
Abstract Syntax and Logic Programming
September 1991

Dale Miller
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104–6389 USA
dale@cis.upenn.edu

Abstract. When writing programs to manipulate structures such as algebraic ex-
pressions, logical formulas, proofs, and programs, it is highly desirable to take the
linear, human-oriented, concrete syntax of these structures and parse them into a more
computation-oriented syntax. For a wide variety of manipulations, concrete syntax
contains too much useless information (e.g., keywords and white space) while impor-
tant information is not explicitly represented (e.g., function-argument relations and the
scope of operators). In parse trees, much of the semantically useless information is
removed while other relationships, such as between function and argument, are made
more explicit. Unfortunately, parse trees do not adequately address important notions of
object-level syntax, such as bound and free object-variables, scopes, alphabetic changes
of bound variables, and object-level substitution. I will argue here that the abstract syn-
tax of such objects should be organized around α-equivalence classes of λ-terms instead
of parse trees. Incorporating this notion of abstract syntax into programming languages
is an interesting challenge. This paper briefly describes a logic programming language
that directly supports this notion of syntax. An example specifications in this program-
ming language is presented to illustrate its approach to handling object-level syntax. A
model theoretic semantics for this logic programming language is also presented.

1. Introduction

Consider writing programs in which the data objects to be computed are syntactic
structures such as programs, formulas, types, and proofs. A common characteristic
of all these structures is that they involve notions of abstractions, scope, bound and
free variables, substitution instances, and equality up to alphabetic changes of bound
variables. Although the data types available in most computer programming languages
are, of course, rich enough to represent all these kinds of structures, such data types
do not have direct support for these common characteristics. Instead, “packages” need
to be implemented to support such data structures. For example, although it is trivial
to represent first-order formulas in Lisp, it is a more complex matter to write Lisp
programs that correctly substitute a term into a formula (being careful not to capture
bound variables), to test for the equality of formulas up to alphabetic variation, and to
determine if a certain variable’s occurrence is free or bound. This situation is the same

To appear in the Proceedings of the Second Russian Conference on Logic Program-
ming, September 1991, edited by A. Voronkov, Lecture Notes in Artificial Intelligence,
Springer-Verlag.

– 1 –



Implementation Strings, text (arrays or lists of characters)
Access Parsers, editors
Good points 1. Readable, publishable.

2. Simple computational models for implementation (arrays,
iteration).

Bad points 1. Contains too much information not important for many ma-
nipulations: white space, infix/prefix notation, keywords.

2. Important information is not represented explicitly: recur-
sive structure, function–argument relationship, term–subterm
relationship.

Figure 1: Characteristics of concrete syntax

when structures like programs or (natural deduction) proofs are to be manipulated and
if other programming languages, such as Pascal, Prolog, and ML, replace Lisp.

Before proposing an approach to dealing with representing such syntactic structures
in a logic programming language, let us consider current practice in representing syntax
in computer programs. Generally, syntax is divided into concrete and abstract syntax.
The first is the linear form of syntax that is readable and typable by a human. Figure 1
characterizes some properties of concrete syntax. The bad points can be overcome
by parsing concrete syntax into parse trees. Figure 2 characterizes some properties of
parse trees. The bad points concerning concrete syntax are now properly addressed,
although at significant costs. For example, higher levels of support are required for
the programming language and runtime system that encode parse trees. Parse trees,
however, are so much more convenient and natural to compute with than strings that
these additional costs are outweighed by the advantages to the programmer who must
write programs to manipulate syntax. The term abstract syntax is often identified with
parse trees: we shall reserve the former term for the more “abstract” form of syntax
described in the next section.

Parse trees are not without their bad points also. In particular, notions of ab-
straction within syntax are not supported directly. For example, we have the following
unfortunate properties of parse trees for representing syntax containing bound variables.
◦ Bound variables are, like constants, treated as global objects.
◦ Concepts such as free and bound occurrences of variables are derivative notions,

supported not by programming languages but by programs added on top of the
data type for parse trees.

◦ Although alphabetic variants generally denote the same intended object, the correct
choice of such variants is unfortunately very often important.

◦ Substitution is generally difficult to implement correctly.
◦ An implementation of substitution for one data structure, say first-order formulas,

will not work for another, say functional programs.
There are various computer systems that use a different approach to syntax. They

all make use of λ-terms modulo the equations of α, β, and η-conversions and implement

– 2 –



Implementation first-order terms, linked lists
Access car/cdr/cons in Lisp, first-order unification in Prolog, or match-

ing in ML.
Good points 1. Recursive structure is immediate.

2. Recursion over syntax is easy to specify.
3. Term–subterm relationship is identified with tree-subtree re-

lationship.
4. Algebra provides a model for many operations on syntax.

Bad points 1. Requires higher-level language support: pointers, linked lists,
garbage collection, structure sharing.

2. Notions of scope, abstraction, substitution, and free and
bound variables occurrences are not supported.

Figure 2: Characteristics of parse trees

various aspects of βη-unification (often called “higher-order” unification). One of the
earliest was designed by Huet and Lang [13]: here, only second-order matching was
used to decompose syntax. The generic theorem prover Isabelle uses a fragment of intu-
itionistic logic with quantification at higher-order types. The Isabelle implementation
includes βη-unification at all finite types. The language λProlog [21] is an extension
of Prolog that includes, among other things, βη-unification at all finite types. The Elf
programming language [23] is a logic programming language implementation of the LF
specification language [12] in a style similar to λProlog.

