Type,Expression,Value,Error,Context,Error Context,
Type System,Dynamic Semantics).

where we place the components of Fig 2 in the tuple L. To
make an example, Fexc is represented as

( Types = T ::= ⊤ | T → T | ∀X .T ,
Expression = e ::= x | λx : T .e | e e | ΛX .e | e [T ]

| raise e | try e with e,
Value = v ::= λx : T .e | ΛX .e,
Error = er ::= raise v,
Context = E ::= E e | v E | E [T ] | raise E | try E with e,
Error Context = F ::= F e | v F | F [T ] | raise F ,
Type System = {(t-var), (t-abs), (t-app), (t-tabs), (t-tapp),

(t-raise), (t-try)},
Dynamic Semantics = {(beta), (r-tapp), (r-try-success),

(r-try-raise), (r-ctx), (r-errCtx)})

where we simply wrote the name of rules, although the tuple
contains the actual inference rules.

In this sectionwe define ameta type systemwith judgment
⊢ L that makes sure that soundness automatically holds.

Our setting must accommodate syntax with some gen-
erality. Therefore, we assume that operators are defined in
abstract syntax rather than concrete syntax. For example,
we have if e e e rather than if e then e else e . We use xs
as variables for expressions and (capitalized) X s for types.
Without loss of generality, we assume that the type annota-
tions of an operator all appear first, followed by types with a
bound X , followed by expressions with a bound x , followed
by expressions with a bound X , and finally followed by (not
bound) expression arguments. This leads to a general shape
that is similar to Harper’s abstract binding trees [Harper
2012] and is op T (X ).T (x ).e (X ).e e , where op is an
operator, and · denotes sequences. To make an example,
abstraction fits that general shape as (abs T (x ).e ) and a
type-annotated cons fits that shape as (cons T e e ).
Our meta type system is an inference system that type

checks parts of languages, including inference rules. To avoid
confusion, we write the parts of the language being type
checked in blue color. To help our presentation, we some
times make examples with operators that are not in Fexc.

Figure 3 contains the main judgement for ⊢ L, handled by
rule [main]. This rule simply checks all the components of
the language in the way described in the following sections.

3.1 Meta Type Systems for the Syntactic Categories
The meta type system for type checking the syntactic cate-
gories are in Figure 3, as well. The language design invariants
that are at play at this point are:

• Val: Any argument that is required to be evaluated to
a value for a definition to apply must be declared as
evaluation context. For example, Val enforces that if
(cons v v ) is declared as value thenContextmust con-
tain productions of the form (cons E _) and (cons _ E),
where _ can be e or v in both occurrences. Indeed, if
one of these were missing, say the first, the expression
(cons ((λx .x ) nil) nil) would be stuck. This expres-
sion is not a value and does not take any step. Type
soundness would then be jeopardized.
• Ctx: Evaluation contexts have no circular dependencies
w.r.t. the evaluation of their arguments. For example, we
must forbid context declarations such as (cons E v )
and (cons v E). Such declarations make the expres-
sion (cons ((λx .x ) nil) ((λx .x ) nil)) stuck because
the first argument does not start evaluating until the
second is a value, while the second waits for the first
to become a value, which won’t start evaluating.
• ErrCtx: Error contexts are evaluation contexts minus
the error handler at the principal argument (where the
error is expected to appear to be handled). This says
that the context try F with e should not be an error
context. Indeed, (err-ctx) should not apply to derive
the reduction try (raise v ) with e −→ raise v , as
we expect the semantics of try to handle the error.
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Type Checking Type. The judgement ⊢ Type in Fig. 3
checks some restrictions on the grammar for types. In par-
ticular, we allow types to be a constant c applied to T s, or
applied to T s with bound variables X s (for types quantified
by types). On one hand, this accommodates universal types
and recursive types but also prevents expressions from being
used in types, ruling out dependent types and refinement
types. These latter features are rather advanced and we leave
them for future work.

Type Checking Expression. We use exp− to denote an ex-
pression derived by the grammar for Expression. The judge-
ment ⊢ Expression checks that each grammar production is
of the form op T (X ).T (x ).e (X ).e e , which we have dis-
cussed previously. Notice that no other syntactic categories
are allowed so far. This means that we rule out layered gram-
mars such as expressions vs statements, which we plan to
address in the future.

Type Checking Value. The judgement Context ⊢ Value
checks the value declarations. We refer to exp for exp− in
which we can use v . There are two aspects that are checked
for values. The first is that they make use of ev , which de-
notes a variable that can be either e or v . The second as-
pect is that we check the language design invariant Val,
defined above. This check is done with Context ⊢ op :
contextPositions, which informs about the set of argument
positions that are declared as evaluation contexts for op. For
example, if Context has declarations E ::= (cons E e ) |
(cons v E), we have Context ⊢ cons : {1,2}. Notice that
E cannot appear underneath a binder, so we forbid evalua-
tion underneath binders. Once we have computed the set
contextPositions, we then check that the argument positions
in a value declaration that are vs, i.e., that are required to
be values, are in that set. To make an example, the value
declaration v ::= (cons v v ) is well-typed because the vs
appear in argument positions 1 and 2, which are in {1,2},
contextual positions for cons.

Type Checking Error. The judgement Context ⊢ Error
checks the error declaration, if present. The invariant Val is
checked here, as well. For example, raise E must be an eval-
uation context to prevent expressions such as raise (λx :
T .e nil) from being stuck and thereby jeopardizing type
soundness.

Type Checking Context. We use evE to denote a variable
that can be e ,v or E, and we refer to ctx as those expressions
where Es and vs can appear. For example, (cons E v ) is
a valid ctx . The judgement Context ⊢ Context checks that
each context declaration has exactly one occurrence of E.
That is, (cons E E) is not a valid ctx . (We enforce this with
the existential quantification with uniqueness ∃!.) It also
enforces language design invariants Val and Ctx. The lat-
ter is ensured with the use of the function acyclic which

performs this check through a graph representation of the
dependencies at play. To be precise, we have an edge for
each context declaration from the index position of E to the
index positions of vs. Context declarations (cons E e ) and
(cons v E), i.e., left-to-right evaluation, induce the graph
{2 7→ 1}, which is acyclic. The bad context declarations
(cons E v ) and (cons v E), instead, induce the graph
{1 7→ 2,2 7→ 1}, which contains a cycle and is rejected.
The function acyclic performs a standard topological sort
and so we omit its definition.

The last syntactic category that must be checked is Error
Context. However, in order to check invariant ErrCtx we
need to know whether an error handler exists. We therefore
postpone this check until after we present the meta type
system for Type System.

3.2 Meta Type System for Typing Rules
Figure 4 contains the meta type system for checking the
typing rules of the language. The typing rules classify the
operators of the language w.r.t. their role. Operators are
classified as introduction forms, elimination forms, derived
operators, the error and error handlers.

