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Abstract4

In linear logic, a connective’s right-introduction rule is invertible if and only if its left-introduction5

rule is not. This fact suggests the following notion of polarity: a connective is negative if its6

right-introduction rule is invertible and positive otherwise. Negation inverts polarity. A two-sided7

sequent calculus for first-order linear logic with only negative connectives has an appealing proof8

theory. Proof search proceeds by alternating phases of invertible (right-introduction) rules and non-9

invertible (left-introduction) rules, corresponding to goal-reduction and backchaining, respectively.10

These phases are formalized by multifocused proofs, which illuminate differences between proofs11

in intuitionistic and linear logic. We decompose linear logic into three sublogics: L0 (first-order12

intuitionistic logic with conjunction, implication, and universal quantification); L1 (extending L013

with linear implication, retaining its intuitionistic character); and L2 (containing multiplicative14

falsity ⊥, encompassing classical linear logic). Notably, the single-conclusion restriction on sequents15

does not need to be imposed (as Gentzen did) to define intuitionistic logic proofs since it arises16

as a feature of multifocused proofs of L0 and L1 sequents. While multifocused proofs of L217

sequents can contain parallel applications of left-introduction rules, proofs of L0 and L1 sequents18

cannot exploit such parallel rule application. This notion of parallelism in proofs facilitates a novel19

treatment of disjunctions and existential quantifiers in natural deduction for intuitionistic logic. The20

cut-elimination theorem for the focused proof system is proved in the appendix.21
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1 Introduction26

The fact that an inference rules is invertible or not is an important property of a rule. Although27

Gentzen apparently did not consider this property of his inference rules [27], Ketonen28

recognized its significance shortly after Gentzen’s work. In fact, Ketonen restructured29

Gentzen’s LK calculus around invertible rules, and that enabled him to establish some30

decidability and independence results for classical provability [17, 18]. Maximizing the31

presence of invertible inference rules in a proof system is a goal of the popular G3 two-sided32

sequent calculus proof system [31].33

One intriguing aspect of linear logic is that the right introduction of a connective is not34

invertible if and only if the right introduction of the dual connective is invertible. (Linear35

negation will not be a primitive logical connective here.) This fact suggests introducing a36

notion of polarity. Following Girard [12] and Andreoli [1], we say that a connective is negative37

if its right-introduction rule is invertible and positive otherwise. Given the observation38

above, De Morgan duality flips polarities. We shall say that a non-atomic formula is negative39

(positive) if its top-level connective is negative (resp., positive). In order to extend the notion40

of polarity to all formulas, we must assign a polarity to atomic formulas as well: while this41

can be done in a arbitrary way (see Section 7), we follow Andreoli [1] and assign all atomic42

formulas the negative polarity.43

In linear logic, the logical connectives ⊤, &, ⊥,`, ∀, ? are negative and 0, ⊕, 1, ⊗, ∃, ! are44

positive. Here, we follow [23] in making two different choices in the selection of connectives45

in presenting linear logic. First we shall take the two implications ⊸ (linear implication) and46
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XX:2 Linear logic using negative connectives

⇒ (intuitionistic implication) as primitive. When ⇒ is not a primitive, it is usually defined47

so that A ⇒ B is ! A ⊸ B. As a result of using ⇒, we will not take ! as a primitive. Since48

both of these implications have invertible right-introduction rules, they are both negative49

connectives. We choose also to work only with negative connectives which means that we50

need a two-sided sequent and we do not need to work explicitly with De Morgan duals.51

In this paper, we develop the proof theory for full linear logic using only negative52

connectives. This involves slicing full linear logic into the following three classes of connectives:53

L0 captures the core of intuitionistic logic using the linear logic connectives {⊤, &, ⇒, ∀}.54

L1 is L0 with ⊸ added and corresponds to linear intuitionistic logic.55

L2 is L1 with ⊥ and ` added and is a complete set of connectives for linear logic.56

