
To appear in EPTCS.
c© Q. Heath and D. Miller

This work is licensed under the
Creative Commons Attribution License.

A Proof Theory for Model Checking: An Extended Abstract

Quentin Heath
LIX, École Polytechnique

Palaiseau, France

Dale Miller
Inria Saclay and LIX, École Polytechnique

Palaiseau, France

While model checking has often been considered as a practical alternative to building formal proofs,
we argue here that the theory of sequent calculus proofs can be used to provide an appealing foun-
dation for model checking. Since the emphasis of model checking is on establishing the truth of
a property in a model, we rely on the proof theoretic notion of additive inference rules, since such
rules allow provability to directly describe truth conditions. Unfortunately, the additive treatment
of quantifiers requires inference rules to have infinite sets of premises and the additive treatment of
model descriptions provides no natural notion of state exploration. By employing a focused proof
system, it is possible to construct large scale, synthetic rules that also qualify as additive but contain
elements of multiplicative inference. These additive synthetic rules—essentially rules built from the
description of a model—allow a direct treatment of state exploration. This proof theoretic frame-
work provides a natural treatment of reachability and non-reachability problems, as well as tabled
deduction, bisimulation, and winning strategies.

1 Introduction

Model checking was introduced in the early 1980’s as a way to establish properties about (concurrent)
computer programs that were hard or impossible to establish using traditional, axiomatic proof tech-
niques such as those describe by Floyd and Hoare [5]. In this extended abstract we show that model
checking can be given a proof theoretic foundation using the sequent calculus of Gentzen [6], the linear
logic of Girard [7], and a treatment of fixed points [2, 4, 11, 17]. The main purpose of this extended
abstract is foundational and conceptual. Our presentation will not shed any new light on the algorithmic
aspects of model checking but it will show how model checkers can be seen as having a “proof search”
foundation shared with logic programming and (inductive) theorem proving.

Since the emphasis of model checking is on establishing the truth of a property in a model, a natural
connection with proof theory is via the use of additive connectives and their inference rules. We illustrate
in Section 3 how the proof theory of additive connectives naturally leads to the usual notion of truth-
table evaluation for propositional connectives. Relying only on additive connectives, however, fails to
provide an adequate inference-based approach to model checking since it only rephrases truth-functional
semantic conditions and requires rules with potentially infinite sets of premises.

The proof theory of sequent calculus contains additional inference rules, namely, the multiplicative
inference rules which can be used to encode much of the algorithmic aspects of model checking such
as, for example, those related to determining reachability and simulation (or winning strategies). In
order to maintain a close connection between model checking and truth in model, we shall put additive
inference rules back in the center of our framework but this time these rules will be additive synthetic
inference rules. The synthesizing process will allow multiplicative connectives and inference rules to
appear inside the construction of synthetic rules but they will not appear outside such synthetic rules.
The construction of synthetic inference rules will be governed by the well established proof theoretic
notions of polarization and focused proof systems [1, 8].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Proof Theory for Model Checking: An Extended Abstract

The connection between the proof theory based on such synthetic inference rules and model checking
steps is close enough that certificates for both reachability and non-reachability as well as bisimulation
and non-bisimulation are representable as sequent calculus proofs.

2 The basics of the sequent calculus

Let ∆ and Γ range over multisets of formulas. A sequent is either one-sided, written ` ∆, or two-sided,
written Γ ` ∆ (we first consider two-sided sequents in Section 5). Inference rules have one sequent as
their conclusion and zero or more sequents as premises. We divide inference rules into three groups: the
identity rules, the structural rules, and the introduction rules. The following are the two structural rules
and two identity rules we consider.

` ∆

` B,∆ weaken
` ∆,B,B
` ∆,B contraction ` B,¬B initial

` ∆1,B ` ∆2,¬B
` ∆,1 ∆2

cut

The negation symbol ¬(·) is used here not as a logical connective but as a function that computes the
negation normal form of a formula. The remaining rules of the sequent calculus are introduction rules:
for these rules, a logical connective has an occurrence in the conclusion and does not have an occurrence
in the premises. (We shall see several different sets of introduction inference rules shortly.)

When a sequent calculus inference rule has two (or more) premises, there are two natural schemes
for managing the side formulas (i.e., the formulas not being introduced) in that rule. The following rules
illustrate these two choices for conjunction.