[t-main] (Figure 4) is the main rule. It checks all the typing
rules and returns the complete classification of the opera-
tors in the structure Classification, which we explain. When
checking each typing rule, we return a role map B which
can be of three possible forms: 1) op 7→ R, where op is an
operator and R is the role that this operator plays in the
language, 2) exp 7→ value c that denotes that exp is a value
for the type constructor c , or 3) exp 7→ error, which means
that exp is an error.

The meta type system collects all the role maps B1, . . . ,Bn ,
for which we check compatible(B1, . . . ,Bn ). This check en-
sures that each operator has only one role. For example, cons
cannot be both a value and an elimination form. Ultimately,
the collection of all the role maps forms Classification.

Anatomy of a Typing Rule. Below we discuss how the meta
type system checks each typing rule. Before proceeding,
we take a closer look at the typing rule for let and type
abstraction in system F .

(t-let)
Γ,⊢ e1 : T1 Γ,x : T1 ⊢ e2 : T2

Γ ⊢ let x = e1 in e2 : T2

(t-tabs)
Γ,X ⊢ e : T

Γ ⊢ ΛX .e : ∀X .T

We say that let is the subject of the typing rule (t-let), and
T2 is its assigned type. We impose a common form for type
environments: they can be used as Γ ⊢ e : T and Γ can have
bindings x : T (as in (t-let)), and/or type variables X (as in
(t-abst)). We also impose that typing rules type check all
their e arguments, as done above and in virtually any typing
rule we know.
[t-value] detects the introduction forms following the

common design principle that introduction forms build val-
ues of some data type. To this aim, [t-value] imposes that
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⊢ L

⊢ Type ⊢ Expression Context ⊢ Value Context ⊢ Error Context ⊢ Context
Value | Error | Dynamic Semantics ⊢ Type System : Classification

Classification | Context ⊢ Error Context
Context | Classification | Type System ⊢ Dynamic Semantics

⊢ (Types,Expression,Value,Error,Context,Error Context,Type System,Dynamic Semantics)

⊢ Type and ⊢ ty
⊢ ty1 . . . ⊢ tyn

⊢ T ::= ty1 | . . . | tyn ⊢ c T (X ).T

⊢ Expression and ⊢ exp−

⊢ exp−1 . . . ⊢ exp−n

⊢ e ::= exp−1 | . . . | exp
−
n ⊢ op T (X ).T (x ).e (X ).e e

Context ⊢ Value and Context ⊢ exp

Context ⊢ exp1 . . . Context ⊢ expn
Context ⊢ v ::= exp1 | . . . | expn

Context ⊢ op : contextPositions
∀i ∈ {i | evi = v},i ∈ contextPositions

Context ⊢ op T (X ).T (x ).e (X ).e ev

Context ⊢ Error and Context ⊢ op : contextPositions

Context ⊢ er ::= ϵ

Context ⊢ exp

Context ⊢ er ::= exp

contextPositions = {i | op arдs ∈ Context and E ∈ arдs at position i}

Context ⊢ op : contextPositions

Context ⊢ Context and Context ⊢ ctx

Context ⊢ ctx1 . . . Context ⊢ ctxn
acyclic(Context)

Context ⊢ E ::= ctx1 | . . . | ctxn

∃!(evEi = E)
Context ⊢ op : contextPositions

∀i ∈ {i | evi = v},i ∈ contextPositions

Context ⊢ op T (X ).T (x ).e (X ).e evE

Figure 3.Meta Type system: Main Judgement and Syntactic Categories, with the exception of Error Context, which is defined
at the end of Section 3.2. ty is an expression derived by the grammar for Type. exp is exp− in which we can use v variables.
ctx is derived by the grammar for Context. exp− is derived by the grammar for Expression. ev , is a variable that can be either
e or v . evE, is a variable that can be either e or v or E.

the assigned type of the typing rule has the form (c T ), as
highlighted, that is, a type constructor applied to arguments.
[t-value] also checks that op forms a value. To make some
examples, below [t-value] is instantiated to check (t-abs)
and the typing rule for the list operator cons.

v ::= λx : T .e · · ·
| Error
| Dynamic Sem.

⊢
Γ,x : T1 ⊢ e : T2

Γ ⊢ λx : T1.e : T1 → T2
:

λx : T .e
7→

value→

v ::= cons v v · · ·
| Error
| Dyn. Sem.

⊢

Γ ⊢ e1 : T
Γ ⊢ e2 : (List T )

Γ ⊢ (cons e1 e2) : List T
:
cons v v
7→

value List

[t-value] helps satisfy the progress theorem because
when the values of the language are type checked with this
rule it is immediate to prove the lemmas for the canonical
forms of the language.

[t-elim] classifies elimination forms following a common
pattern:

Elim: elimination forms manipulate/inspect values of some
data type at their principal argument.
Accordingly, [t-elim] imposes that the typing rule as-

signs a complex type (c T ) to the principal argument of op1.
To simplify our presentation, we assume without loss of
generality that the principal argument is always the first
expression variable (e1). We expect that the behavior of the
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Type Environment Γ∗ ::= Γ | Γ,x : T | Γ,X
Role Maps B ::= op 7→ R | exp 7→ value c | exp 7→ error
Roles R ::= elim c | derived | errorHandler

Value | Error | Dynamic Semantics ⊢ Type System : Classification

[t-main]
Values | Error | Dynamic Semantics ⊢ ϕ1 : B1

. . .

Values | Error | Dynamic Semantics ⊢ ϕn : Bn
compatible(B1, . . . ,Bn )

Values | Error | Dynamic Semantics ⊢ {ϕ1, . . . ,ϕn } : {B1, . . . ,Bn }

[t-value]
(op arдs ) ∈ Values

Values | Error | Dynamic Semantics ⊢
Γ∗ ⊢ e1 : ty1 . . . Γ∗ ⊢ en : tyn

Γ ⊢ (op T ′ e1 · · · en ) : (c T )

: (op arдs ) 7→ value c

[t-elim]
(op1 (op2 arдs2) arдs1) −→ exp+ ∈ Dynamic Semantics op2 ∈ Values

Values | Error | Dynamic Semantics ⊢
Γ ⊢ e1 : (c T ) . . . Γ∗ ⊢ en : tyn

Γ ⊢ (op1 T ′ e1 · · · en ) : ty
: op1 7→ elim c

[t-errHandler]
(op1 (op2 arдs2) arдs1) −→ exp+ ∈ Dynamic Semantics op2 ∈ Error

Values | Error | Dynamic Semantics ⊢
Γ∗ ⊢ e1 : ty1 . . . Γ∗ ⊢ en : tyn

Γ ⊢ (op1 T e1 · · · en ) : ty
: op1 7→ errorHandler

[t-derived]
∀ (op terms ) −→ exp+ ∈ Dynamic Semantics, terms contains only variables