Thus, L0 is {⊤, &, ⇒, ∀}, L1 is L0 ∪ {⊸}, and L2 is L1 ∪ {⊥,`}. For i ∈ {0, 1, 2}, we say57

that a formula is an Li-formula if all connectives occurring in it are from the set Li. In this58

paper, ∀ denotes a first-order quantifier only.59

Considering proof systems that focus solely on negative polarity connectives is a common60

approach in the literature on intuitionistic logic. For instance, the connectives in L0 are61

primarily the ones discussed in the first half of Girard’s textbook [13]. The positive connectives,62

such as disjunction, falsehood, and existential quantification, are only briefly mentioned in63

Chapter 10. Similarly, those studying the normalization procedure for natural deduction in64

Prawitz’s work [28] will observe how straightforward the treatment of negative connectives is65

compared to the complexity involved in handling positive connectives.66

As the following equivalences reveal, the set L2 is a complete set of connectives. (Here,67

the equivalence A ≡ B is defined as the formula (A ⊸ B) & (B ⊸ A).)68

0 ≡ ⊤ ⇒ ⊥ ! B ≡ (B ⇒ ⊥) ⊸ ⊥ B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥
1 ≡ ⊥ ⊸ ⊥ ? B ≡ (B ⊸ ⊥) ⇒ ⊥. B ⊗ C ≡ (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥

∃x.B ≡ (∀x.B ⊸ ⊥) ⊸ ⊥
69

The set L2 is redundant since B ` C is equivalent to both (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥70

and to (B ⊸ ⊥) ⊸ C. We shall find it convenient to keep ` in ⇓ L2, particularly when we71

discuss multiset rewriting in Section 3.1.72

In many cases, when a positive connective is convenient to write a specification, they73

appear on the left of an implication. In such cases, the curry/uncurry equivalences can be74

employed (hence, avoiding the double-negation expressions above).75

1 ⊸ H ≡ H (B ⊗ C) ⊸ H ≡ B ⊸ C ⊸ H

0 ⊸ H ≡ ⊤ (B ⊕ C) ⊸ H ≡ (B ⊸ H) & (C ⊸ H)
(∃x.Bx) ⊸ H ≡ ∀x.(Bx ⊸ H)

76

The main theoretical tools used in this paper are the ⇓ L2 focused proof system and its77

extension ⇓+L2 that includes (versions of) the cut rule. Let i ∈ {0, 1, 2}. A sequent is an Li78

sequent if all formulas occurring in it are Li formulas.79

While this paper presents different ways to present several known results in structural80

proof theory, it also contains the following novelties.81

1. ⇓ L2 proofs of L0 and L1 formulas has the usual intuitionistic structure: i.e., they are82

necessarily single conclusion. Classical proof structure only appears once the ⊥ and `83

connectives are admitted.84

2. As we shall see, parallel rule application is captured using multifocusing. As it turns out,85

multifocused proofs based on L0 and L1 formulas are, in fact, single-focused. As a result,86

such proofs do not permit the parallel application of rules. Non-single-focused proofs are87

possible with L2-sequents.88
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3. Our proof of cut elimination in ⇓+L2 (Theorem 10) contains some novelty.89

4. The admissibility of cut in ⇓ L2 provides a new proof of the completeness of ⇓ L2: earlier90

proofs relied on permutation arguments within cut-free proofs [2, 23].91

5. We provide an improved treatment of disjunction and existential quantification within92

the LJT intuitionistic proof system of [14] and use it to motivate a parallel elimination93

for ∨ and ∃ in natural deduction proofs for intuitionistic logic.94

It is well known that while cut elimination can be challenging to prove given the many cases95

that need to be considered, once it is proved many important results following immediately96

(witness the fact that Gentzen was able to prove the consistency of classical and intuitionistic97

logic using a one-line proof that invoked his Hauptsatz). We have placed the cut-elimination98

theorem for ⇓ L2 in the appendix so that the bulk of this paper can focus on the number of99

consequences that follow rather simply from that result.100

2 The focused proof systems ⇓ L2 and ⇓+L2101

The inference rules in Figure 1 involve two kinds of sequents, namely, Σ : Ψ; Γ ⊢ ∆ and102