This short paper is organized as follows. In the next section, we shall motivate a
notion of abstract syntax that is more “high-level” than parse trees. Section 3 presents
the logic programming languageM that incorporates such abstract syntax. In Section 4
an example specification in M is presented. Finally, a model theory for M is given in
Section 5.

2. Motivating abstract syntax

Consider the recursive structure of first-order terms over the following signature.

Σ = {a : i, b : i, f : i → i, g : i → i → i}
Here, i is a primitive type (or sort). These four typed constants can be encoded as
the following four inference rules for determining which first-order terms over Σ are
correctly constructed.

Σ ` X : i

Σ ` f X : i

Σ ` X : i Σ ` Y : i

Σ ` g X Y : i

Σ ` a : i Σ ` b : i

– 3 –



The following is a proof that the term g (f a) b is a correctly formed first-order term
(of type i).

Σ ` a : i

Σ ` f a : i Σ ` b : i

Σ ` g (f a) b : i

Notice that the signature Σ does not change in a proof: it is global and does not need
to be written as part of each inference rule.

To consider the structure of λ-terms, let Σ′ = Σ ∪ {h : (i → i) → i} be a signature
with the constant h of second-order type. In order to incorporate this new constant into
an inference rule, we actually need two rules: one to infer a term with h as its head and
one to infer a term of an arrow type (here, i → i). If Γ is a signature that contains Σ′,
then the two new inference rules are simply

Γ ` U : i → i

Γ ` h U : i

Γ, x : i ` V : i

Γ ` λx.V : i → i
.

Here, x is not in Γ. The following is a proof that the term f (h (λx(g x (f x)))) is
correctly formed.

Σ′, x : i ` x : i

Σ′, x : i ` x : i

Σ′, x : i ` f x : i

Σ′, x : i ` g x (f x) : i

Σ′ ` λx(g x (f x)) : i → i

Σ′ ` h (λx(g x (f x))) : i

Σ′ ` f (h (λx(g x (f x)))) : i

(Also replace Σ by Γ in the four rules for a, b, f , and g.) Notice that now, the signatures
do not remain constant within proofs: as one moves up through such a proof, signatures
can get larger. This suggests that a good notion of bound variable is essentially “scoped
constant”: it acts like a constant that is not visible from the top of the term, but may
become visible when a descent is made through the abstraction. Thus, we state the first
of two principles that are needed to support our notion of abstract syntax.
Principle 1. Recursion through syntax containing bound variables requires signatures
(contexts) to be dynamically augmented.

The second principle supporting our notion of abstract syntax is rather obvious but
produces serious problems for integrating into a programming language.
Principle 2. The equality of syntax should be (at least) α-conversion.

If the equations of α-conversion are assumed then terms are not freely generated and
simple destructuring is not a sensible operation. For example, the two terms λx(fxx)
and λy(fyy) denote the same syntactic object. If, however, λ-abstraction is treated as

– 4 –



a two place constructor, then these equal terms can be decomposed into unequal parts:
that is, into x and y and into fxx and fyy.

An approach to solving this problem is to try to decompose syntax using unification
modulo α-conversion. For example, consider the following signature over two primitive
types i (representing object-level terms) and b (representing object-level formulas):

∀ : (i → b) → b ∧ : b → b → b ⊃ : b → b → b
r : i → b s : i → b t : b.

Consider attempting to decompose formula

∀λy((ry ⊃ sy) ∧ t)

by unifying it with the formula ∀λx(P ∧Q), where P and Q are free variables. This pair
has no unifiers (modulo α-conversion) since no substitution instance for P will be able
to bind the variable x: we are assuming that substitution at the meta-level is the correct
declarative substitution that avoids bound variable capture. This example illustrates
that unification using purely α-conversion is not able to cope with decomposing syntax
involving a bound variable. If we change this example by attempting to match the
same formula with ∀λx(Px ∧ Q) we now find that there is exactly one unifier (up to
α-conversion), namely,

{P 7→ λw(rw ⊃ sw), Q 7→ t}.
This substitution is a unifier, however, when α and β-conversions are assumed since
after substituting for P and Q, the resulting term ∀λx([λw(rw ⊃ sw)x] ∧ t) requires a
β-reduction and an α-conversion before it is equal to ∀λy((ry ⊃ sy) ∧ t).

For some additional matching examples of this kind, consider matching the follow-
ing pair of open terms (free variables are capital letters) with closed λ-term over the
signature Σ.

(1) λxλy(f (H x)) λuλv(f (f u))
(2) λxλy(f (H x)) λuλv(f (f v))
(3) λxλy(g (H y x) (f (L x))) λuλv(g u (f u))
(4) λxλy(g (H x) (L x)) λuλv(g (g a u) (g u u))

The second pair cannot be matched for reasons similar to those described above. The
other three cases yield unique matches, assuming α and η-conversion.

(1) H 7→ λw(f w)
(3) H 7→ λyλx.x L 7→ λx.x
(4) H 7→ λx(g a x) L 7→ λx(g x x)

All of these examples use a very weak form of β-conversion. In particular, they
continue to work if β-conversion is replaced by β0 conversion, which is defined by the
equation (λx.B)x = B.