Values | Error | Dynamic Semantics ⊢
Γ∗ ⊢ e1 : ty1 . . . Γ∗ ⊢ en : tyn

Γ ⊢ (op T e1 · · · en ) : ty
: op 7→ derived

[t-error]
(op arдs ) ∈ Error T < (T ′ ∪ vars(ty1) ∪ . . . ∪ vars(tyn ))

Values | Error | Dynamic Semantics ⊢
Γ∗ ⊢ e1 : ty1 . . . Γ∗ ⊢ en : tyn

Γ ⊢ (op T ′ e1 · · · en ) : T
: (op arдs ) 7→ error

Figure 4. Meta Type system: Typing Rules. For simplicity, each ei in e1, . . . ,en may be an expression variable or a bound
expression such as (x ).e . The sequences T contain types, each of which may also be a bound type such as (X ).T . Sequences
arдs contain variables, which may be under a binder as well. Also, sequences in this figure have distinct variables.

operator is defined by case analysis on some values. There-
fore, [t-elim] expects to find at least a reduction rule of
the form (op1 (op2 arдs2) arдs1) −→ exp+, that is, the
principal argument is a complex expression, as highlighted.
Reduction rules typically follow this pattern, examples are
(app (λ x .e ) e ) −→ e[v/x ] for the elimination form app,
and (head (cons v1 v2) ) −→ v1 for the elimination form
head. Here, the left-hand side of reduction rules have an

expression exp+, which denotes an expression exp in which
substitutions of the form exp[exp/x ] and exp[ty/x ] can occur.
Some of the reduction rules of error handlers have the

same pattern of that for elimination forms, but an error
appears as principal argument. Therefore, to distinguish
whether the operator is an elimination form rather than
an error handler, we check that op2 is a value.
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To make some examples, below we instantiate [t-elim]
for checking (t-app), and the typing rule for head.

app (λx : T .e ) v −→ e[v/x ] ∈ Dynamic Semantics
λ ∈ Values

Value
| Error
| Dyn. Sem.

⊢
Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T1

Γ ⊢ app e1 e2 : T2
:

app
7→

elim→

head (cons v1 v2) −→ v1 ∈ Dynamic Semantics
cons ∈ Values

Value
| Error
| Dynamic Sem.

⊢
Γ ⊢ e : List T
Γ ⊢ head e : T

: head 7→ elim List

Imposing that the principal argument be a value and typed
at a complex type helps satisfy the progress theorem for the
language being type checked. In particular, when we analyze
an operator whose typing rule has been type checked with
[t-elim] we are guaranteed to be able to apply the appro-
priate canonical form lemma. The meta type system for the
dynamic semantics of Section 3.3 then ensures the existence
of reduction rules to prove some steps, and therefore that
the progress theorem would hold for the operator.
[t-errHandler] classifies the error handlers. In doing

so, we make sure that error handlers handle the error at their
principal argument. [t-errHandler] is similar to [t-elim].
There are two differences: it does not impose the principal
argument to be typed at some precise type, and it expects a re-
duction rule of the form (op1 (op2 arдs2) arдs1) −→ exp+

where the operator op2 is an error rather than a value.
To make an example, we instantiate [t-errHandler] for

the typing rule (t-try).

try (raise v ) with e −→ (e v ) ∈ Dynamic Semantics
raise ∈ Error

Value
| Error
| Dyn. Sem.

⊢

Γ ⊢ e1 : T
Γ ⊢ e2 : ⊤ → T

Γ ⊢ try e1 with e2 : T
:

try
7→

errorHandler

[t-derived] classifies derived operators. One of their char-
acteristics is that derived operators do not primitively manip-
ulate complex data, rather they pass it on to other operators.
For this reason, [t-derived] checks that all the reduction
rules for the operator are of the form (op arдs ) −→ exp+,
where arдs are exclusively variables. Therefore, op does not
pattern-match its arguments into complex expressions. To
make some examples, we instantiate [t-derived] for the
typing rules of fix and letrec.

fix v −→ v (fix v ) ∈ Dynamic Semantics

Value
| Error
| Dynamic Sem.

⊢
Γ ⊢ e : T → T

Γ ⊢ fix e : T
: fix 7→ derived

letrec x = e1 in e2 −→ e2[(fix (λx .e1))/x ] ∈ Dyn. Sem.

Value
| Error
| Dyn. Sem.

⊢

Γ,x : T1 ⊢ e1 : T1
Γ,x : T1 ⊢ e2 : T2

Γ ⊢ letrec x = e1 in e2 : T2
:
letrec
7→

derived

[t-error] handles the typing rule for the error.We enforce
that the assigned type is a fresh variableT . This ensures that
the error can be typed at any type. This is necessary to
establish the type preservation of the language being type
checked. Indeed, the error travels through contexts thanks to
the rule (err-ctx), and it must be prepared to match the type
of the expression it replaces. It is easy to see that [t-error]
checks (t-error) successfully.

For Fexc, all typing rules check successfully and we end up
with the classification below.

Classification = {

λx : T .e 7→ value→,
ΛX .e 7→ value ∀,
app 7→ elim→,
tapp 7→ elim ∀,
try 7→ errorHandler,
raise v 7→ error

}

We write Classification ⊢ app : elim → for retrieving
information about operators.

Back to Error Context. After having meta type checked
the typing rules, we can check Error Context because we
have acquired knowledge on the error handler, if present.
Indeed, we need to ensure ErrCtx, and we do so with the
typing judgement Classification | Context ⊢ Error Context,
defined below.

Classification | Context ⊢ Error Context

(op · · · ) : error < Classification
Classification | Context ⊢ er ::= ϵ

Classification ⊢ (op1 · · · ) : error
(op2 · · · ) : errorHandler < Classification
Classification | Context ⊢ Context[F/E]

Classification ⊢ (op1 · · · ) : error
Classification ⊢ (op2 · · · ) : errorHandler

Classification | Context ⊢ Context[F/E] − (op2 F · · · )

If the language does not contain an error, Error Context
is the empty derivation ϵ , which we consider well-typed by
default. If an error is present but there are no error handlers,
then we simply impose that error contexts are exactly the
evaluation contexts. We recall that evaluation contexts are
defined with the variable E and error contexts are defined
with the variable F . With the notation Contexts[F/E] we
denote the grammar of Context in which variables E are
replaced with F . Ultimately, if an operator is classified as an
error handler, we check that error contexts are evaluation
contexts minus the error handler at the principal argument
(F as the first argument of op2).
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Type checking error contexts make them synch with eval-
uation contexts, and helps proving the progress theorem
for the language being type checked because it ensures that
operators have a defined behavior if an error appears as one
of their arguments.