Σ : Ψ; Γ ⇓ Θ ⊢ Θ′ ⇓ ∆. The signature of these sequents Σ is a binder of eigenvariables within103

the scope of the sequent. Any variable free in any formula occurring in any zone of the sequent104

must be explicitly bound (and typed) in Σ. The other components of these sequents—the105

left unbounded zone Ψ, the left bounded zone Γ, the right bounded zone ∆, the left focused106

zone Θ, and the right focused zone Θ′—are all multisets of formulas.107

The decidem rule contains the two schema variables Ψ2 and Ψ̂2: we require these two108

variables to be instantiated with multisets of formulas in such a way that every formula109

with a non-zero multiplicity in one of them also has a non-zero multiplicity (not necessarily110

equal) in the other. The decidem rule is also constrained so that the multiset union Ψ̂2, Γ2111

is non-empty. If we make no further restrictions on the decidem inference rule, we call the112

proof system in Figure 1 the near-focused proof system for L2. The ⇓ L2 proof system is113

the result of requiring that the schema variable ∆ in the decidem is a multiset of atomic114

formulas. Given that restriction on decidem, it is then the case that all instances of the left115

phase rules are such that the right bounded zone contains only atomic formulas. Thus, in116

⇓ L2 proofs, the init rule takes place between two occurrences of the same atomic formula.117

Although the following observation is not important for this paper since we are only118

interested in first-order quantification, an important property of near-focused proofs is119

that they are stable under higher-order substitution: that is, if one substitutes a predicate120

with a λ-term possibly containing logical connectives in a near-focused proof, the resulting121

instantiation will also be a near-focused proof. A similar statement is not true for ⇓ L2 proofs122

since such substitutions can change an atomic formula into a non-atomic formula.123

The ⇓+L2 proof system is the result of adding the following two cut rules to ⇓ L2.124

Σ : Ψ; · ⊢ B Σ : Ψ, B; Γ ⊢ ∆

Σ : Ψ; Γ ⊢ ∆
cut !

Σ : Ψ; Γ1 ⊢ B, ∆1 Σ : Ψ; Γ2, B ⊢ ∆2

Σ : Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutl

125

The formula B is the cut-formula in both of these rules. We say that a Σ-formula B has a126

proof in a given sequent calculus proof system if the sequent Σ : ·; · ⊢ B has a proof.127

The site of an inference rule is a set of occurrences of formulas in the conclusion of128

that rule defined as follows: (i) the site for an introduction rule contains just the formula129

occurrence being introduced, (ii) the site of an init rule contains the two formula occurrences130

labeled by B in Figure 1, and (iii) the site of the rules release, decidem, cut !, and cutl are131
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all empty. An occurrence of a formula in the conclusion of an inference rule is a side-formula132

occurrence if it is not in the site of that rule. For example, all formula occurrences in the133

conclusion of release, decidem, cut !, and cutl are side formula occurrences. Side-formula134

occurrences can appear in any zone in the two different styles of sequents.135

An essential feature of linear logic is its classification of logical connectives into mul-136

tiplicative, additive, and exponential. The ⇓ L2 proof system applies that classification to137

inference rules by how the rule treats side-formula occurrences. All inference rules treat side138

formula occurrences in the unbounded zone the same: formulas occurring in the unbounded139

zone of the conclusion occur in the unbounded left zone of every premise (this accounts for140

the exponential ! of linear logic). An inference is additive if every side formula occurrence141

in a bounded zone in the rule’s conclusion has an occurrence in the same bounded zone in142

every premise of the rule. An inference is multiplicative if every side formula occurrence in143

a bounded zone in the rule’s conclusion has an occurrence in exactly one premise and that144

occurrence is within the same kind of bounded zone. (Here, the left and right-focused zones145

are also considered to be bounded zones.) Note that all right phase rules are additive, all left146

rules are multiplicative, and all phase switching rules are additive and multiplicative.147