In the next section we present a meta-logic M that supports both of the principles
of abstract syntax that we have described above. The language has as its equality theory
α, β, and η-conversion for the simply typed λ-terms. It is possible to significantly weaken
the logic M to a logic called Lλ where the equality theory only needs to be a restricted

– 5 –



form of α, β0, and η-conversion. This equality theory is weak enough so that unification
in it is decidable and most general unifiers exist when unifiers exist. It is also strong
enough to support the two principles of abstract syntax presented above. The logic Lλ

is describe in the papers [15, 16]. We shall not be concerned with it further here.
Abstract syntax is characterized in Figure 3: in the rest of this paper, we shall

discuss the logic M and how it supports this notion of syntax. The paper [14] describes
an approach to incorporating abstract syntax into the ML programming language [19].
What we are calling abstract syntax in this paper has also been called “higher-order
abstract syntax” in [24].

Implementation α-equivalence classes of βη-normal λ-terms of simple types
Access βη-unification or a restriction of β0η-unification (as in Lλ)
Good points 1. Bound variable names are inaccessible so many technical

problems regarding them disappear.
2. Substitution is easy to support for every data structure con-

taining abstracted variables.
3. Semantics is provided by proof theory, logical relations, and

Kripke models.
Bad points 1. Requires higher-level support: dynamic contexts, extensions

to first-order unification, and a richer notion of equality.
2. No robust, well-defined, and generally available program-

ming language supports this notion of syntax (yet).

Figure 3: Characteristics of abstract syntax.

3. A Logic programming language that incorporates abstract syntax

Let S be a set of primitive types. Type expressions are all first-order expressions
built from primitive types and the infix, function type constructor →. This constructor
associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3). Let S be a finite set of
predicate symbols that are sorted using expressions of the form 〈τ1, . . . , τn〉 for n ≥ 0,
where τ1, . . . , τn are types. Using a primitive type for propositions, say o as in [2], then
the sort for predicates could be considered as a type of the form τ1 → · · · → τn → o.
We shall not, however, give predicates functional types: the expression 〈τ1, . . . , τn〉 is
not a type expression.

Signatures are sets of associations of types to tokens such as

Σ = {c1 : τ1, . . . , cn : τn, . . .}.
Signatures can be finite or infinite and are sometimes called type assignments. The
usual functional requirement holds: if c : τ and c : σ are members of Σ, then τ and σ

– 6 –



are the same type. The expression Σ + c : τ is legal only if c is not assigned by Σ, in
which case that expression is equal to

{c : τ, c1 : τ1, . . . , cn : τn, . . .}.
A Σ-term of type τ is a closed λ-term all of whose constants are in Σ and which has
type τ . Notice that a given λ-term may be a Σ-term at different types; for example,
consider the term λx.x. Σ-formulas are defined in the following fashion.
◦ If Q is a predicate in S that is sorted with 〈τ1, . . . , τn〉 and ti is a Σ-term of type

τi (for i = 1, . . . , n), then Qt1 · · · tn is a Σ-formula. In particular, it is an atomic
Σ-formula.

◦ If B and C are Σ-formulas then B ∧ C and B ⊃ C are Σ-formulas.
◦ If B is a Σ + x : τ -formula then ∀τx.B is a Σ-formula.

Equality of terms and formulas is determined using the usual rules of βη-conversion.
The collection of Σ-formulas over the primitive types in S and the predicates in S

is denoted by M(S,S), which is written as simply M if S and S can be determined
from context. A proof system for M(S,S) is given by the sequent rules in Figure 4. The
triple Σ ; P −→ B is a sequent if P∪{B} is a set of Σ-formulas. We shall assume that
the rules of βη-conversion are used whenever needed to join two inference rules together.
The syntax P, B is short for P ∪{B}. The expression Σ;P ` B means that the sequent
Σ ; P −→ B is provable (without cut). If there is a Σ-term for all primitive types,
then this proof system coincides with the more common notion of intuitionistic sequent
calculus. Since P in the sequent Σ ; P −→ B is a set, the usual structural rules of
thining, contraction, and exchange are not needed.

Σ ; P −→ B Σ ; P −→ C ∧-R
Σ ; P −→ B ∧ C

Σ ; P −→ B Σ ; C,P −→ A ⊃-L
Σ ; B ⊃ C,P −→ A

Σ ; B,C, ∆ −→ A ∧-L
Σ ; B ∧ C, ∆ −→ A

Σ ; B,P −→ C ⊃-R
Σ ; P −→ B ⊃ C

t is a Σ-term of type τ Σ ; P, B[t/x] −→ C ∀-L
Σ ; P, ∀τx B −→ C

Σ + c: τ ; P −→ B[c/x] ∀-R
Σ ; P −→ ∀τx B

initial
Σ ; P, B −→ B

Figure 4: Proof rules for M.

– 7 –



There are two forms of cut rules for this sequent calculus: one works with the
signature of the antecedent (called the subst rule) and one works with the formulas of
the antecedent (called simply the cut rule). Both rules are displayed in Figure 5. The
following theorem is know as the cut elimination theorem.
Theorem 3.1. A sequent is provable with the two rules of cut and subst (Figure 5)
if and only if it is provable without these two inference rules.