3.3 Meta Type System for Dynamic Semantics
Figure 5 contains the meta type system for checking the
dynamic semantics. The language design invariants that we
enforce at this point are:
• ValRed: Principal arguments, and any argument that
is required to be evaluated to a value for a reduction
rule to fire, must be declared as evaluation context. For
example, without the context declaration (E e ) the ex-
pression ((λx .x ) (λx .x )) nil) would be stuck because
(beta) would not fire and jeopardize type soundness.
Similarly, since (beta) requires that also the second
argument of app be a value, missing the evaluation
context would jeopardize type soundness.
• AllVal: Each elimination form of some type manipu-
lates all the values of that type. For example, were we
to miss to specify the reduction rule for the predeces-
sor operation (pred zero) −→ error, the expression
(pred zero) would be stuck, jeopardizing type sound-
ness.
• ErrSucc: Error handlers must handle both the error and
the case of success. For example, if we were to define
(r-try-error) as the sole behavior of the error han-
dler, the expression try true with e would be stuck,
jeopardizing type soundness. A reduction rule such
as (r-try-success), which expects a value at principal
argument position, must be specified.
• Preserv: Naturally, reductions must be type preserv-
ing, i.e., in a reduction e −→ e ′, e and e ′ must have the
same type.

[r-main] is the main typing rule. First, it imposes that
(ctx) and (err-ctx) are present. Next, it makes sure that the
rest of the reduction rules ϕ1, . . ., ϕn are well-typed.
Meta type checking a reduction rule returns a move map

(C ), which is a description of the computational step that the
reduction rule enables. A move map assigns a move (M ) to
the operator that is the subject of the reduction rule. Moves
can be:
• eliminates op: for reduction rules of elimination forms,
which manipulate some specific value.
• handlesError: for the reduction rule that handles the
error.
• handlesSuccess: for the error handler to handle the
case when an error does not occur.
• moves: for reduction rules of derived operators.

When all the reduction rules have been checked, [r-main]
collects all the movemaps and we perform an exhaustiveness

check to ensure that AllVal and ErrSucc are fulfilled. This
is done with Moves exhausts Classification.
[r-elimination] handles the case of reduction rules for

elimination forms. The first aspect that [r-elimination]
enforces is the language design pattern Elim. To this aim, we
check that op1 is an elimination form for a type c and that op2
is a value of the same type c . Next, [r-elimination] covers
ValRed. In particular, we check that the principal argument
(position 1) is an evaluation context. Not only that, we check
that any other argument of op1 that is required to be a value
has an evaluation context defined. These checks help satisfy
the progress theorem of the language being type checked. If
some arguments need to become a value for the rule to fire,
the existence of the corresponding evaluation contexts let
them evaluate indeed. Also, [r-elimination] ensures that
when the principal argument becomes the value op2 then
we can take a step with this reduction rule, satisfying the
progress theorem.
Lastly, [r-elimination] and all other rules of Figure 5

check that the overall reduction is type preserving. This is
done with the last line of the premises. We postpone the
discussion of type preservation until Section 3.4.

To make an example, we instantiate [r-elimination] for
(beta) and one of the reduction rules for head. (Below and
throughout this subsection we have elided the type preser-
vation check, which we discuss later).

Classification ⊢ app : elim→
Classification ⊢ λ x : T .e : value→
Context ⊢ app : {1,2}

Context
| Classif.
| Type System

⊢ (app (λ x : T .e )) v −→ e[v/x ] :
app
7→

eliminates λ

Classification ⊢ head : elim List
Classification⊢ cons v1 v2 : value List

Context ⊢ head : {1}

Context
| Classif.
| Type System

⊢ head (cons v1 v2) −→ v1 :
head
7→

eliminates cons

Notice that a call-by-name application with reduction rule
(app (λ x : T .e1)) e2 −→ e1[e2/x ] would be handled simi-
larly, with the difference that the check on evaluation con-
texts would be Context ⊢ app : {1}. This is because, roughly
speaking, the second argument of the application is an e
rather than a v .
[r-errHandler] addresses the reduction rule for error

handling. This rule is similar to [r-elimination]. We first
detect that the operator at hand is an error handler, and
then we check that the principal argument forms an error.
To make an example, [r-errHandler] is instantiated for
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Move Maps C ::= op 7→ M
Moves M ::= eliminates op | handlesError | handlesSuccess | moves

Moves exhausts Classification whenever

{op1 : elim c, op2 : intro c} ⊆ Classification implies op1 : eliminates op2 ∈ Moves, and
{op1 : errorHandler, op2 : error} ⊆ Classification implies {op1 : handlesError,op1 : handlesSuccess} ⊆ Moves.

Context | Classification | Type System ⊢ Dynamic Semantics

[r-main]

ErrCtx =



{(err-ctx)}, if Classification ⊢ op : error
∅, otherwise

Context | Classification | Type System ⊢ ϕ1 : M1
. . .

Context | Classification | Type System ⊢ ϕn : Mn
M1, . . . ,Mn exhausts Classification

Context | Classification | Type System ⊢ ErrCtx ∪ {(ctx),ϕ1, . . . ,ϕn }

[r-elimination]
Classification ⊢ op1 : elim c

Classification ⊢ (op2 arдs ′) : value c
Context ⊢ op1 : contextPositions
∀i ∈ {1} ∪ {i | arдsi = v},i ∈ contextPositions

Type System ⊢lhs (op1 (op2 arдs ′) arдs ) : ty ⇒ Γs Type System | Γs ⊢rhs exp
+ : ty

Context | Classification | Type System ⊢ (op1 (op2 arдs ′) arдs ) −→ exp+ : op1 7→ eliminates op2

[r-errHandler]
Classification ⊢ op1 : errorHandler
Classification ⊢ (op2 arдs ′) : error

Context ⊢ op1 : contextPositions
∀i ∈ {1} ∪ {i | arдsi = v},i ∈ contextPositions

Type System ⊢lhs (op1 (op2 arдs ′) arдs ) : ty ⇒ Γs Type System | Γs ⊢rhs exp
+ : ty

Context | Classification | Type System ⊢ (op1 (op2 arдs ′) arдs ) −→ exp+ : op1 7→ handlesError

[r-success]

Classification ⊢ op : errorHandler Context ⊢ op : contextPositions
∀i ∈ {1} ∪ {i | arдsi = v},i ∈ contextPositions

Type System ⊢lhs (op v arдs ) : ty ⇒ Γs Type System | Γs ⊢rhs exp
+ : ty

Context | Classification | Type System ⊢ (op v arдs ) −→ exp+ : op 7→ handlesSuccess

[r-moves]

Classification ⊢ op : derived Context ⊢ op : contextPositions
∀i ∈ {1} ∪ {i | arдsi = v},i ∈ contextPositions

Type System ⊢lhs (op arдs ) : ty ⇒ Γs Type System | Γs ⊢rhs exp
+ : ty

Context | Classification | Type System ⊢ (op arдs ) −→ exp+ : op 7→ moves

Figure 5. Meta Type system: Dynamic Semantics

(r-try-error) in the following way.