` B,∆ `C,∆

` B∧C,∆

` B,∆1 `C,∆2

` B∧C,∆1,∆2

The choice on the left is the additive version of the rule: here, the side formulas in the conclusion are the
same in all the premises. The choice on the right is the multiplicative version of the rule: here, the various
side formulas of the premises are accumulated to be the side formulas of the conclusion. Note that the
cut rule above is an example of a multiplicative inference rule. A logical connective with an additive
right introduction rule is also classified as additive. In addition, the de Morgan dual and the unit of an
additive connective are also additive connectives. Similarly, a logical connective with a multiplicative
right-introduction rule is called multiplicative; so are its de Morgan dual and their units.

The multiplicative and additive versions of inference rules are, in fact, inter-admissible if the proof
system contains weakening and contraction. In linear logic, where these structural rules are not available,
the conjunction and disjunction have additive versions & and ⊕ and multiplicative versions ⊗ and ℘,
respectively, and these different versions of conjunction and disjunction are not provably equivalent.
Linear logic provides two exponentials, namely the ! and ?, that permit limited forms of the structural
rules for suitable formulas. The familiar exponential law xn+m = xnxm extends to the logical additive and
multiplicative connectives since !(B &C)≡ !B⊗ !C and ?(B⊕C)≡ ?B℘?C.

While we are interested in model checking as it is practiced, we shall be interested in only performing
inference in classical logic. One of the surprising things to observe about our proof theoretical treatment
of model checking is that almost all of it can be seen as taking place within the proof theory of linear logic,
a logic that sits behind classical (and intuitionistic) logic. As a result, the distinction between additive
and multiplicative connectives remains an important distinction for our framework. Also, weakening
and contraction will not be eliminated completely but will be available for only certain formulas and
in certain inference steps (echoing the fact that in linear logic, these structural rules can be applied to
formulas annotated with exponentials).

Q. Heath and D. Miller 3

3 Additive propositional connectives

Let A be the set of formulas built from the propositional connectives {∧, t,∨, f} (no propositional
constants included). Consider the following small proof system involving one-sided sequents.

` B1,∆ ` B2,∆

` B1∧B2,∆ ` t,∆
` B1,∆

` B1∨B2,∆

` B2,∆

` B1∨B2,∆

Here, t is the unit of ∧, and f is the unit of ∨. Notice that ∨ has two introduction rules while f has none.
Also, t and ∧ are de Morgan duals of f and ∨, respectively. We say that the multiset ∆ is provable if and
only if there is a proof of ` ∆ using these inference rules. Also, we shall consider no additional inference
rules (that is, no contraction, weakening, initial, or cut rules): this inference system is composed only of
introduction rules and all of these introduction rules are for additive logical connectives.

The following theorem identifies an important property of this purely additive setting. This theorem
is proved by a straightforward induction on the structure of proofs.

Theorem 1 (Strengthening) If ∆ is a multiset of A -formulas and ` ∆ then ∃ B ∈ ∆ such that ` B.

This theorem shows that provability of purely additive formulas is independent of their context. It
also establishs that the proof system is consistent, since the empty sequent ` · is not provable.

The following three theorems state that the missing inference rules of weakening, contraction, initial,
and cut are all admissible in this proof system. The first theorem is an immediate consequence of The-
orem 1. The following two theorems are proved, respectively, by induction on the structure of formulas
and by induction on the structure of proofs.

Theorem 2 (Weakening & contraction admissibility) Let ∆1 and ∆2 be multisets of A -formulas such
that ∆1 is a subset of ∆2 (when viewed as sets). If ` ∆1 is provable then ` ∆2 is provable.

Theorem 3 (Initial admissibility) Let B be a A -formula. Then ` B,¬B is provable.

Theorem 4 (Cut admissibility) Let B be an A -formula and let ∆1 and ∆2 be multisets of A -formulas.
If both ` B,∆1 and ` ¬B,∆2 are provable, then there is a proof of ` ∆1,∆2.

These theorems lead to the following truth-functional semantics for A formulas: define v(·) as a
mapping from A formulas to booleans such that v(B) is t if ` B is provable and is f if ` ¬B is provable.
Theorem 3 implies that v(·) is always defined and Theorem 4 implies that v(·) is functional (does not
map a formula to two different booleans). The introduction rules describe this function denotationally:
e.g., v(A∧B) is the truth-functional conjunction of v(A) and v(B) (similarly for ∨).

While this logic of A -formulas is essentially trivial, we will soon introduce much more powerful ad-
ditive inference rules: their connection to truth functional interpretations (a la model checking principles)
will arise from the fact that their provability is not dependent on other formulas in a sequent.