Proofs in the ⇓ L2 proof system are multifocused proofs. In the case that every occurrences148

of the decidem rule in a proof selects exactly one formula, we say that that proof is single-149

focused. Similarly, proofs in the ⇓ L2 proof system are multiple conclusion proofs. In the150

case that every sequent in a proof has exactly one formula on its right-hand side, we say151

that that proof is a single-conclusion proof.152

One reason to use the focused proof system ⇓ L2 is that it provides a powerful normal153

form to sequent calculus proofs. Another reason is that phases can be viewed as derived154

inference rules and, as such, they can abstract away from the specific details in how they are155

constructed. A border sequent is a sequent of the form Σ : Ψ; Γ ⊢ ∆ where ∆ is a multiset of156

atomic formulas. Above a border sequent is a decidem rule and above that is a left phase.157

Any open premise of the left phase are the conclusion of a release rule and above that is a158

right phase. Any open premises of this right phase (and those which are the left-premise of159

⇒L) must again be border sequents. Such a collection of inference rules that have border160

sequents as (open) premises, a border sequent as the conclusion, and exactly one instance of161

the decidem rule is called a bipole. The synthetic rule justified by such a bipole is the result162

of deleting all the internal inference rules of the left and right phases and simply maintaining163

the border sequents as premises and conclusion.164

▶ Example 1. Let a, b, c be propositional constants and assume that Ψ contains the formula165

a ⊸ b ⊸ c. We have the following bipole and the synthetic inference rule it justifies.166

Σ : Ψ; Γ1 ⊢ a, ∆1

Σ : Ψ; Γ1 ⇓ · ⊢ a ⇓ ∆1
release

Σ : Ψ; Γ2 ⊢ b, ∆2

Σ : Ψ; Γ2 ⇓ · ⊢ b ⇓ ∆2
release

Σ : Ψ; · ⇓ c ⊢ · ⇓ c
init

Σ : Ψ; Γ1, Γ2 ⇓ a ⊸ b ⊸ c ⊢ · ⇓ c, ∆1, ∆2
⊸ ×2

Σ : Ψ; Γ1, Γ2 ⊢ c, ∆1, ∆2
decidem

167

168

Σ : Ψ; Γ1 ⊢ a, ∆1 Σ : Ψ; Γ2 ⊢ b, ∆2

Σ : Ψ; Γ1, Γ2 ⊢ c, ∆1, ∆2169

If instead we assume that Ψ contains the formula a ⇒ b ⇒ c then we have the following170
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bipole and the synthetic inference rule it justifies.171

Σ : Ψ; · ⊢ a, · Σ : Ψ; · ⊢ b Σ : Ψ; · ⇓ c ⊢ · ⇓ c
init

Σ : Ψ; · ⇓ a ⇒ b ⇒ c ⊢ · ⇓ c
⇒ ×2

Σ : Ψ; · ⊢ c
decidem

Σ : Ψ; · ⊢ a Σ : Ψ; · ⊢ b

Σ : Ψ; · ⊢ c
172

The following soundness theorem is straightforward to prove since every inference rule in173

⇓ L2 is derivable in linear logic: when translating the zoned sequents used in ⇓ L2 to linear174

logic, simply place the exponential ! on all formulas in the unbounded zone and then replace175

the semicolon and the two occurrences of ⇓ with commas.176

▶ Theorem 2 (Soundness of ⇓ L2 proofs). If Σ : ·; · ⊢ B has a ⇓ L2 proof then B is a theorem177

of linear logic.178

2.1 Deriving ⇓ L0 and ⇓ L1 from ⇓ L2179

One of the important features of the ⇓ L2 proof system for linear logic is that if we are180

interested in proving an L1 or an L0 formula, then various features of ⇓ L2 proofs are not181

actually used and that proof system can be greatly simplified for proving such formulas. The182