Classification ⊢ try : errorHandler
Classification ⊢ (raise v ) : error
Context ⊢ try : {1}

Context
| Classification
| Type System

⊢
try raise v
with e

−→ (e v )
try
7→

handlesError

[r-success] addresses the reduction rule that specifies the
behavior of the error handler when an error does not occur.
We first detect that the operator is an error handler. Then, we
check that a value v appears in principal argument position.
To make an example, [r-success] checks (r-try-success) in
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the following way.
Classification ⊢ try : errorHandler

Context ⊢ try : {1}

Context
| Classification
| Type System

⊢ try v with e −→ v :
try
7→

handlesSuccess

[r-moves] handles the reduction rule of derived operators.
To make an example, the reduction rules for fix and let are
handled as follows. (Evaluation contexts are fix E | let x =
E in e .)

Classification ⊢ fix : derived Context ⊢ fix : {1}

Context
| Classification
| Type System

⊢ fix v −→ v (fix v ) : fix 7→ moves

Classification ⊢ let : derived Context ⊢ let : {1}

Context
| Classification
| Type System

⊢ let x = v in e −→ e[v/x ] : let 7→ moves

3.4 Meta Type Checking for Type Preservation
A mandatory part of type soundness is that reduction rules
must be type preserving. Given a reduction rule exp −→
exp ′, we have to ensure that the types of exp and exp ′ coin-
cide. This is done with the last line of premises in each rule
of Figure 5. Differently from the rest of the meta type system,
where organizational principles play a role, we are unaware
of language organization methods that ensure type preser-
vation. Language designers typically simply write reduction
rules making sure that the type on the left-hand side and that
on the right-hand side coincide. Works such as [Pfenning
and Schürmann 1999; Schürmann 2000] and [Grewe et al.
2015] have demonstrated that type preservation checks can
be automated with theorem provers. Our approach adapts
that method and integrates it within the formalism of our
meta type system.

Ideally, we need to check that for all Γ, Γ ⊢ exp : T implies
Γ ⊢ exp ′ : T , but checking all possible type environments is
prohibitive. Therefore, we approximate such a check with
the use of a symbolic type environment, which contains the
assumptions on the types of the variables. Our first check is
Type System ⊢lhs exp : ty ⇒ Γs , which means that accord-
ing to the type system we have that exp has type ty under
assumptions Γs , which are computed as output. The way we
build Γs for exp is by inverting the typing rules used to type
check exp. As we essentially use the method in [Grewe et al.
2015; Pfenning and Schürmann 1999; Schürmann 2000] we
omit this part here, though it can be found in Appendix B.
To make an example, head (cons v1 v2) −→ v1 gives

Γs = Γ ⊢ v1 : T , Γ ⊢ v2 : List T . We also obtain its type T .
Then, we check Type System | Γs ⊢rhs exp ′ : ty, which
means that exp ′ has type ty according to the type system
and Γs , which is an input this time. This check solves a

provability problem:
Type System ∪ Lemmas ∪
Γ ⊢ v1 : T , Γ ⊢ v2 : List T |= Γ ⊢ v1 : T .

That is, the formula Γ ⊢ v1 : T can be proved with the infer-
ence system formed by the type system, substitution lemmas
(Lemmas, see below), and the formulae in Γs .

Lemmas contains the well-known substitution lemmas:

(typ-sub1)
Γ,x : T1 ⊢ e : T2 Γ ⊢ e ′ : T1

Γ ⊢ e[e ′/x ] : T2

(typ-sub2)
Γ,X ⊢ e : T

Γ ⊢ e[T ′/X ] : T [T ′/X ]
We have proved that these lemmas automatically hold for

any given language that is restricted to our setting.

4 Correctness of the Meta Type System
We have proved the correctness of our meta type system:
Language definitions that are well-typed are guaranteed to
be type sound.

Theorem 4.1 (Correctness of ⊢ L).
Given a language definition L, if ⊢ L then L is type sound.

The proof is in Appendix A. Once the language defini-
tion is type checked, it has a predictable structure, and we
can automate the proof of Wright and Felleisen [Wright and
Felleisen 1994]. The proof replays canonical form lemmas,
the progress theorem, type preservation theorem and, ulti-
mately, the type soundness theorem.

5 Evaluation
We have implemented our meta type system in a tool called
lang-n-check [Cimini 2015]. This tool is written in OCaml
and type checks language definitions that are written in a
rather intuitive domain-specific language. An example of
language definition is in Figure 1 of the introduction section.

The type preservation checks for reduction rules are done
by compiling languages into the Abella theorem prover
[Baelde et al. 2014] and by running the queries described in
Section 3.4.

Deriving Type Soundness of Languages. We have used
lang-n-check to derive the type soundness of several lan-
guages: STLC, STLC with integers, booleans, pairs, lists,
sums, tuples, fix, let, letrec, unit, universal types, re-
cursive types, option types, exceptions, list operations such
as append, map, mapi (also depends on the position in the
list of the current element being processed), filter, filteri,
range, list length, reverse, and the recursor of natural num-
bers (natrec). We have also considered different evaluation
strategies for the features mentioned above: call-by-value,
call-by-name and a parallel reduction strategy (both function
and argument can evaluate non-deterministically), as well
as lazy pairs, lazy lists, and lazy tuples, and both left-to-right
and right-to-left evaluations.
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As we said above, lang-n-check compiles languages into
the Abella theorem prover. If they type check successfully
lang-n-check also generates their machine-checked proof
of type soundness. We therefore have a mechanized proof
for all the languages that we have tested. This gives us high
confidence that, besides the theoretical guarantees of our
paper, also our implementation is reliable.
Some remarks on the type preservation checks and the

generation of the machine-checked proof are in order. These
are two different processes. During type checking, we use
Abella to run queries that check for type preservation. After
type checking, lang-n-check generates the proof code that
describes the proof of type preservation. This code contains
instructions to do case analysis on hypothesis at the correct
order, apply the inductive hypothesis, and so on. If the men-
tioned queries succeed during type checking, then the proof
code succeeds, too, as the proof is guaranteed to find what it
needs during its execution.

Informative Error Messages. lang-n-check has been
used to teach programming languages theory [Cimini 2019].
That paper remarks that lang-n-check can report informa-
tive error messages to the user.
We provided an example in the introduction section. To

show other examples3, consider the listing in Figure 1 of the
introduction.
• Were we to miss one of the reduction rules for the
if operator, say the rule at line 22, lang-n-check
would reject the language definition and print the error
message “Operator if is elimination form for the type
bool but does not have a reduction rule for handling one
of the values of type bool: value tt”.
• Were we to miss the context declaration (app v C )
at line 6, lang-n-check would reject the language
definition and print the error message “Reduction rule
for elimination form app requires argument 2 to be a
value but that argument is not declared as evaluation
context, hence some programs may get stuck”.
• If the language definition had contexts declarations
(app C v ) and (app v C ), lang-n-checkwould reject
the definition and print the error message “Evaluation
contexts have cyclic dependencies, hence some programs
may get stuck”.

