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What is a logical framework?

I would like to have a fancy definition.
Instead, let us characterize some properties.

I A formal system based on well considered foundations that
has a mature literature.

I That literature should contain clear means to implement and
to reason about that framework.

I Specifications are independent of technology.

A logic framework, as opposed to an algebraic or categoric
framework, should

I contain inference rules, consistency, cut-elimination
(normalization) and

I various well understood logics (e.g., propositional minimal
logic) should be subsystems.



Polemics: Girard and de Bruijn

J.-Y. Girard

I “The word ‘meta-logic’ should not be used in front of small
children.” (sometime prior to Nov 2009)

I ”Logic 2.0” at TLLA 2017 (September 2017). My
understanding: the rejection of all axioms. Build everything
from very few primitive concepts. The latter are inspired by
propositional (linear) logic and proof nets.

De Bruijn: “A plea for weaker frameworks”

I He was interested in supplying tools to mathematicians.

I Implement something simple (say, dependently typed
λ-calculus) and move forward even if you must write lots of
axioms.

I Mathematics uses lots of axioms, anyway.
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Polemics: my perspective

Logical frameworks are tools but they should not be too simple.

We should incorporate more logical principles when possible: e.g.,
moving from intuitionistic logic (⊃, ∀) to LL (adding lollipop) to
full linear logic (adding par and negation).

First-order quantification is no problem. Higher-order predicate
quantification is still debated in some circles.

I replace de Bruijn’s “weak” with “well understood and modular
extensions with a mature literature and multiple implementations.”

I prefer a richer logic if I can do with fewer axioms.



One success of logical frameworks: bindings

The first logical frameworks appear in the late 1980’s when the
first intuitionistic logic frameworks were developed:
Isabelle/Generic, λProlog, Edinburgh LF.

Those three frameworks all provided roughly the same solution to
the problem of first-order quantification, substitution, and
eigenvariable restrictions by using typed λ-calculi modulo
αβη-conversion and using generic and hypothetical proof principles.

I prefer this approach over the nominal approach to bindings since
the later usually requires axiomizations.



Intuitionistic meta-logics for natural deduction

Natural deduction inference rules such as

A B
A ∧ B

A ∨ B

A
...
C

B
...
C

C

Can be encoded as formulas in intuitionistic logic as:

∀A,B [pv(A) ⊃ pv(B) ⊃ pv(A ∧ B)]

∀A,B,C [pv(A∨B) ⊃ (pv(A) ⊃ pv(C )) ⊃ (pv(B) ⊃ pv(C )) ⊃ pv(C )]

Object-level connectives are black; meta-level connectives are red.
We have one meta-level predicate pv.



What have we learned from linear logic?

The additive and multiplicative distinction of inference rules is
important.

Focusing and polarity yield synthetic inference rules.

I invertible rules are applied together (asynchronous phase)

I non-invertible rules are applied together and possibly in
parallel (synchronous phase)

I In classical and intuitionistic logics, contraction is applied only
with the “decide” rule and only on positive formulas.

I Negative non-atomic formulas are not contracted and not
weakened. logic formulas.

I Rich dualities can be expressed: e.g. left/right, cut/initial,
introduction/elimination
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Encoding the object-logic

We shall only consider two object-logics here: (first-order)
intuitionistic and classical logics.

Most (object-level) proof systems mention (object-level) formulas
in two senses.
• Sequent calculus: left-hand-side, right-hand-side
• Natural deduction: hypothesis, conclusion
• Tableaux: positive or negative signed formulas

These two senses are represented as the two meta-level predicates
b · c (left) and d · e (right), both of type bool→ o.

The two-sided, object-level sequent B1, . . . ,Bn ` C1, . . . ,Cm as the
one-sided, meta-level sequent ` bB1c, . . . , bBnc, dC1e, . . . , dCme.

Convention: bΓc denotes {bF c | F ∈ Γ}, etc.



