
Towards a broad spectrum proof certificate

Dale Miller

INRIA-Saclay & LIX, École Polytechnique
Palaiseau, France

Carnegie Mellon University, 17 October 2011

Can we standardize, communicate, and trust formal proofs?

Outline

About formal proofs quickly

Four desiderata for proof certificates

More specifics about logic, computation, and proof

Some technical bits: Focused proof systems

We must first narrow our topic

Proofs are documents that are used to communicate trust
within a community of agents.

Agents can be machines and humans.

Our focus:
publishing and checking formal proofs by computer agents

Not our focus today: learning from proofs, interacting with proofs,
compute with proofs.

Provers: computer agents that produce proofs

There is a wide range of provers.
• automated and interactive theorem provers
• model checkers, SAT solvers
• type inference, static analysis
• testers

There is a wide range of “evidence” of proof.
• proof scripts: steer a theorem prover to a proof
• resolution refutations, natural deduction, tableaux, etc
• winning strategies, simulations

It is the exception when one prover’s evidence is shared with
another prover.

Require provers to publish their proofs

Since provers do not currently communicate proofs, the trend is to
unifying various theorem proving activities into existing
frameworks, eg, Isabelle or Coq.

Separate proofs from provenance: insist that provers output their
proofs so others can check them.

We shall use the term “proof certificate” for those documents
denoting proofs that are circulated between provers.

Outline

About formal proofs quickly

Four desiderata for proof certificates

More specifics about logic, computation, and proof

Some technical bits: Focused proof systems

D1: A simple checker can, in principle, check if a proof
certificate denotes a proof.

The de Bruijn’s principle: provers should output proofs that can be
checked by simple checkers. Here “simple” might mean that the
checker can be independently validated (eg, by hand).

Ultimately, I will argue that proof certificates will be programs and
a checker will be an interpreter for such programs.

“Everything should be made as simple as possible,
but not one bit simpler.”

-Albert Einstein

D2: The proof certificate format supports a broad spectrum of
proof systems.

One should not need to radically transform accumulated proof
evidence in order to output a proof certificate.

Clearly, there is a tension between D1 and D2.

Consider the following additional consequences of these two
desiderata.

Marketplaces for proofs

The ACME company needs a formal proof for its next generation
of controllers for airplanes, electric cars, medical equipment, etc.

ACME submits to the “proofs” marketplace a proposed theorem as
a proof certificate with a “hole” for its actual proof.

The contract: You get paid if you can fill the hole in such a way
that ACME can check it.

This marketplace could be wide open: anyone using any
combination of deduction engines would be able to compete.

Providing a partial proof or a counter-example should also have
some economic value: these should be allowed in a more general
setting of “proof certificates”.

Marketplaces for proofs

The ACME company needs a formal proof for its next generation
of controllers for airplanes, electric cars, medical equipment, etc.

ACME submits to the “proofs” marketplace a proposed theorem as
a proof certificate with a “hole” for its actual proof.

The contract: You get paid if you can fill the hole in such a way
that ACME can check it.

This marketplace could be wide open: anyone using any
combination of deduction engines would be able to compete.

Providing a partial proof or a counter-example should also have
some economic value: these should be allowed in a more general
setting of “proof certificates”.

Libraries of proofs

Proof certificates can be archived, searched, and retrieved.

Additionally, one might be able to browse, apply, and transform
them.

One might trust the authority behind the library.

Libraries might invest in significant computing power, thus
expanding the proof certificates that they can check.

A library has strong motivations to be careful: accepting a
non-proof puts their entire library and accumulative trust at risk.

D3: A proof certificate is intended to denote a proof in the
sense of structural proof theory.

Structural proof theory is a mature field that deals with deep
aspects of proofs and their properties.

For example: given certificates for

∀x(A(x) ⊃ ∃y B(x , y)) and A(10),

can we extract from them a witness t such that B(10, t) holds?

D4: A proof certificate can simply leave out details of the
intended proof.

Formal proofs are often huge. All means to reduce their size need
to be available.
• Introductions of abstractions and lemma.
• Separate computation from deduction and leave computation

traces out of the certificate.
• Allow trade-offs between proof size and proof reconstruction:

(bounded) proof search maybe need to fill in holes.