Limitations and Future Work. There are type sound
languages whose type soundness cannot be verified with our
system. We shall discuss some limitations of our meta type
system.
The shape of the typing relation and reduction rules are

enforced to be Γ ⊢ e : T and e −→ e , respectively, which
is standard for purely functional languages, and does not
capture languages with effects, typestate, and stores, to name
a few. We plan to address those features in the future. We do
3Similar examples are made in Cimini 2019.

not have a general treatment for subtyping and type-based
access, therefore calculi such as Featherweight Java [Igarashi
et al. 2001] are currently out of the scope of lang-n-check.
Similarly, the grammar for types forbids dependent types
and refinement types. These are advanced features that we
leave for future work. We also plan to extend our work to
give the user the possibility to define layered grammars such
as expressions vs statements.
Languages are restricted to an organization that is based

on introduction forms and elimination forms, as well as other
roles. Some calculi may not fit this schema even within the
realm of functional languages. For example, the gradually
typed λ-calculus has a cast operator that is some times a
value and some times performs computational steps [Siek
and Taha 2006], and therefore defies this schema.
Our setting only allows unary binding [Cheney 2005].

This has been sufficient for the languages that we have
checked. However, such restricted approach leaves out some
languages, especially those that are non-lexically scoped.
We plan to adopt more sophisticated binding structures. In
this regard, we are looking at integrating scopes and frames
[Néron et al. 2015; Poulsen et al. 2016], which have been
successfully employed in other systems [Poulsen et al. 2017].

6 Related Work
Intrinsically Typed Languages. Poulsen et al have demon-

strated that intrinsic typing can derive the soundness of a
large subset of Middleweight Java [Poulsen et al. 2017]. The
applicability of their work is much more general than that of
this paper in at least two aspects. First, they capture a rather
complex language with a store, which is out of the scope of
our meta type system. Second, they employ a more general
binding structure to accommodate classes. We make use of
a less expressive unary binding approach.
The title of our paper is inspired by theirs4. 1) We use

extrinsic typing rather than intrinsic typing. As we have
explained in the introduction, the two are conceptually dif-
ferent approaches. Also, our meta type system can print error
messages that use the jargon of language designers, which
is not the case for [Poulsen et al. 2017].

2)Weworkwith operational semantics formulations rather
than definitional interpreters. The latter are Agda implemen-
tations of languages, whose evaluator must be augmented
with the so called fuel to help the compiler derive termi-
nation [Owens et al. 2016]. In contrast, our meta type sys-
tem may appeal a part of the community for working with
language definitions that are in 1-1 correspondence with
pen&paper formulations. The syntax of lang-n-check is in-
deed inspired by that of the much earlier work of Ott [Sewell
et al. 2007]. Cimini [Cimini 2019] observes that students

4For ease of reference, the title is “Intrinsically Typed Definitional Inter-
preters for Imperative Languages”.
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could use lang-n-check after having been taught type sys-
tems and operational semantics with the TAPL textbook
[Pierce 2002]. Moreover, Poulsen et al. target a big-step se-
mantics, which does not need evaluation contexts. In con-
trast, we use small-step semantics and our meta type system
contributes a formal treatment for evaluation contexts.
3) Our title makes it clear that the scope of our paper

is that of functional languages rather than imperative lan-
guages. In this regard, we acknowledge that the state of the
art of intrinsic typing is substantially ahead. This is further
exemplified by the existence of work on linear and session
types with intrinsic typing [Rouvoet et al. 2020], which also
are out of our scope.

AutomatedTheoremProving. The seminal work of Schür-
mann and Pfenning shows that the type soundness of non-
trivial functional languages can be automatically established
in the LF-based theorem prover Twelf [Pfenning and Schür-
mann 1999; Schürmann 2000]. The Veritas tool automates the
verification of the type soundness of languages by compiling
them into a first order theorem prover, and by checking that
suitable formulae hold [Grewe 2019; Grewe et al. 2016, 2017,
2015]. The way our meta type system checks type preser-
vation stems directly from these works, but our approach
to progress is different. Differently from these works, we
establish progress by encoding language invariants as a typ-
ing discipline rather than querying a theorem prover with
formulae. To our knowledge, those tools also do not report
error messages that refer to language design terminology,
such as the messages in Section 5.

Type Sound Language Extensions. Schwaab and Siek
[Schwaab and Siek 2013], and Delaware et al [Delaware
et al. 2013] provide solutions to the composition of already
existing proofs of type soundness. Lorenzen and Erdweg’s
work on SoundX [Lorenzen and Erdweg 2016] proposes a
method to establish the soundness of language extensions,
making sure that their desugaring is correct. In contrast to
these works, our meta type system checks that a language
definition given from scratch is type sound in the first place.
These works are somehow orthogonal to ours, and we plan
to integrate their insights in our context.
Marino and Millstein propose a generic type-and-effect

system [Marino and Millstein 2009] that language designers
can instantiate with effects. The resulting languages are guar-
anteed to be type sound. However, the underlying language
of the framework is fixed and only the effects of the language
are parametrized. Therefore, adding new operators does not
come with a guarantee of type soundness. In contrast, our
work allows language designers to define the operations of
languages and check for type soundness. In the future, we
plan on integrating the approach of Marino and Millstein
into lang-n-check and add a now missing treatment for
effects.

Model Checking. Roberson et al. [Roberson et al. 2008]
propose a model checking approach to type soundness in
which configurations are generated, steps are computed, and
then type checked. Similarly to testing, this approach can
detect bugs but cannot guarantee type soundness.

Language Workbenches and Semantics Engineering

Tools. There are several tools that support the specification
of languages, such as Ott [Sewell et al. 2007], Lem [Mulligan
et al. 2014], the K framework [Roşu and Şerbănuţă 2010],
and PLT Redex [Felleisen et al. 2009]. Furthermore, language
workbenches also assist language designers with a plurality
of language services [Erdweg et al. 2013, 2015; Fowler 2005],
and some have extensive support for implementing type
systems, such as MPS [Voelter and Solomatov 2010], Xtext
[Bettini 2011; Efftinge and Spönemann 2006], and SugarJ
[Erdweg et al. 2011], to name a few. However, these systems
do not establish the type soundness of the languages being
defined5.
A related work in the context of tools for teaching is SA-

SyLF [Aldrich et al. 2008], a proof assistant that has been
used in the classroom. Students can write derivations and
proofs in readable proof code and SASyLF provides feedback
on students’ mistakes. Differently from SASyLF, students
do not write proofs in lang-n-check, they receive feedback
directly on the language definitions they provide.