4 Additive first-order structures

We move to first-order logic by adding terms, equality on terms, and quantification.
We shall assume that some ranked signature Σ of term constructors is given: such a signature as-

sociates to every constructor a natural number indicating that constructor’s arity. Term constants are
identified with signature items given rank 0. A Σ-term is a (closed) term built from only constructors
in Σ and obeying the rank restrictions. For example, if Σ is {a/0,b/0, f/1,g/2}, then a, (f a), and

4 A Proof Theory for Model Checking: An Extended Abstract

(g (f a) b) are all Σ-terms.We shall consider only signatures for which there exist Σ-terms: for example,
the set { f/1,g/2} is not a valid signature. The usual symbols ∀ and ∃ will be used for the universal and
existential quantification over terms. We assume that these quantifiers range over Σ-terms for some fixed
signature. The arities of ranked signatures will often not be listed explicitly.

The equality and inequality of terms will be treated as (de Morgan dual) logical connectives in the
sense that their meaning is given by the following introduction rules.

` t = t,∆ ` t 6= s,∆ t and s differ

Here, t and s are Σ-terms for some ranked signature Σ.
Consider (only for the scope of this section) the following two inference rules for quantification. In

these introduction rules, [t/x] denotes the capture-avoiding substitution.

` B[t/x],∆
` ∃x.B,∆ ∃

{ ` B[t/x],∆ | Σ-term t }
` ∀x.B,∆ ∀-ext

Although ∀ and ∃ form a de Morgan dual pair, the rule for introducing the universal quantifier is not the
standard one used in the sequent calculus (we will introduce the standard one later). This rule, which is
similar to the ω-rule [14], is an extensional approach to modeling quantification: a universally quantified
formula is true if all instances of it are true.

Consider now the logic built with the (additive) propositional constants of the previous section and
with equality, inequality, and quantifiers. The corresponding versions of all four theorems in Section 3
holds for this logic. Similarly, we can extend the evaluation function for A -formulas to work for the
quantifiers: in particular, v(∀x.Bx) =

∧
t v(Bt) and v(∃x.Bx) =

∨
t v(Bt). Such a result is not surprising, of

course, since we have repeated within inference rules the usual semantic conditions. The fact that these
theorems hold indicates that the proof theory we have presented so far offers nothing new over truth
functional semantics. Similarly, this bit of proof theory offers nothing appealing to model checking, as
illustrated by the following example.

Example 5 Let Σ contain the ranked symbols z/0 and s/1 and let us abbreviate the terms z, (s z),
(s (s z)), (s (s (s z))), etc by 0, 1, 2, 3, etc. Let A and B be the set of terms {0,1} and {0,1,2}, respectively.
These sets can be encoded as the predicate expressions λx.x = 0∨ x = 1 and λx.x = 0∨ x = 1∨ x = 2.
The fact that A is a subset of B can be denoted by the formula ∀x.¬(Ax)∨Bx or, equivalently, as

∀x.(x 6= 0∧ x 6= 1)∨ x = 0∨ x = 1∨ x = 2

Proving this formula requires an infinite number of premises of the form (t 6= 0∧ t 6= 1)∨ t = 0∨ t =
1∨ t = 2. Since each of these premises can, of course, be proved, the original formula is provable, albeit
with an “infinite proof”.

While determining the subset relation between two finite sets is a typical example of a model checking
problem, one would not use the above-mentioned inference rule for ∀ except in the extreme cases where
there is a finite and small set of Σ-terms. As we can see, the additive inference rule for ∀-quantification
generally leads to “infinitary proofs” (an oxymoron that we now avoid at all costs).

5 Multiplicative connectives

Our departure from purely additive inference rules now seems forced and we continue by adding multi-
plicative inference rules.