This desideratum leads to strong demands on the nature of proof
certificates.
• What bound on search is sensible?
• How to ensure that such search is sensibly directed?

Outline

About formal proofs quickly

Four desiderata for proof certificates

More specifics about logic, computation, and proof

Some technical bits: Focused proof systems

Which logic?

First-order or higher-order?

Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not fit. (However, the syntax of modal operators fits well
with Church’s logic and their semantics can similarly be encoded.)

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not fit. (However, the syntax of modal operators fits well
with Church’s logic and their semantics can similarly be encoded.)

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic?

Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not fit. (However, the syntax of modal operators fits well
with Church’s logic and their semantics can similarly be encoded.)

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not fit. (However, the syntax of modal operators fits well
with Church’s logic and their semantics can similarly be encoded.)

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not fit. (However, the syntax of modal operators fits well
with Church’s logic and their semantics can similarly be encoded.)

Which computation paradigm?

Proof certificates will need to be “performed” and reconstructed.

Checking can be computationally expensive.

Since our view of computation should be broad spectrum as well, it
should be

• non-deterministic, since determinism is a special case;
• concurrent, since sequential is a special case; and
• relational, since functions are a special case.

Logic programming might be a good candidate.

Which proof system?

There are numerous, well studied proof systems: natural
deduction, sequent, tableaux, resolution, etc.

Many others are clearly proof-like: tables (in model checking),
winning strategies (in game playing), etc.

Other: certificates for primality, etc.

We wish to capture all of these proof objects.

Of course, handling so many proof formats might make for a
terribly complex proof checker.

Atoms and molecules of inference

We outline how all these demands on certificates can be addressed
using what we know of the theory of proof structures.

There are atoms of inference.

• Gentzen’s sequent calculus first provided these: introduction
and structural rules.

• Girard’s linear logic refined our understanding of these further.

• To account for first-order structure, we also need fixed points
and equality.

There are molecules of inference.

• There are “rules of chemistry” for assembling atoms of inference
into molecules of inference (“synthetic inference rules”).

Satisfying the desiderata

D1: Simple checkers.
Only the atoms of inference and the rules of chemistry (both small
and closed sets) need to be implemented in the checker.

D2: Certificates supports a wide range of proof systems.
The molecules of inference can be engineered into a wide range of
existing inference rules.

D3: Certificates are based on proof theory.
Immediate by design.

D4: Details can be elided.
Proof search in the space of atoms can match proof search in the
space of molecules. (Don’t want to invent new molecules in the
checker.)

Outline

About formal proofs quickly

Four desiderata for proof certificates

More specifics about logic, computation, and proof

Some technical bits: Focused proof systems

Focused proof systems

Consider a one-side sequent calculus system for classical logic.

Two invertible introduction inference rules:

` ∆,B1,B2

` ∆,B1 ∨ B2

` ∆,B[y/x]

` ∆,∀xB

The inference rules for their de Morgan duals (not invertible):

` ∆,B[t/x]

` ∆,∃xB

` ∆1,B1 ` ∆2,B2

` ∆1,∆2,B1 ∧ B2

Focused proofs are built in two phases:
• the “up arrow” ⇑ phase where one only has invertible rules
• the “down arrow” ⇓ phase where one has (not-necessarily)

invertible rules

LKF : (multi)focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬Pa,Θ ⇓ Pa

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
Pa positive literal; C positive formula or negative literal

Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a tautology if and only if B̂ has an LKF proof.
[Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

Also:
• Negative (non-atomic) formulas are treated linearly (never

weakened nor contracted).
• Only positive formulas are contracted (in the Decide rule).

An example

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·

A certificates for propositional logic: compute CNF

Use ∧− and ∨−. Their introduction rules are invertible. The initial
“macro-rule” is huge, having all the clauses in the conjunctive
normal form of B as premises.

. . .

` L1, . . . , Ln ⇓ Li
Init

` L1, . . . , Ln ⇑ · Decide
. . .

...

` · ⇑ B

The proof certificate can specify the complementary literals for
each premise or it can ask the checker to search for them.

Proof certificates can be tiny but require exponential time for
checking.

Positive connectives allow for inserting information

Let B have several alternations of conjunction and disjunction.

Using positive polarities with the tautology C = (p ∨+ B) ∨+ ¬p
allows for a more clever proof then the previous one.