The proof of this fact follows from Gentzen’s original result augmented with ele-
mentary facts about the meta-theory of the βη-theory of simply typed λ-terms. Notice
that since M does not admit predicate quantification, the cut-elimination result fol-
lows the usual line for first-order logics. Sequent proofs in this paper will not contain
instances of cut or subst.

Σ ; P, B −→ C Σ′ ; P ′ −→ B
cut

Σ′ ; P ′ −→ C

Σ + x : τ ; P −→ B t is a Σ′-term of type τ
subst

Σ′ ; P ′ −→ B[t/x]

Figure 5: Cut and subst rules for M. Here, Σ ⊆ Σ′ and P ⊆ P ′.

The following theorem provides an abstract justification for referring to M as a
logic programming language. This theorem says that goal-directed search for proofs in
M is a complete search method.
Theorem 3.2. A sequent proof is uniform if every occurrence of a sequent in that
proof with a non-atomic right-hand side is the conclusion of a right-introduction rule.
Then, a sequent is provable in M if and only if it has a uniform proof.

This is easily proved by using permutations of inference rules to convert any cut-
free proof into a uniform proof. The proof of this result can be found in [18] where a
richer logic than M is considered. A similar proof is given in [3] for a strictly first-order
logic (quantification at primitive types only). Both of these papers also motivate why
uniform proofs and goal-directed search are useful for characterizing logic programs.

Many examples of using M as a specification language and using λProlog to im-
plement them have been considered. For example, in the area of theorem proving see
the papers [3, 4, 5, 6, 22]; in the area of meta-programming of functional programs see
the papers [7, 8, 9, 10, 11, 17]. The logic M is very similar to the logic hhω in [6]. The
next section presents one of the example specifications described in [8].

– 8 –



4. Functional program as objects

Let S0 = {i} and let S = {eval : 〈i, i〉}. Let Σ0 be the signature containing the
following constants:

true : i, false : i, 0 : i, 1 : i, 2 : i, . . .
=: i → i → i, + : i → i → i, if : i → i → i → i
app : i → i → i, abs : (i → i) → i, fix : (i → i) → i

The type i denotes object-level functional programs. Obviously, it is possible to add
more constants to this signature so that Σ0-terms of type i denote richer functional
programs. The functional program

fun g x y = if x = y then x else g y y

can be represented by the Σ0-term of type i:

(fix λg(abs λx(abs λy(if (= x y) x (app (app g y) y))))).

Notice that abstractions in the object-level, functional program are mapped to abstrac-
tions in the meta-level term. Using this kind of encoding of functional programs, it
is impossible to specify predicates in M that can make distinctions between two α-
convertible functional programs. Thus, this encoding obeys Principle 2.

An evaluator for this object language can be described in M(S0,S0) using some
simple formulas: for several examples of such evaluators see [9, 11]. Here, we shall
reduce this functional programming language down to it smallest, interesting core. Let
Σ1 be just the signature for application and abstraction, namely, {app : i → i → i, abs :
(i → i) → i}. This kind of representation is derived from the mapping of the untyped
λ-terms into simply typed λ-terms. In particular, the pure, untyped λ-terms modulo
α-conversion can be identified with Σ1-terms of type i modulo βη-conversion.

A specification of a call-by-name evaluator for Σ1-terms in M is given by the
following two formulas.

∀i→iR (eval (abs R) (abs R))
∀i→iR∀iM,N, V (eval M (abs R) ∧ eval (R N) V ⊃ eval (app M N) V )

Notice there that meta-level β-reduction, in the expression (R N), is used to do object-
level substitution. Call-by-value evaluation can also be axiomized using the following
two formulas.

∀i→iR (eval (abs R) (abs R))
∀i→iR∀iM,N, V, P (eval M (abs R) ∧ eval N P ∧ eval (R P ) V ⊃ eval (app M N) V )

Let P1 be the set of two formulas specifying call-by-name evaluation. If Σ1;P1 ` eval t s
then we say that t evaluates to s.

It is natural to try and extend evaluation so that it can evaluate under abstractions.
That is, evaluation could be extended (over the Σ0 signature) to relate the term

(fix λf (abs λx (if true (+ x 1) (app (app f x) x))))

– 9 –



and the term
(fix λf (abs λx (+ x 1))).

That is, evaluation can be pushed through abstractions to reduce redexes that are not
at the top-level. Over the signature Σ1 and formulas P1 the evaluation predicate only
relates the term (abs λx(app (abs (λy y)) x)) to itself. It should be possible to “lift”
evaluation so that the internal redex (app (abs (λy y)) x) can be reduced. This is
problematic since this internal redex is not a Σ1-term since it has x free in it. Thus, we
need to understand how to evaluate expressions over “mixed” values. This problem is
solved by dynamically adding x to the signature. Let C1 be the set of the following two
formulas.

∀i→iR, S (∀ix, y (eval x y ⊃ eval (Rx) (Sy)) ⊃ eval (abs R) (abs S))
∀iM, N, P, Q (eval M P ∧ eval N Q ⊃ eval (app M N) (app P Q))

The first of these formulas lifts evaluation over object-level abstractions. It can be read
operationally as follows: To prove the atomic formula

eval (abs λu.t) (abs λv.s),

try the following steps:
◦ Introduce two new constants, say c : i and d : i, not mentioned in the current

signature (corresponds to using ∀-R).
◦ Add the atomic formula eval c d to the current program (corresponds to using
⊃-R).