following propositions will allows justify such simplifications of ⇓ L2.183

▶ Lemma 3. There is no ⇓ L2 proof of an L1 sequent with an empty right side.184

Proof. Assume that there is a ⇓ L2 proof of a sequent with an empty right side and with185

only L1 formulas on the left side. Let Ξ be such a proof of minimal height. Consider the186

last inference rule of Ξ. This last inference rule cannot be right-introduction rule since these187

require a non-empty right side. Similarly, the last rule is not decidem since that would yield188

a premise with an empty right side with a shorter proof. Thus, the endsequent of Ξ must be189

of the form Σ : Ψ; Γ ⇓ Θ ⊢ · ⇓ · where Ψ and Γ are multisets of L1 formulas over Σ. However,190

a check of all possible left-introduction rules (⊥L and ` L are not possible) and the release191

rule yields at least one premise with an empty right side and shorter proof. This contradicts192

the choice of Ξ. ◀193

▶ Proposition 4. If Ξ is a ⇓ L2 proof of a single-conclusion L1-sequent then Ξ is a single-194

conclusion proof.195

Proof. We proceed by induction on the structure of the ⇓ L2 proof Ξ. By considering all196

the possible last inference rules of Ξ, we need to show that a single conclusion sequent in197

the conclusion will guarantee that all premises are also single conclusion: the inductive198

hypothesis then completes the proof. The only case that is not immediate is the case for the199

⊸ L rule, namely,200

Σ : Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ : Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ : Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L

201

and where Θ3 ∪ Θ4 ∪ ∆1 ∪ ∆2 is a singleton multiset. By Lemma 3, we know that Θ4 ∪ ∆2 is202

not empty. As a result, Θ3 ∪ ∆1 must be empty. Thus, both premises of this inference rule203

are single-conclusion sequents. ◀204

▶ Proposition 5. If Ξ is a ⇓ L2 proof of a single-conclusion L1 sequent then Ξ is single205

focused.206
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Proof. Assume that there is a ⇓ L2 proof of a L1 sequent that is not single-focused, and let207

Ξ be chosen as such a proof of minimal height. The endsequent of Ξ must be a ⇓-sequent208

with the focused zones containing at least two formulas. Consider the last inference rule209

in Ξ. That rule is not init. By Proposition 4, it is not release. Because of the minimality210

assumption, that rule is not ∀L, &L, or ⇒ L. The only remaining case is when that rule is211

⊸ L. Thus, the last inference figure in Ξ is of the form212

Σ : Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ : Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ : Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L,

213

where at least one of the multisets Θ1, . . . , Θ4 must be none empty. Thus, one of the premises214

must have a focused zone with two or more members, which contradicts the minimal height215

assumption about Ξ. ◀216

Consider a ⇓ L2 proof Ξ of an L1 Σ-formula B, that is, Ξ is a proof of the sequent217

Σ : ·; · ⊢ B. By Proposition 4, all sequents in Ξ are single conclusion and by Proposition 5,218

every ⇓ sequent has a focus zone (combining the left and right part) containing exactly one219

formula. The proof system in Figure 2 can describe all such proofs: this proof system arises220

from ⇓ L2 by taking the following steps.221

Delete the inference rules that introduce ⊥ and `.222

Simplify all sequents to have only one formula on the right side.223

Modify the decide rule to select exactly one formula by splitting it into decidel (to select a224

formula from the left bound zone) and decide ! (to select a formula from the left unbound225

zone).226

Drop the release rule since it can be merged into the left-premise of ⊸ L. As a result,227

all ⇓ sequents no longer need their right focused zone.228

The resulting of removing such aspects of ⇓ L2 proofs yields the ⇓ L1 proof system in229