Q. Heath and D. Miller 5

X ; Γ ` A,∆ X ; Γ ` B,∆

X ; Γ ` A∧− B,∆ X ; Γ ` t−,∆

X ; Γ,A ` ∆

X ; Γ,A∧− B ` ∆

X ; Γ,B ` ∆

X ; Γ,A∧− B ` ∆

X ; Γ,A ` ∆ X ; Γ,B ` ∆

X ; Γ,A∨B ` ∆ X ; Γ, f ` ∆

X ; Γ ` A,∆
X ; Γ ` A∨B,∆

X ; Γ ` B,∆
X ; Γ ` A∨B,∆

X ; Γ ` A,∆ X ; Γ′ ` B,∆′

X ; Γ,Γ′ ` A∧+ B,∆,∆′ X ; ` t+,

X ; Γ,A,B ` ∆

X ; Γ,A∧+ B ` ∆

X ; Γ ` ∆

X ; Γ, t+ ` ∆

X ; Γ,A ` B,∆
X ; Γ ` A⊃B,∆

X ; Γ ` A,∆ X ; Γ′,B ` ∆′

X ; Γ,Γ′,A⊃B ` ∆,∆′

X ; Γ ` B[t/x],∆
X ; Γ ` ∃x.B,∆ ∃

X ,y ; Γ ` B[y/x],∆
X ; Γ ` ∀x.B,∆ ∀

X ; ` t = t X ; t 6= t `

When t and s are not unifiable, X ; Γ, t = s ` ∆ X ; Γ ` t 6= s,∆

Otherwise, set θ = mgu(t,s)
θX ; θΓ ` θ∆

X ; Γ, t = s ` ∆

θX ; θΓ ` θ∆

X ; Γ ` t 6= s,∆

Figure 1: Introduction rules for propositional constants, quantifiers, and equality. The ∃ rule is restricted
so that t is a Σ(X)-term and the ∀ rule is restricted so that y 6∈X .

Our first multiplicative connective is the intuitionistic implication: since the most natural treatment
of this connective uses two-sided sequents, we make the move away from the one-sided sequents that we
have presented so far (see Figure 1). Note that taking the two multiplicative rules of implication right
introduction and initial yields a proof system that violates the strengthening theorem (Section 3): the
sequent ` p⊃q, p is provable while neither ` p⊃q nor ` p are provable.

A common observation in proof theory is that the curry/uncurry equivalence between A⊃B⊃C and
(A∧B)⊃C can be mimicked precisely by the proof system: in this case, such precision does not occur
with the additive rules for conjunction but rather with the multiplicative version of conjunction. To this
end, we add the multiplicative conjunction ∧+ and its unit t+ and, for the sake of symmetry, we rename ∧
as ∧− and t to t−. (The plus and minus symbols are related to the polarization of logical connectives that
is behind the construction of synthetic connectives.) These two conjunctions and two truth symbols are
logically equivalent in classical and intuitionistic logic although they are different in linear logic where
it is more traditional to write &, >, ⊗, 1 for ∧−, t−, ∧+, t+, respectively. The “multiplicative false” f−

(written as ⊥ in linear logic) can be defined as t 6= t (assuming that there is a first-order term t).
Eigenvariables are binders at the sequent level that align with binders within formulas (i.e., quan-

tifiers). Binders are an intimate and low-level feature of logic: the addition of eigenvariables requires
redefining the notions of term and sequent.

Let the set X denote first-order variables and let Σ(X) denote all terms built from constructors in
Σ and from the variables X : in the construction of Σ(X)-terms, variables act as constructors of arity 0.
(We assume that Σ and X are disjoint.) A Σ(X)-formula is one where all term constructors are taken
from Σ and all free variables are contained in X . Sequents are now written as X ; Γ ` ∆: the intended
meaning of such a sequent is that the variables in the set X are bound over the formulas in Γ and ∆. We
shall also assume that formulas in Γ and ∆ are all Σ(X)-formulas. All inference rules are modified to
account for this additional binding: see Figure 1. The variable y used in the ∀ introduction rule is called,
of course, an eigenvariable.

The left introduction rules for equality in Figure 1 significantly generalizes the version involving
only closed terms by making reference to unifiability and to most general unifiers. In the latter case, the
domain of the substitution θ is a subset of X , and the set of variables θX is the result of removing

6 A Proof Theory for Model Checking: An Extended Abstract

from X all the variables in the domain of θ and then adding in all those variables free in the range of θ .
This treatment of equality was developed independently by Schroeder-Heister [13] and Girard [9] and
has been extended to include simply typed λ -terms [11].

While the use of eigenvariables in proofs allows us to deal with quantifiers with finite proofs, that
treatment is not directly related to model theoretic semantics. In particular, the strengthening theorem
does not hold for this proof system. As a result, obtaining a soundness and completeness theorem for
this logic is no longer trivial.

The inference rules in Figure 1 provide a proper proof of the theorem considered in Example 5.

Example 6 Let Σ and the sets A and B be as in Example 5. Showing that A is a subset of B requires
showing that the formula ∀x(Ax⊃ Bx) is provable. That is, we need to find a proof of the sequent
` ∀x.(x = 0∨ x = 1)⊃ (x = 0∨ x = 1∨ x = 2). The following proof of this sequent uses the rules from
Figure 1: a double line means that two or more inference rules might be chained together.