◦ Attempt to prove eval (t[c/u]) (s[d/v]) in the augmented signature and program
(corresponds to using β-reduction). Here, c plays the role of the bound variable
name when we descend into λu.t.

This is an illustration of how Principle 1 is supported in M.
Notice that given P1 ∪ C1, the proof rules for eval are now more nondeterministic.

For every Σ1-term t, Σ1;P1 ∪ C1 ` eval t t; that is, the extension of eval is reflexive.
Given the same context, the atomic formula

eval (abs λx(app (abs (λy y)) x)) (abs λx x)

is also provable. See [8] for a discussion about how such syntactic lifting of evaluation
is related to the notion of “mixed” or “symbolic” evaluation.

5. A Kripke model semantics

A model theory for M(S,S) can be based on the following kind of Kripke models.
Definition 5.1. A dependent pair is a pair 〈Σ,P〉 where Σ is a signature and P is a set
of Σ-formulas. Define 〈Σ,P〉 ¹ 〈Σ′,P ′〉 whenever Σ ⊆ Σ′ and P ⊆ P ′. A Kripke model ,
[W, I], is the specification of a set of worlds W, which is a set of dependent pairs, and
a function I, called an interpretation, that maps pairs in W to sets of atomic formulas.
The mapping I must satisfy the two conditions:
◦ I(〈Σ,P〉) is a set of λ-normal, atomic Σ-formulas, and
◦ for all w, w′ ∈ W such that w ¹ w′, I(w) ⊆ I(w′) (i.e., I is order preserving).

– 10 –



Satisfiability (also called forcing) in a Kripke model is defined as follows.
Definition 5.2. Let [W, I] be a Kripke model, let 〈Σ,P〉 ∈ W, and let B be a Σ-
formula. The three place satisfaction relation I, 〈Σ,P〉 ` B is defined by induction on
the structure of B.
◦ I, 〈Σ,P〉 ` B if B is atomic and the λ-normal form of B is in I(〈Σ,P〉).
◦ I, 〈Σ,P〉 ` B ∧B′ if I, 〈Σ,P〉 ` B and I, 〈Σ,P〉 ` B′.
◦ I, 〈Σ,P〉 ` B ⊃ B′ if for every 〈Σ′,P ′〉 ∈ W such that 〈Σ,P〉 ¹ 〈Σ′,P ′〉 and

I, 〈Σ′,P ′〉 ` B then I, 〈Σ′,P ′〉 ` B′.
◦ I, 〈Σ,P〉 ` ∀τx.B if for every 〈Σ′,P ′〉 ∈ W such that 〈Σ,P〉 ¹ 〈Σ′,P ′〉 and for

every Σ′-terms t of type τ , the relation I, 〈Σ′,P ′〉 ` B[t/x] holds.
The signature of an interpretation I is the largest signature that is contained in all

worlds of the partial order underlying I. If Σ0 is the signature of the interpretation I
and B is a Σ0-formula, then we write I ` B if I, w ` B for all w ∈ W.

This notion of model is similar to that of Kripke λ-models described in [20].
Definition 5.3. Let 〈Σ,P〉 be a dependent pair. The canonical model for 〈Σ,P〉 is
defined as the model with the set of worlds {〈Σ′,P ′〉 | 〈Σ,P〉 ¹ 〈Σ′,P ′〉} and where
I is defined so that I(〈Σ′,P ′〉) is the set of all λ-normal, atomic formulas A so that
Σ′;P ′ ` A.

Lemma 5.4. Cut-elimination (Theorem 3.1) holds for M if and only if the following
holds: for every dependent pair 〈Σ,P〉 and every Σ-formula B, Σ;P ` B if and only if
I ` B, where I is the canonical model for 〈Σ,P〉.
Proof. Assume first that cut-elimination holds for M. We now prove by induction
on the structure of B that Σ;P ` B if and only if I, 〈Σ,P〉 ` B.
Case: B is atomic. The equivalence is trivial.
Case: B is B1 ∧B2. This case is simple and immediate.
Case: B is B1 ⊃ B2. Assume first that Σ;P ` B1 ⊃ B2. By Theorem 3.2, Σ;P∪{B1} `
B2. To show I, 〈Σ,P〉 ` B1 ⊃ B2, let 〈Σ′,P ′〉 ∈ W be such that 〈Σ,P〉 ¹ 〈Σ′,P ′〉
and I, 〈Σ′,P ′〉 ` B1. By the inductive hypothesis, Σ′;P ′ ` B1 and by cut-elimination,
Σ′;P ′ ` B2. By induction again, we have I, 〈Σ′,P ′〉 ` B2. Thus, I, 〈Σ,P〉 ` B1 ⊃
B2. For the converse, assume I, 〈Σ,P〉 ` B1 ⊃ B2. Since Σ;P ∪ {B1} ` B1, the
inductive hypothesis yields I, 〈Σ,P ∪ {B1}〉 ` B1. By the definition of satisfaction
of implication we must have I, 〈Σ,P ∪ {B1}〉 ` B2. But by the inductive hypothesis
again, Σ;P ∪ {B1} ` B2, and Σ;P ` B1 ⊃ B2.
Case: B is ∀τxB1. Assume first that Σ;P ` ∀τxB1. By Theorem 3.2, Σ ∪ {d};P `
B1[d/x] for any constant d not in Σ. To show I, 〈Σ,P〉 ` ∀τxB1, let 〈Σ′,P ′〉 ∈ W be
such that 〈Σ,P〉 ¹ 〈Σ′,P ′〉 and t is a Σ′-term of type τ . By cut-elimination on signatures
(the subst rule), we have Σ′;P ′ ` B1[t/x]. By induction we have I, 〈Σ′,P ′〉 ` B1[t/x].
Thus, I, 〈Σ,P〉 ` ∀τxB1. For the converse, assume I, 〈Σ,P〉 ` ∀τxB1. Let d be a
constant not a member of Σ. Since d is a Σ∪{d}-term, I, 〈Σ∪{d},P〉 ` B1[d/x] by the
definition of satisfaction of universal quantification. But by the inductive hypothesis
again, Σ ∪ {d};P ` B1[d/x] and Σ;P ` ∀τxB1.