7 Conclusions
In this paper, we have presented an extrinsic type system
that establishes the type soundness of functional languages
defined in operational semantics. Our meta type system is
based on a typing discipline that models a high-level lan-
guage design organization. We have proved that our type
system is correct. Furthermore, we have implemented our
work in the lang-n-check tool and we have applied it to a
plethora of functional languages.
Intrinsic typing has certainly demonstrated that it can

scale well, thanks to recent advances in its theory and prac-
tice [Poulsen et al. 2017; Rouvoet et al. 2020]. We have in-
formally referred to such advances as Stage 2 in the intro-
duction. This paper introduces the extrinsic typing approach
to type soundness and we believe that it helps to establish
Stage 1 for this research line. In the future, we plan to tackle
sophisticated languages with extrinsic typing.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1763922.

5Aplan to equip Spoofax [Kats and Visser 2010] with verification capabilities
has been reported [Visser et al. 2014] but we are not aware of any integrated
component for it yet.
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A Correctness of the Meta Type System
We follow the syntactic approach to type soundness ofWright
and Felleisen [Wright and Felleisen 1994].We generate canon-
ical form lemmas, progress, type preservation and, ultimately,
type soundness theorems and proofs.

A.1 Progress Theorem
Progress Theorem:

If ⊢ L then
if ∅ ⊢ e : T then e progresses.

An expression e progresses whenever either e is a value, e
is an error, or there exists e ′ such that e −→ e ′.

The Main Progress Theorem. Assume ⊢ L and ⊢ e :
T . The proof is by induction on ⊢ e : T . As ⊢ e : T is
provable, it means that there exists a typing rule ϕ of the

form
f1, . . . fn

conclusion
that is ’satisfied’, that is, there exists a

substitution γ from logical variables (of the rule) to terms
such that fiγ are all satisfied for all fi , and (conclusion)γ =
⊢ e : T .
For each case of the induction on ⊢ e : T , the proof goes

as follows. Since ⊢ L and ϕ is a typing rule of L then ϕ
has been type checked. Therefore, e has a top level operator
op and arguments, as this is the shape imposed for typing
rules. It also means that all the arguments of the opera-
tor, say ẽ , are the subject of a typing premise, because our
type checker imposes that shape for typing rules. There-
fore we can apply the inductive hypothesis on the argu-
ments ẽ . In particular, we apply the inductive hypothesis
for those arguments ei with index i ∈ contextPosition from
Context ⊢ op : contextPosition, i.e., only to the contextual
arguments. As Context has been meta type checked, ei is
not under a binder. Therefore the typing premise for ei is of
the form Γ ⊢ ei : tyi (and not with Γ,x : T ). Therefore we
can apply the inductive hypothesis to ⊢ eiγ : tyiγ for all of
these, and we derive that eiγ proдresses . We call the Progress
Lemma for op (defined below), which expects exactly those
progress assumptions eiγ proдresses . The Progress Lemma
for op satisfies the Main Progress Theorem, as discussed
below.

Progress Lemma for op. Fix an operator op in L, and
let Context ⊢ op : {1, . . . ,n} ∈ Context. Without loss of
generality, here contextual arguments appear first as a pre-
sentational aid. The progress theorem for op is: (We mark
one of the assumption with (H)).

if ⊢ L and (H) ⊢ (op e1 . . . en ẽ ) : T , and proдress e1, . . .,
proдress en then proдress (op e1 . . . en ẽ ).

The proof is by case analysis on (H). If ⊢ (op e1 . . . en ẽ ) :
T has been proved, than it has been proved with a typing rule
ϕ. We do case analysis on all proдress e1, . . . proдress en , but
in a suitable order. Since ⊢ L, we have that acyclic(Context).
Therefore we can choose an order for argument positions for
which the following invariant (invariant) holds: we do case

analysis on progress ei before the case analysis on progress
ej if the context for i-th argument of op does not depend on
the valuehood of the argument j of op. As this order must
exist, without loss of generality, to aid the proof we fix that
the evaluation contexts are left-to-right. After the series of
cases analysis on progress ei , we are at the leftmost child of
the leftmost tree of the cases.

Example: If we have two arguments, the first case analysis
on proдress e1 opens three cases: 1) value e1 ∧ proдress e2,
2) step e1 ∧ proдress e2, 3) error e1 ∧ proдress e2, where
step e means that e can take a step, and error e means that
e is an error. After we open this case analysis we are at the
left child 1). We now do case analysis on proдress e2 and we
open other three cases only on the left child: the leftmost
subtree is 1) value e1 ∧ value e2, 2) value e1 ∧ step e2, 3)
value e1 ∧ error e2. Afterwards, we are still at the leftmost
child: value e1 and value e2, thanks to the invariant.

We show only the case for this leftmost child here, as the
further cases analysis generated follow a similar reasoning.
The proof is by case analysis on the role that op has in

Classification. This role exists because ⊢ L, and therefore a
typing rule for op has been type checked, then Classification
has been produced.
• op is (value c ): As Classification ⊢ op arдs : value c
then op arдs ∈ Values. There are three cases. The first
is when we strive to apply the value definition for op,
however, this definitions may use a v variable if some
argument is required to be a value for the definition to
apply. As we have type checked op, these arguments
must be in contextPosition and therefore they all are
involved in aproдress e1, . . .,proдress en assumptions.
We are also in the case in which we have done a case
analysis on all of them, and we are in the case where
all of them are values, and so the definition applies.
We have
– STEP: case ej −→ e ′j . Moreover, we have that all
arguments of op before j are all values. Therefore
we can apply the evaluation context (op ṽ Ej ẽ )
(recall that we assume left-to-right evaluation but
the argument generalizes for any topological sort
on the dependencies of contexts) to prove a step
(op ṽ ej ẽ ) −→ (opṽ e ′j ẽ ), and so we progress.

– ERR: ej is an error. Moreover, we have that all
arguments of op before j are all values. Therefore we
can apply the evaluation context (op ṽ Ej ẽ ). Since
we have type checked Error Context(op) and we are
in the context of a value (op arдs : value c) (rather
than an error handler), we have that (op ṽ Fj ẽ ) is
an error context. Therefore, we can prove a step
(op ṽ ej ẽ ) −→ ej , i.e. a step to the error, with ctx-
err. So, we progress.

• op is (elim c ): Then [t-elim] has meta type cheked
ϕ. This means that the ϕ has a typing premise for
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the principal argument of the form ⊢ e1 : (c T̃ ). Also,
we are exploring the case where e1 is a value. There-
fore, we apply the Canonical Forms Lemma for c (de-
scribed in the following paragraph). This means that
e1 = t1 ∨ . . . ∨ tm (this is notation from the next
paragraph) with all tk be with form (op2 arдs ) and
op2 ∈ Values. Then, since Dynamic Semantics has
been meta type checked, it must have producedMoves
that passed the exhaustiveness check exhaust. There-
fore we have op : elim c and Classification(op2) =
value c , which enforces that a reduction rule of the
form r = (op (op2 ev2)ev1) −→ exp exists. As we are
in the case where the principal argument is a value,
and also all other argument in ev1 are values, we have
that this reduction rule fires and takes a step, and so
we progress.
The other cases for op : elim c are proved as in STEP
and ERR above.