Figure 2. A consequence of these propositions is if B is a L1 formula then there is an a ⇓ L2230

proof of B if and only if there is a ⇓ L1 proof of B. Thus, in a proof of an L1 proof, the231

multiple conclusion sequents and multiple foci do not arise. Note that in other presentations232

of proof systems for intuitionistic (linear) logic, the use of single conclusion sequents is a233

requirement [11, 29, 32], while in our setting, is a consequent of the choice of connectives we234

have selected.235

If we now turn our attention to proofs of L0 formulas, we find that an additional feature236

of ⇓ L1 and ⇓ L2 proofs is not needed.237

▶ Proposition 6. If B is a L0 Σ-formula and Ξ is a ⇓ L2-proof of Σ : ·; · ⊢ B, then Ξ is a238

single-focused and single-conclusion proof in which all left bounded zones are empty.239

Proof. Let B be a L0 Σ-formula, and let Ξ be a ⇓ L2-proof of Σ : ·; · ⊢ B. By the two240

preceding propositions, Ξ is easily be seen as an ⇓ L1 proof. An easy induction on the241

structure of such proofs reveals that if B does not contain ⊸, then the left-bounded zone for242

all sequents in Ξ is empty. ◀243

This proposition justifies introducing the ⇓ L0 proof system in Figure 2, where the244

inference rules introducing ⊸ are dropped, and the left bounded zone is removed (since it245

will always be empty). The ⇓ L0 proof system is also known as LJT [14, 15] and as uniform246

proofs with backchaining [24]. We will return to ⇓ L0 when we discuss the LJT− proof system247

in Section 5.248
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It is worth noting here that while ⇓ L2 is a multiple-conclusion proof system, both ⇓ L0249

and ⇓ L1 are single-conclusion proof systems. This characteristic of ⇓ L0 and ⇓ L1 is not250

an imposition on the more general multiple-conclusion proof system (as Gentzen needed to251

impose on LK to get the LJ proof system [11]) but rather, it is simply a consequence of using252

fewer logical connectives.253

2.2 Paths in formulas254

Let the relationship · ↑ · on L2-formulas be defined as follows (here, A ranges over atomic255

formulas).256

A ↑ A

B1 ↑ P

B1 & B2 ↑ P

B2 ↑ P

B1 & B2 ↑ P

B ↑ P

∀τ x.B ↑ ∀τ x.P257

258

B ↑ P

C ⇒ B ↑ C ⇒ P

B ↑ P

C ⊸ B ↑ C ⊸ P ⊥ ↑ ⊥

B1 ↑ P1 B2 ↑ P2

B1 ` B2 ↑ P1 ` P2259

It is easy to prove B ≡
˘

B↑P
P by using the following distributivity properties and quantifier260

movement rules:261

C ⊸ (B1 & B2) ≡ (C ⊸ B1) & (C ⊸ B2) C ` (B1 & B2) ≡ (C ` B1) & (C ` B2)
C ⇒ (B1 & B2) ≡ (C ⇒ C2) & (B ⇒ B2) ∀x. (B1 & B2) ≡ (∀x. B1) & (∀x. B2)262

Paths have a reasonably simple normal form. Using the equivalences263

B ` ∀x.C ≡ ∀x.(B ` C), B ⊸ ∀x.C ≡ ∀x.(B ⊸ C), and B ⇒ ∀x.C ≡ ∀x.(B ⇒ C),264

a path can be written in the form ∀x1 . . . ∀xn.P ′ where n ≥ 0, and every occurrence of ∀ in265

P ′ occurs to the left of either ⊸ or ⇒. Similarly, using the equivalences266

(B ⊸ C1) ` C2 ≡ B ⊸ (C1 ` C2), B ⊸ C ⇒ D ≡ C ⇒ B ⊸ D,267

(B ⇒ C1) ` C2 ≡ B ⇒ (C1 ` C2), ⊥ ` B ≡ B ` ⊥ ≡ B268
269

and the commutativity of `, paths can be put into the normal form270

∀x̄[C1 ⇒ . . . ⇒ Cn ⇒ B1 ⊸ . . . ⊸ Bm ⊸ A1 ` . . . ` Ap],271

where ∀x̄ is a list of universal quantifiers, n, m, p are non-negative integers, A1, . . . , Ap are272

atomic formulas, and B1, . . . , Bm, C1, . . . , Cn are L2 formulas. If a path P has the normal273

form above, then we say that the multiset {C1, . . . , Cn} is its intuitionistic arguments, the274

multiset {B1, . . . , Bm} is its linear arguments, and the multiset {A1, . . . , Ap} is its targets.275