· ; · ` 0 = 0
· ; · ` 0 = 0∨0 = 1∨0 = 2

x; x = 0 ` x = 0∨ x = 1∨ x = 2

· ; · ` 1 = 1
· ; · ` 1 = 0∨1 = 1∨1 = 2

x; x = 1 ` x = 0∨ x = 1∨ x = 2
x ; x = 0∨ x = 1 ` x = 0∨ x = 1∨ x = 2

· ; · ` ∀x.(x = 0∨ x = 1)⊃ (x = 0∨ x = 1∨ x = 2)

The proof in this example is able to account for a simple version of “reachability” in the sense that we
only need to consider checking membership in set B for just those elements “reached” in A.

6 Fixed points

A final step in building a logic that can start to provide a foundation for model checking is the addition
of least and greatest fixed points and their associated rules for induction and coinduction. Given that pro-
cesses generally exhibit potentially infinite behaviors and that term structures are not generally bounded
in their size, it is important for a logical foundation of model checking to allow for some treatment of
infinity. The logic described by the proof system in Figure 1 is a two-sided version of MALL= (multi-
plicative additive linear logic extended with first-order quantifiers and equality) [4]. The decidability of
this logic is easy to show: as one moves from conclusion to premise in every inference rule, the number
of occurrences of logical connectives decrease. As a result, it is a simple matter to write an exhaus-
tive search procedure that must necessarily terminate (such a search procedure can also make use of the
decidable procedure of first-order unification).

In order to extend the expressiveness of MALL, Girard added the exponentials !, ? to MALL to
get full linear logic [7]. The standard inference rules for exponentials allows for some forms of the
contraction rule (Section 2) to appear in proofs and, as a result, provability is no longer decidable. A
different approach to extending MALL with the possibility of having unbounded behavior was proposed
in [4]: add to MALL= the least and greatest fixed point operators, written as µ and ν , respectively.
The proof theory of the resulting logic, called µMALL=, was been developed in [2] and exploited in a
prototype model checker [3].

Fixed point expressions are written as µBt̄ or νBt̄, where B is an expression representing a monotonic
higher-order abstraction, and t̄ is a list of terms; by monotonic, we mean that the higher-order argument
of B can only occur in B under even numbers of negations. The unfolding of the fixed point expressions
µBt̄ and νBt̄ are B(µB) t̄ and B(νB) t̄, respectively.

Q. Heath and D. Miller 7

X ; Γ ` B(µB)t̄,∆
X ; Γ ` µBt̄,∆

µR
X ; Γ,St̄ ` ∆ X , x̄ ; BSx̄ ` Sx̄

X ; Γ,µBt̄ ` ∆
µL

X ; Γ,B(νB)t̄ ` ∆

X ; Γ,νBt̄ ` ∆
νL

X ; Γ ` St̄,∆ x̄ ; Sx̄ ` BSx̄
X ; Γ ` νBt̄,∆ νR

Figure 2: Introduction rules for least (µ) and greatest (ν) fixed points

Example 7 Horn clauses (in the sense of Prolog) can be encoded as purely positive fixed point expres-
sions. For example, here is the Horn clause logic program (using the λProlog syntax, the sigma Y\

construction encodes the quantifier ∃Y) for specifying a (tiny) graph and its transitive closure:

step a b. step b c. step c b.

path X Y :- step X Y.

path X Z :- sigma Y\ step X Y, path Y Z.

We can translate the step relation into the binary predicate · −→ · defined by

µ(λAλxλy.(x = a∧+ y = b)∨(x = b∧+ y = c)∨ (x = c∧+ y = b))

which only uses positive connectives. Likewise, path can be encoded as the relation path(·, ·):

µ(λAλxλ z.x−→ z∨ (∃y.x−→ y∧+ Ayz)).

To illustrate unfolding of the adjacency relation, note that unfolding the expression a −→ c yields the
formula (a = a∧+ c = b)∨ (a = b∧+ c = c)∨ (a = c∧+ c = b) which is not provable. Unfolding the ex-
pression path(a,c) and performing β -reductions yields the expression a−→ c∨ (∃y.a−→ y∧+ pathyc).