• op is (error): This is handled similarly as to values,
though it satisfies progress because the error definition
applies rather than a value definitions.
The other cases for op : elim c are proved as in STEP
and ERR above.

• op is (derived): Then ϕ has been meta type checked by
[t-derived]. Therefore, a rule (op ṽi ẽ

′
i ) −→ ei exists.

Also, all those vi are in evaluation contexts, and so
have been involved in the progress hypothesis above
and a case analysis on all of them is being performed.
So we are in the case where they are all values and thus
the reduction rule can apply because our type checker
imposes that the shape of the reduction rule does not
pattern-match arguments for the derived operator op,
but imposes that it requires the arguments to bevs, and
we are in the case where those are all values indeed.
So the rule fires, and we progress.
The other cases for op : elim c are proved as in STEP
and ERR above.

• op is (errHandler): Thenϕ has beenmeta type checked
by [t-errHandler]. Then, since Dynamic Semantics
has been meta type checked, it must have produced
Moves, which by our exhaustiveness check it contains
op : handlesSuccess. This means that it exists a reduc-
tion rule of the form (op v ev ) −→ exp. We are in the
case where the arguments are values, and so they sat-
isfy that v in first argument position. So this rule fires,
and we progress. Next. we need to prove the cases for
step and error . The former is handled with STEP. The
latter is handled differently from the previous cases
as type checking of Error Context excluded an error
context for that position. However, exhaustiveness of
Moves imposes that we have op : handlesError, which

in turn, implies that there exists a reduction rule that
fires when the error is at that position. Therefore, this
reduction rule can apply and prove a step, and so we
progress.

Canonical Forms Lemma for c . In the theorem below,
we have marked an assumption with (H) and another with
(V).

Theorem A.1. if ⊢ L and (H) ⊢ e : (c T̃ ) and (V) value e
then e = OR ({(op arдs ) | Classification ⊢ (op arдs ) :
value c}).

We use OR to denote the disjunction of a set of formulae.
value e means that e can be derived with the grammar for
Value in L.

The proof is by case analysis on (H). If ⊢ e : (c T̃ ) has
been proved, than it has been proved with a typing rule ϕ.

As Type System has been meta type checked, the conclu-
sion of the typing rule has a form of an expression with a
top level operator op.

We reason by cases analysis on the classification of op. if
Classification ⊢ (op arдs ) : value c ) (notice the same c), then
it is one of the values in OR ({(op arдs ) | Classification ⊢
(op arдs ) : value c}), which proves this case. The case
Classification ⊢ (op arдs ) : value c ′}) with c ′ , c cannot
happen because t-value imposes that (op arдs ) is typed at
a type (c ′ T̃ ) but we are doing a case analysis on assumption
(H) which is ⊢ e : (c T̃ ), hence the case analysis cannot give
a case with c ′ , c .
If the operator op is such that Classification ⊢ (op arдs ) :

elim c , or derived c , or error c , or errorHandler c , then there
is a contradiction with (V), so these cases are discarded, and
are proved successfully.

A.2 Type Preservation
Type Preservation Theorem :

if ⊢ L then
for all expressions e , e ′ and types T ,

if ∅ ⊢ e : T and e −→ e ′ then ∅ ⊢ e ′ : T
The proof is by induction on e −→ e ′.
Since e −→ e ′ is provable, then there exist a reduction rule

ϕ with conclusion concl = exp −→ exp ′ and a substitution
γ such that conclγ = e −→ e ′.

We have that ϕ has been type checked, therefore our type
checker has classified a move for ϕ such as eliminates op,
or some other move. We show the case when the role of ϕ
is eliminates op because the cases for the other moves are
subsumed by this. In particular, error handlers follow the
same line, and derived operators are even simpler as they do
not have a nested expression that is pattern-matched.

We have to prove that (exp ′)γ is of type T .
As we have type checked ϕ as eliminates op, we know that

e = (op (op2 Iarдs1) Iarдs2), as this is the shape required by
[r-elim]. We have ∅ ⊢ e : T from the proviso of the theorem,
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which must have been proved with a typing rule of the form
ps

Γ ⊢ (op ...)
. Here, ps are the premises that contribute to

populate Γs for the type preservation check. As the typing
rule has been type checked, too, its shape must be such
that all the arguments that are expressions are recursively
type checked. We therefore have a premise in ps that type
checks (op2 Iarдs1), and this formula has been proved, too.
Therefore there is another typing rule that has type checked

that formula, and has the form
ps ′

Γ ⊢ (op2 ...)
, where ps ′,

too, contributes to populate Γs . Now, since [r-elim] has been
applied, also its type preservation checks have been satisfied,
and we have that (#) Type System∪ Lemmas∪ Γs |= exp : T
and that (*) Type System ∪ Lemmas ∪ Γs |= exp ′ : T . The
variables of exp and exp ′ have been assigned a type in Γs . The
rule meta-variables of exp and exp ′ are also in the domain of
γ (the substitution that has proved [r-elim]). As (#) and (*)
have been proved with those variables universally quantified,
any expression that we substitute to those still makes (#) and
(*) provable. Therefore, we have (#) Type System∪Lemmas∪
Γs |= (exp)γ : T and (*) Type System ∪ Lemmas ∪ Γs |=
(exp ′)γ : T . As e = (exp)γ and e ′ = (exp ′)γ , then the LHS
and RHS have the same type.
Contextual rules and error context rules follow standard

reasoning (recall that errors are always typed at any type).

A.3 Type Soundness
Type soundness follows from progress and preservation in
the usual way.

B Inverting Typing Rules for Type
Preservation
(invert-one)

Type System.premises ((op ãrдs )) = Γs

Type System
∪ Lemmas
∪ Γs

|= (op1 (op2 Iarдs1) Iarдs2) : ty

Type System ⊢lhs (op ãrдs ) : ty ⇒ Γs

(invert-two)
Type System.premises ((op2 Iarдs1)) = Γs1

Type System.premises ((op1 (op2 Iarдs1) Iarдs2)) = Γs2
Γs = Γs1 ∪ Γs2

Type System
∪ Lemmas
∪ Γs

|= (op1 (op2 Iarдs1) Iarдs2) : ty

Type System ⊢lhs (op1 (op2 Iarдs1) Iarдs2) : ty ⇒ Γs

(rhs-check)
Type System ∪ Lemmas ∪ Γs |= exp : ty

Type System | Γs ⊢rhs exp : ty

Type System.premises ((op ãrдs )) ≡ ps ′

if r =
ps

Γ ⊢ (op Iarдs ′)
∈ Type System

and
ps ′

Γ ⊢ (op ãrдs )
= r instantiated with (op ãrдs )
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