Now assume the equivalence: for every dependent pair 〈Σ,P〉 and every Σ-formula
B, Σ;P ` B if and only if I ` B, where I is the canonical model for 〈Σ,P〉. We now
show that any sequent that can be proved using occurrences of the cut and subst rules

– 11 –



can be proved without such rules. In particular, we show that if 〈Σ,P〉 ¹ 〈Σ′,P ′〉 then
each of the following holds.
(1) If Σ′;P ′ ` B and Σ;P, B ` C then Σ′;P ′ ` C.
(2) If t is a Σ′-term of type τ and Σ + x : τ ;P ` B then Σ′;P ′ ` B[t/x] (of course, x

does not occur in Σ).
From these facts, any number of occurrences of the cut and subst rules can be eliminated
from a proof containing them.

To prove (1), assume that Σ′;P ′ ` B and Σ;P, B ` C. Thus, Σ;P ` B ⊃ C. By
the assumed equivalence, I, 〈Σ′,P ′〉 ` B and I, 〈Σ,P〉 ` B ⊃ C. By the definition
of satisfaction for implication, I, 〈Σ′,P ′〉 ` C. By the assumed equivalence again, this
yields Σ′;P ′ ` C.

To prove (2), assume that t is a Σ′-term of type τ and that Σ+x : τ ;P ` C. Thus,
Σ;P ` ∀τx.B. By the assumed equivalence, I, 〈Σ,P〉 ` ∀τx.B. By the definition of
satisfaction for universal quantification, we have I, 〈Σ′,P ′〉 ` B[t/x]. By the assumed
equivalence again, this yields Σ′;P ′ ` B[t/x]. QED

Given Theorem 3.1, this lemma provides an immediate proof of the following the-
orem.
Theorem 5.5. Let 〈Σ,P〉 be a dependent pair and let I be the canonical model for
〈Σ,P〉. For all Σ-formulas B, Σ;P ` B if and only if I ` B. In particular, for every
B ∈ P, I ` B.

This theorem can be sharpened using the following definition of order for types and
for formulas.
Definition 5.6. The order of type τ , written ord(τ), is 0 if τ is primitive; otherwise τ
is of the form τ1 → τ2, in which case, the order of τ is max(1 + ord(τ1), ord(τ2)).

The order of formula B, written ord(B), is 0 if B is atomic; is max(ord(B1), ord(B2))
if B is B1 ∧ B2; is max(1 + ord(B1), ord(B2)) if B is B1 ⊃ B2; and is max(1 +
ord(τ), ord(B1)) if B is ∀τx.B1.

Notice that if B has order 1 then B is (modulo weak equivalences) a first-order
Horn clause theory.

Next we define the notion of the canonical model at a given order. Such models
contain, in a sense, fewer worlds than the canonical models introduced in Definition 5.3.
Definition 5.7. A dependent pair 〈Σ,P〉 is of order n if all the types in Σ are of order
n or less and all the formulas in P are of order n or less. Let 〈Σ,P〉 be a dependent
pair of order n. The canonical model of order n for 〈Σ,P〉 is [W, I] where W is the set
of all dependent pairs 〈Σ′,P ′〉 of order n such that (i) Σ′ extends Σ with constants of
order at most n−2, and (ii) P ′ extends P with Σ′-formulas of order at most n−2. The
mapping I is defined as before, namely, for all 〈Σ′,P ′〉 ∈ W, the set I(〈Σ′,P ′〉) contains
all atomic A so that Σ′;P ′ ` A.

Notice that if 〈Σ,P〉 is of order 1 then Σ is a first-order signature (all constants
are of order 0 or 1) and P is a set of Horn clauses. The canonical model for such a
dependent pair contains just one world, namely, the pair 〈Σ,P〉.

– 12 –



Lemma 5.8. Cut-elimination (Theorem 3.1) holds for M if and only if the following
holds: Let n ≥ 1, let 〈Σ,P〉 be a dependent pair of order n, let I be the canonical model
of order n for 〈Σ,P〉, and let B be a Σ-formula of order n − 1. Then Σ;P ` B if and
only if I ` B.