In µMALL=, both µ and ν are treated as logical connectives in the sense that they will have in-
troduction rules. They are also de Morgan duals of each other. The inference rules for treating fixed
points are given in Figure 2. The rules for induction and coinduction (µL and νR, respectively) use a
higher-order variable S which represents the invariant and coinvariant in these rules. As a result, it will
not be the case that cut-free proofs will necessarily have the sub-formula properties: the invariant and
coinvariant are not generally subformulas of the rule that they conclude. The following unfolding rules
are also admissible since they can be derived using induction and coinduction.

X ; Γ,B(µB)t̄ ` ∆

X ; Γ,µBt̄ ` ∆

X ; Γ ` B(νB)t̄,∆
X ; Γ ` νBt̄,∆

The introduction rules in Figures 1 and 2 are exactly the introduction rules of µMALL=, except for
two shallow differences. The first difference is that the usual presentation of µMALL= is via one-sided
sequents (here, we use two-sided sequents). The second difference is that we have written many of
the connectives differently (hoping that our set of connectives will feel more comfortable to those not
familiar with linear logic). To be precise, to uncover the linear logic presentation of formulas, one must
translate ∧−, t−, ∧+, t+, ∨, and ⊃ to &, >, ⊗, 1, ⊕, and −◦ [7]. Note that the linear implication B−◦C
can be taken as an abbreviation of ¬B℘C.

The following example shows that it is possible to prove some negations using either unfolding (when
there are no cycles in the resulting state exploration) or induction.

8 A Proof Theory for Model Checking: An Extended Abstract

Example 8 Below is a proof that the node a is not adjacent to c: the first step of this proof involves
unfolding the definition of the adjacency predicate into its description.

a = a,c = b ` ·
a = a∧+ c = b ` ·

a = b,c = c ` ·
a = b∧+ c = c ` ·

a = c,c = b ` ·
a = c∧+ c = b ` ·

(a = a∧+ c = b)∨ (a = b∧+ c = c)∨ (a = c∧+ c = b) ` ·
a−→ c ` ·

A simple proof exists for path(a,c): one simply unfolds the fixed point expression for path(·, ·) and
chooses correctly when presented with a disjunction and existential on the right of the sequent arrow.
Given the definition of the path predicate, the following rules are clearly admissible. We write 〈t,s〉 ∈Adj
whenever · ` t −→ s is provable.

X ; Γ ` ∆

X ; Γ,path(t,s) ` ∆
〈t,s〉 ∈ Adj

{X ; Γ,path(s,y) ` ∆ | 〈t,s〉 ∈ Adj}
X ; Γ,path(t,y) ` ∆

The second rule has a premise for every pair 〈t,s〉 of adjacent nodes: if t is adjacent to no nodes, then
this rule has no premises and the conclusion is immediately proved. A naive attempt to prove that there
is no path from c to a gets into a loop (using these admissible rules): attempt to prove path(c,a) ` · leads
to an attempt to prove path(b,a) ` · and again attempting to prove path(c,a) ` ·. Such a cycle can be
examined to yield an invariant that makes it possible to prove the end-sequent. In particular, the set of
nodes reachable from c is {b,c}, subset of N = {a,b,c}. The invariant S can be described as the set
which is the complement (with respect to N×N) of the set {b,c}×{a}, or equivalently as the predicate
λxλy.

∨
〈u,v〉∈S(x = u∧+ y = v). With this invariant, the induction rule (µL) yields two premises. The

left premise simply needs to confirm that the pair 〈c,a〉 is not a member of S. The right premise sequent
x̄ ; BSx̄ ` Sx̄ establishes that S is an invariant for the µB predicate. In the present case, the argument
list x̄ is just a pair of variables, say, x,z, and B is the body of the path predicate: the right premise is
the sequent x,z ; x −→ z∨ (∃y.x −→ y∧+ Syz) ` Sxz. A formal proof of this follows easily by blindly
applying applicable inference rules.

While the rules for fixed points (via induction and coinduction) are strong enough to transform
cyclic behaviors into, for example, non-reachabilty or (bi)simulation assertions, these rules are not strong
enough to prove other simple facts about fixed points. For example, consider the following two named
fixed point expressions used for identifying natural numbers and the ternary relation of addition.

nat =µλNλn(n = z∨∃n′(n = sn′∧+ N n′))

plus =µλPλnλmλ p((n = z∧+ m = p)∨∃n′∃p′(n = sn′∧+ p = sp′∧+ P n′ m p′))

The following formula (stating that the addition of two numbers is commutative)