` C ,¬p ⇓ p

` C ,¬p ⇓ C
∗

` C ,¬p ⇑ · Decide

` C ⇑ ¬p

` C ⇓ ¬p

` C ⇓ C
∗

` C ⇑ · Decide

` · ⇑ C

Clever choices ∗ are injected twice. The subformula B is avoided.

First-order terms and their structure

` Θ ⇑ Γ,A[y/x]

` Θ ⇑ Γ,∀x A
§

` Θ ⇓ Γ,A[t/x]

` Θ ⇓ Γ,∃x A

§ y is not free in the lower sequent

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable. † s and t have mgu σ.

` Θ ⇑ Γ,B(νB)t̄

` Θ ⇑ Γ, νBt̄

` Θ ⇓ Γ,B(µB)t̄

` Θ ⇓ Γ, µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ and ν denotes some fixed point. Least and greatest require
induction and co-induction.

Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X) :- nat X .

leq 0 Y :- true.

leq (s X) (s Y) :- leq X Y .

Above, as a logic program and below, as fixed points.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).

The engineering of proof systems

Consider proving the down-arrow focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.

The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.

The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ ·] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ ·] is a positive “macro connective”. There

can be choices for continuation Q ′.

These macro-rules now match exactly the sense of simulation from
model theory / concurrency theory.

Example: Resolution as a proof certificate

A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]
A negated clause: ∃x1 . . . ∃xn[L1 ∧ · · · ∧ Lm]

1. A clause C is trivial if it contains complementary literals.

2. A clause C1 subsumes C2 if there is a substitution instance of
the literals in C1 which is a subset of the literals in C2.

3. C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

Polarize using ∨− and ∧+.
Let `d Θ ⇑ Γ mean that ` Θ ⇑ Γ has a proof with decide depth d .

• If C is trivial then `1 · ⇑ C .
• If C1 subsumes a non-trivial clause C2 then `1 ¬C1 ⇑ C2.
• If C3 is a resolvent of C1 and C2 then `2 ¬C1,¬C2 ⇑ C3.

Example: Resolution as a proof certificate (cont)

Translate a refutation of C1, . . . ,Cn into an LKF proof with small
holes as follows:

Ξ
` ¬C1,¬C2 ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ ·
Cutp

Here, Ξ can be replaced with a “hole” annotated with bound 2.

To capture more of the parallel structure present in a refutation, a
“multicut” can be used here.

The λ-cube, λΠ, and deduction modulo

Functional Pure Type Systems can be embedded in the
λΠ-calculus modulo. [Cousineau & Dowek; TLCA 2007]

• Functional computations (eg, β-reductions) are performed by
the “modulo” aspect.
• The Dedukti proof checker [Boespflug; phd 2011] implements
λΠ-calculus modulo by compilation into Haskell.

λΠ-calculus (LF) can be embedded into intuitionistic logic
(λProlog) [Snow, Baelde, Nadathur; PPDP 10].

• Functional computations can be captured by logic programs.

Can type theory be meaningfully seen as a molecular construction
on top of intuitionistic logic?

ProofCert:
Broad Spectrum Proof Certificates

My application for an ERC Advanced Investigator Grant (“high
risk, high gain”) on this topic has been recently accepted.

Budget details to be worked out but the key points should be:

• five years duration (2012 - 2016)
• 2.2 million euros total.
• three PhD grants (each lasting 3 years)
• eight years of PostDoc support
• multiyear funding for an engineer

Interested in living in and working near Paris?

Some recent references

[1] Liang and Miller. Focusing and polarization in linear,
intuitionistic, and classical logics. Theoretical Computer Science,
2009.

[2] Liang and Miller. Kripke Semantics and Proof Systems for
Combining Intuitionistic Logic and Classical Logic, 2011
(submitted).

[3] Nigam and Miller. A framework for proof systems, J. of
Automated Reasoning, 2010.

[4] Miller, Communicating and trusting proofs: The case for broad
spectrum proof certificates, draft available on web.

[5] Miller, A proposal for broad spectrum proof certificates, CCP
2011: Certified Proofs and Programs.

	About formal proofs quickly
	Four desiderata for proof certificates
	More specifics about logic, computation, and proof
	Some technical bits: Focused proof systems