Proof. Assume first that cut-elimination holds for M. We now prove by induction
on the structure of B that Σ;P ` B if and only if I, 〈Σ,P〉 ` B. The forward part of
this equivalence is the same as in the proof of Lemma 5.4. Thus we only show details
of the reverse implication for the two interesting cases.
Case: B is B1 ⊃ B2. Thus the order of B1 is n − 2 or less. Assume I, 〈Σ,P〉 ` B1 ⊃
B2. Since Σ;P ∪ {B1} ` B1 and 〈Σ,P ∪ {B1}〉 ∈ W, the inductive hypothesis yields
I, 〈Σ,P ∪ {B1}〉 ` B1. By the definition of satisfaction of implication we must have
I, 〈Σ,P ∪ {B1}〉 ` B2. But by the inductive hypothesis again, Σ;P ∪ {B1} ` B2 and
Σ;P ` B1 ⊃ B2.
Case: B is ∀τxB1. Thus the order of τ is n− 2 or less. Assume I, 〈Σ,P〉 ` ∀τxB1. Let
d be a constant not a member of Σ. Since d is a Σ ∪ {d}-term and since 〈Σ ∪ {d}〉 is a
member of W, then we have I, 〈Σ ∪ {d},P〉 ` B1[d/x] by the definition of satisfaction
of universal quantification. But by the inductive hypothesis again, we have Σ∪{d};P `
B1[d/x] and Σ;P ` ∀τxB1.

The fact that cut-elimination holds follows just as in the proof of Lemma 5.4, except
here we need to use the equivalence at various different orders. QED

We shall need the following technical result.
Lemma 5.9. Let 〈Σ,P〉 be a dependent pair of order n ≥ 1, and let [W, I] be the
canonical model of order n for 〈Σ,P〉. Let 〈Σ′,P ′〉 ∈ W, and let [W ′, I ′] be the canonical
model of order n for 〈Σ′,P ′〉. For all Σ′-formulas B of order n, I, 〈Σ′,P ′〉 ` B if and
only if I ′ ` B.

Proof. Simple induction on the structure of B. QED

The next theorem shows that if 〈Σ,P〉 is a dependent pair of order n then the
canonical model for 〈Σ,P〉 of order n is, in fact, a model for P.
Theorem 5.10. Let 〈Σ,P〉 be a dependent pair of order n and let [W, I] be the
canonical model of order n for 〈Σ,P〉. If B is of order n or less, then Σ;P ` B implies
I ` B.

Proof. We prove the following by induction on the structure of B: for every 〈Σ′,P ′〉 ∈
W, if Σ′;P ′ ` B then I, 〈Σ′,P ′〉 ` B.
Cases: B is atomic or B is conjunctive. These cases are simple.
Case: B is B1 ⊃ B2 where B1 is of order n − 1 or less. Let 〈Σ′,P ′〉 ∈ W and let
〈Σ′′,P ′′〉 ∈ W be such that 〈Σ′,P ′〉 ¹ 〈Σ′′,P ′′〉 and I, 〈Σ′′,P ′′〉 ` B1. Let [W ′′, I ′′] be
the canonical model of order n for 〈Σ′′,P ′′〉. By Lemma 5.9, I ′′ ` B1. By Lemma 5.8,
Σ′′;P ′′ ` B1. By cut-elimination, Σ′′;P ′′ ` B2. By the inductive hypothesis, we have
I, 〈Σ′′,P ′′〉 ` B2. By the definition of satisfaction, we have I, 〈Σ′,P ′〉 ` B1 ⊃ B2.
Case: B is ∀τx.B1 where τ is of order n−1 or less. Let 〈Σ′,P ′〉 ∈ W and let 〈Σ′′,P ′′〉 ∈
W be such that 〈Σ′,P ′〉 ¹ 〈Σ′′,P ′′〉 and let t be a Σ′′-term of type τ . By cut-elimination,
Σ′′;P ′′ ` B1[t/x]. By the inductive hypothesis, we have I, 〈Σ′′,P ′′〉 ` B1[t/x]. By the
definition of satisfaction, we have I, 〈Σ′,P ′〉 ` ∀τx.B1. QED

– 13 –



If Theorem 5.10 is specialized to just the case for order 1, it provides the familiar
“minimal model” construction for first-order Horn clause theories [1]. Thus, Theo-
rem 5.10 can be seen as a generalization of that model construction to arbitrary orders.

Notice that the converse to Theorem 5.10 is not generally true if the formula B is of
order n. For example, let i be the only primitive type, let p and q be the only predicates,
each of sort 〈i〉, let Σ be the signature {a : i} and let P be the set of Σ-formulas

{p a, ∀ix (p x ⊃ q x)}.
Then, the formula of order 1, ∀ix (q x ⊃ p x) is valid in the canonical model of order 1
for 〈Σ,P〉 but it is not provable from Σ and P.

Consider again the problems of evaluation under abstractions within a functional
program (Section 4). The pair 〈Σ1,P1 ∪C1〉 is of order 2. The canonical model of order
2 for this pair is built by considering all those pairs 〈Σ′,P ′〉 so that Σ′ extends Σ1 with
some number of constants of type i and where P ′ extends P1 ∪C1 with some number of
formulas of the form eval t s where t and s are Σ′-terms (conjunctions of such atoms are
also allowed). The interpretation mapping is built by the usual provability construction.
Thus, an alternative way to view “lifted” evaluation is: t evaluates to s if and only if
the atomic formula eval t s is true in this model.