∀n∀m∀p.nat n⊃ nat m⊃ plus n m p⊃ plus m n p

is not provable using the inference rules we have described. The reason that this formula does not
have a proof is not because the induction rule (µL in Figure 2) is not strong enough or that we are
actually sitting inside linear logic: it is because an essential feature of inductive arguments is missing.
Consider attempting a proof by induction that the property P holds for all natural numbers. Besides
needing to prove that P holds of zero, we must also introduce an arbitrary integer j (corresponding
to the eigenvariables of the right premise in µL) and show that the statement P(j + 1) reduces to the
statement P(j). That is, after manipulating the formulas describing P(j+1) we must be able to find in
the resulting argument, formulas describing P(j). Up until now, we have only “performed” formulas (by

Q. Heath and D. Miller 9

applying introduction rules) instead of checking them for equality. More specifically, while we do have
a logical primitive for checking equality of terms, the proof system described so far does not have an
equality for comparing formulas. As a result, some of the most basic theorems are not provable in this
system. For example, there is no proof of ∀n.(nat n⊃ nat n).

Model checking is not the place where we should be attempting proofs involving arbitrary infinite
domains: inductive theorem provers are used for that. If we restrict to finite domains, however, proofs
appear. For example, consider the less-than binary relation defined as

lt = µλLλxλy((x = z∧+ ∃y′.y = sy′)∨ (∃x′∃y′.x = sx′∧+ y = sy′∧+ L x′ y′))

The formula (∀n.lt n 10 ⊃ lt n 10) has a proof that involves generating all numbers less than 10 and
then showing that they are, in fact, all less than 10. Similarly, a proof of the formula ∀n∀m∀p(lt n 10⊃
lt m 10 ⊃ plus n m p ⊃ plus m n p) exists and consists of enumerating 100 pairs of numbers 〈n,m〉 and
checking that the result of adding n+m yields the same value as adding m+n.

The full proof system for µMALL= contains the cut rule and the following two initial rules.

X ; µBt̄ ` µBt̄
µ init

X ; νBt̄ ` νBt̄ ν init

The more general instance of the initial rule can be eliminated in favor of these two specific instances.

7 Conclusions

Linear logic is usually understood as being an intensional logic whose semantic treatments are quite
remote from the simple model theory consideration of first-order logic and arithmetic. Thus, we draw
the possibly surprising conclusions that the proof theory of linear logic provides a suitable framework for
model checking. Many of the salient features of linear logic—lack of structural rules, two conjunctions
and two disjunctions, polarization—play important roles in this framework. The role of linear logic here
seems completely different and removed from, say, the use of linear logic to model multiset rewriting and
Petri nets [10]: we use it instead as the logic behind logic. In order to capture model checking, we need to
deal with possibly unbounded behaviors in specifications. Instead of using the rule of contraction (which
states, for example, that the hypothesis B can be repeated as the two hypotheses B,B) we have used the
theory of fixed points: there, unfolding replaces µBt̄ with (B(µB)t̄), thus copying the definition of B.
The use of fixed points also allows for the direct and natural applications of the induction and coinduction
principles. In the full version of this paper, we show how a focused proof system for µMALL= can be
used to describe large scale (synthetic) additive inference rules that are built from smaller scale inference
rules that may be multiplicative.

There can be several benefits for establishing and developing model checking within proof theory.
One way to integrate theorem provers and model checkers would be to allow them to exchange proof
certificates in a common language of formulas and proofs. The logic of µMALL= is close to the logic and
proofs used in some inductive theorem provers. Also, linear logic is rich in duality. Certain techniques
used in model checking topics should be expected to dualize well. For example, what is the dual notion
for least fixed points of the notion of bisimulation-up-to? What does predicate abstraction look like when
applied to greatest fixed points? Proof theory is a framework that supports rich abstractions, including
term-level abstractions, such as bindings in terms. Thus, moving from model checking using first-order
terms to using simply typed λ -terms is natural in proof theory: such proof theoretic investigations of
model checking over linguistic structures including binders have been studied in [12] and have been

10 A Proof Theory for Model Checking: An Extended Abstract

implemented in the Bedwyr system [3] which has been applied to various model checking problems
related to the π-calculus [15, 16].

Acknowledgments. We thank the reviewers of an earlier draft of this abstract for their comments. This
work has been funded by the ERC Advanced Grant ProofCert.