The theory L: introduction rules

(⇒L) bA⇒ Bc⊥ ⊗ (dAe ⊗ bBc) (⇒R) dA⇒ Be⊥ ⊗ (bAc O dBe)
(∧L) bA ∧ Bc⊥ ⊗ (bAc ⊕ bBc) (∧R) dA ∧ Be⊥ ⊗ (dAe& dBe)
(∨L) bA ∨ Bc⊥ ⊗ (bAc& bBc) (∨R) dA ∨ Be⊥ ⊗ (dAe ⊕ dBe)
(∀L) b∀Bc⊥ ⊗ bBxc (∀R) d∀Be⊥ ⊗ ∀xdBxe
(∃L) b∃Bc⊥ ⊗ ∀xbBxc (∃R) d∃Be⊥ ⊗ dBxe
(⊥L) b⊥c⊥ (tR) dte⊥ ⊗>

The meanings of the two senses for object-level connectives are
supplied by these formulas.

Without polarization of the b · c and d · e atomic formulas, we do
not know what proof system we are encoding.



The theory L: structural and identity rules

(Id1) bBc⊥ ⊗ dBe⊥ (Id2) bBc ⊗ dBe
(StrL) bBc⊥ ⊗ ?bBc (StrR) dBe⊥ ⊗ ?dBe
(WR) dCe⊥ ⊗⊥

Specification of the identity rules (e.g., cut and initial), the
structural rules (weakening and contraction), and just weakening
(on the right).

Note: Mix would correspond to the formula ⊥⊗⊥, i.e., the
smallest positive formula B of MALL (without atoms) such that
neither ` B nor ` B⊥.



Proving dualities

The Id1 and Id2 formulas can prove the duality of the b · c and d · e
predicates: in particular, one can prove in linear logic that

` ∀B(dBe ≡ bBc⊥) & ∀B(bBc ≡ dBe⊥), Id1, Id2

Similarly, the formulas StrL and StrR allow us to prove the
equivalences bBc ≡ ?bBc and dBe ≡ ?dBe.



Three levels of adequacy

Roughly speaking

I if b · c and d · e formulas are both polarized negatively, we are
encoding sequent calculus.

I if d · e is polarized negatively and b · c polarized positively, we
are encoding natural deduction.

Level 0 / Relative completeness: the two systems have the same
theorems.
Level -1 / Full completeness of proofs: The proofs of a formula in
one proof system are in one-to-one correspondence with proofs in
the other proof system.
Level -2 / Full completeness of derivations: The derivations (i.e.,
open proofs) in one system are in one-to-one correspondence with
the other proof system.

Good frameworks should aim for Level -2 encodings.



Asking more from our tools

I Is the logical framework mechanizable?

I Can we get (prototype) provers and proof checkers?

I Can we use the logical framework to prove cut elimination and
initial elimination?

I Can we have simple checks that guarantee that cut is
admissible? that non-atomic initials are admissible?



Next steps: Contexts

Are they lists or multisets? Something more specialized?

Beluga has an approach using contextual modal type theory.

Abella is moving incrementally.

I We construct them as lists but deconstruct them as multisets.

I Many properties about them need to be defined and proved
(even though those properties appear to re-occur across many
specifications).

I Cut-elimination and instantiation of object-level judgments is
built into this approach to contexts.



Next steps: New perspective on terms

Term structure is too opaque. Term equality and term unification
(in Abella, say) seems just too complex. It’s a big black box.

The identification of the mobility of bindings (via pattern
unification and β0-conversion) has opened up this box more.

λx .t = λx .s iff ∀x .t = ∀x .s (or maybe ∇x .t = ∇x .s)

Can we re-think typed terms? Why are they based always on
intuitionistic natural deduction proof?

Recent papers explore focusing vis-a-vis term representation.

I Scherer’s PhD and subsequent papers

I Brock-Nannestad, Guenot, and Gustafsson. PPDP 2015:
λκ-terms

I Gérard and M, CSL 2017: administrative normal forms



Thank you

Questions?