It is worth making the following simple observation about how canonical models
can be considered minimal. We shall say that a Kripke model N satisfies 〈Σ,P〉 if Σ is
contained in the signature of N and if for every B ∈ P, N ` B.
Theorem 5.11. Let 〈Σ,P〉 be a dependent pair, and let K be the canonical model
for 〈Σ,P〉. If N is a model of 〈Σ,P〉 then K ` B implies N ` B.

Proof. Since K ` B then Σ;P ` B. By the soundness of Kripke models and the fact
that N models 〈Σ,P〉, we have N ` B. QED

6. Conclusions

Just as concrete syntax inadequately represents the structure of most syntactic
objects, parse trees also inadequately represent the structure of syntactic objects con-
taining bound variables. Thus a more high-level notion of syntax, called here abstract
syntax, is desirable. A logic M makes it possible to specify computations that sup-
port this notion of abstract syntax. The logic programming language λProlog can be
used to provide implementations of such specifications made in M. The semantics of
specifications written in this meta-logic can be described using Kripke models.

– 14 –



7. Acknowledgements

During the academic year 1990 – 1991, I was visiting the Universities of Edin-
burgh and Glasgow. At the University of Glasgow, this work has been supported by
a British Science and Engineering Research Council visiting fellowship research grant.
At the University of Edinburgh, this work has been supported by SERC Grant No.
GR/E 78487 “The Logical Framework” and ESPRIT Basic Research Action No. 3245
“Logical Frameworks: Design, Implementation, and Experiment.” At the University
of Pennsylvania, this work has been supported by ONR N00014-88-K-0633 and NSF
CCR-87-05596. Thanks to Eva Ma for her proofreading help.

8. References

[1] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841 – 862, 1982.

[2] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[3] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic
Programming Language. Ph.D. thesis, University of Pennsylvania, August 1989.

[4] Amy Felty. A logic program for transforming sequent proofs to natural deduc-
tion proofs. In Peter Schroeder-Heister, editor, Extensions of Logic Programming:
International Workshop, Tübingen FRG, December 1989, volume 475 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1991.

[5] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-
gramming language. In Ninth International Conference on Automated Deduction,
pages 61 – 80, Argonne, IL, May 1988. Springer-Verlag.

[6] Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic pro-
gramming language. In Mark Stickel, editor, Proceedings of the 1990 Conference
on Automated Deduction, volume 449, pages 221–235. Springer Lecture Notes in
Artificial Intelligence, 1990.

[7] John Hannan and Dale Miller. Uses of higher-order unification for implementing
program transformers. In Fifth International Logic Programming Conference, pages
942–959, Seattle, Washington, August 1988. MIT Press.

[8] John Hannan and Dale Miller. Deriving mixed evaluation from standard evaluation
for a simple functional programming language. In Jan L. A. van de Snepscheut,
editor, 1989 International Conference on Mathematics of Program Construction,
volume 375 of Lecture Notes in Computer Science, pages 239–255. Springer-Verlag,
1989.

[9] John Hannan and Dale Miller. A meta-logic for functional programming. In
H. Abramson and M. Rogers, editors, Meta-Programming in Logic Programming,
chapter 24, pages 453–476. MIT Press, 1989.

[10] John Hannan and Dale Miller. From operational semantics to abstract machines:
Preliminary results. In M. Wand, editor, Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, pages 323–332. ACM Press, 1990.

[11] John J. Hannan. Investigating a Proof-Theoretic Meta-Language for Functional
Programs. Ph.D. thesis, University of Pennsylvania, August 1990.

– 15 –



[12] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In Second Annual Symposium on Logic in Computer Science, pages 194–204, Ithaca,
NY, June 1987.

[13] Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[14] Dale Miller. An extension to ML to handle bound variables in data structures:
Preliminary report. In Informal Proceedings of the Logical Frameworks BRA Work-
shop, June 1990. Available as UPenn CIS technical report MS-CIS-90-59.

[15] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1991.

[16] Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eigth International Logic Programming Conference, Paris, France, June 1991. MIT
Press.

[17] Dale Miller and Gopalan Nadathur. A logic programming approach to manipu-
lating formulas and programs. In Seif Haridi, editor, IEEE Symposium on Logic
Programming, pages 379–388, San Francisco, September 1987.

[18] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[19] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

[20] John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calcu-
lus. In Second Annual Symposium on Logic in Computer Science, pages 303–314,
Ithaca, NY, June 1987.

[21] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International
Logic Programming Conference, pages 810–827, Seattle, Washington, August 1988.
MIT Press.

[22] Frank Pfenning. Partial polymorphic type inference and higher-order unification.
In Proceedings of the ACM Lisp and Functional Programming Conference, 1988.

[23] Frank Pfenning. Elf: A language for logic definition and verified metaprogram-
ming. In Fourth Annual Symposium on Logic in Computer Science, pages 313–321,
Monterey, CA, June 1989.

[24] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings of
the ACM-SIGPLAN Conference on Programming Language Design and Implemen-
tation, 1988.

– 16 –