References
[1] Jean-Marc Andreoli (1992): Logic Programming with Focusing Proofs in Linear Logic. J. of Logic and

Computation 2(3), pp. 297–347, doi:10.1093/logcom/2.3.297.
[2] David Baelde (2012): Least and greatest fixed points in linear logic. ACM Trans. on Computational Logic

13(1), doi:10.1145/2071368.2071370.
[3] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur & Alwen Tiu (2007): The Bedwyr system

for model checking over syntactic expressions. In F. Pfenning, editor: 21th Conf. on Automated Deduction
(CADE), LNAI 4603, Springer, New York, pp. 391–397, doi:10.1007/978-3-540-73595-3 28.

[4] David Baelde & Dale Miller (2007): Least and greatest fixed points in linear logic. In N. Dershowitz
& A. Voronkov, editors: International Conference on Logic for Programming and Automated Reasoning
(LPAR), LNCS 4790, pp. 92–106, doi:10.1007/978-3-540-75560-9 9.

[5] E. Allen Emerson (2008): The Beginning of Model Checking: A Personal Perspective. In Orna Grumberg &
Helmut Veith, editors: 25 Years of Model Checking - History, Achievements, Perspectives, Lecture Notes in
Computer Science 5000, Springer, pp. 27–45, doi:10.1007/978-3-540-69850-0 2.

[6] Gerhard Gentzen (1935): Investigations into Logical Deduction. In M. E. Szabo, editor: The Collected
Papers of Gerhard Gentzen, North-Holland, Amsterdam, pp. 68–131, doi:10.1007/BF01201353.

[7] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-
3975(87)90045-4.

[8] Jean-Yves Girard (1991): A new constructive logic: classical logic. Math. Structures in Comp. Science 1,
pp. 255–296 doi:10.1017/S0960129500001328.

[9] Jean-Yves Girard (1992): A Fixpoint Theorem in Linear Logic. An email posting to the mailing list lin-
ear@cs.stanford.edu.

[10] Max I. Kanovich (1995): Petri Nets, Horn programs, Linear Logic and vector games. Annals of Pure and
Applied Logic 75(1–2), pp. 107–135, doi:10.1016/0168-0072(94)00060-G.

[11] Raymond McDowell & Dale Miller (2000): Cut-elimination for a logic with definitions and induction. The-
oretical Computer Science 232, pp. 91–119, doi:10.1016/S0304-3975(99)00171-1.

[12] Dale Miller & Alwen Tiu (2005): A proof theory for generic judgments. ACM Trans. on Computational
Logic 6(4), pp. 749–783, doi:10.1145/1094622.1094628.

[13] Peter Schroeder-Heister (1993): Rules of Definitional Reflection. In M. Vardi, editor: 8th Symp. on Logic in
Computer Science, IEEE Computer Society Press, IEEE, pp. 222–232, doi:10.1109/LICS.1993.287585.

[14] Helmut Schwichtenberg (1977): Proof Theory: Some applications of cut-elimination. In J. Barwise, editor:
Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics 90, North-Holland,
Amsterdam, pp. 739–782, doi:10.1016/S0049-237X(08)71124-8.

[15] Alwen Tiu & Dale Miller (2005): A Proof Search Specification of the π-Calculus. In: 3rd Workshop on the
Foundations of Global Ubiquitous Computing, ENTCS 138, pp. 79–101, doi:10.1016/j.entcs.2005.05.006.

[16] Alwen Tiu & Dale Miller (2010): Proof Search Specifications of Bisimulation and Modal Logics for the
π-calculus. ACM Trans. on Computational Logic 11(2), doi:10.1145/1656242.1656248.

[17] Alwen Tiu & Alberto Momigliano (2012): Cut elimination for a logic with induction and co-induction.
Journal of Applied Logic 10(4), pp. 330–367, doi:10.1016/j.jal.2012.07.007.

http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1145/2071368.2071370
http://dx.doi.org/10.1007/978-3-540-73595-3_28
http://dx.doi.org/10.1007/978-3-540-75560-9_9
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.1016/0168-0072(94)00060-G
http://dx.doi.org/10.1016/S0304-3975(99)00171-1
http://dx.doi.org/10.1145/1094622.1094628
http://dx.doi.org/10.1109/LICS.1993.287585
http://dx.doi.org/10.1016/S0049-237X(08)71124-8
http://dx.doi.org/10.1016/j.entcs.2005.05.006
http://dx.doi.org/10.1145/1656242.1656248
http://dx.doi.org/10.1016/j.jal.2012.07.007

	Introduction
	The basics of the sequent calculus
	Additive propositional connectives
	Additive first-order structures
	Multiplicative connectives
	Fixed points
	Conclusions