Finally, x̄ is the list of bound variables of P (we assume that all these bound variables are276

distinct and subject to α-conversion). Since these various components of the normal form277

of a path are multisets, this decomposition of a path is unique. We shall also display this278

normal form as the associated sequent x̄ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap. Paths can be279

used to describe both left and right phases in a more abstract setting than by appealing to280

introduction rules.281

▶ Proposition 7. Consider a ⇓ L2-proof Ξ of the sequent Σ : Ψ; Γ ⊢ G, ∆. There is a282

⇓ L2-proof Ξ′ of this same sequent that differs only in permutations of right-introduction283
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rules such that the formula G is decomposed first. More specially, that right-introduction284

phase can be written as285

( Ξi

Σ, Σi : Ψ, Ψi; Γ, Γi ⊢ Ai, ∆
)

G↑Pi

Σ : Ψ; Γ ⊢ G, ∆
,

where the path Pi is associated with the sequent
Σi : Ψi; Γi ⊢ Ai and where Ξi is the right phase of
the ith premise.286

Concerning left phases in single-focused proofs with endsequent Σ : Ψ; Γ ⇓ B ⊢ · ⇓ A we287

note that in every left rule application, the signature and the left unbounded zone in the288

conclusion is the same in in every premise.289

▶ Proposition 8. Let Ξ be a ⇓ L2-proof of the sequent Σ:Ψ; Γ⇓ B ⊢ · ⇓A. The left-introduction290

phase at the bottom of Ξ, which has a multiset of premises M, can be described as followings.291

There is a path P in B with the associated sequent Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap292

and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that293

1. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;294

2. Γ is the multiset union Γ1 ∪ · · · ∪ Γm; and295

3. P is the multiset union {Σ : Ψ; · ⊢ Ciθ}n
i=1 ∪ {Σ : Ψ; Γi ⊢ Biθ, Ai}m

i=1.296

This use of paths to characterize the two focusing phases can be seen as a generalization297

of the use of game moves in [25] and patterns in [34].298

2.3 Cut elimination and completeness for ⇓ L2299

The one method to proving the (relative) completeness of ⇓ L2 is to first prove that the300

general form of the initial rule and the cut rule are admissible. These two admissibility301

results are more formally stated as the following two theorems. Their proofs can be found in302

Appendices A.1 and A.2, respectively.303

▶ Theorem 9 (Admissibility of the generalized initial rule). Let B be an L2 Σ-formula. The304

sequent Σ : ·; B ⊢ B has a ⇓ L2 proof.305

▶ Theorem 10 (Cut elimination for ⇓+L2). Let B be an L2 Σ-formula. If the sequent Σ:·; · ⊢ B306

has an ⇓+L2 proof then it has a ⇓ L2 proof.307

Below, we highlight the main novelty of our cut-elimination proof. We first introduce the308

following key cut inference rule.309

Σ : Ψ; Γ1 ⊢ B, ∆ Σ : Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ : Ψ; Γ1, Γ2 ⊢ ∆, A
cutk

310

When we allow this inference rule within a focused proof, we know that the right premise is311

proved by using a left-phase rule on B, while the left premise is proved by a right-introduction312

rule (and via permutation of right-introduction rules) on B.313

Consider the following instance of cut ! in a single-focused proof Ξ.314

Ξl

Σ : Ψ; · ⊢ B

Ξr

Σ : Ψ, B; Γ ⊢ ∆

Σ : Ψ; Γ ⊢ ∆
cut !

315
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Consider also a subderivation of Ξr that ends in decidem, such as316

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⊢ A
decidem,

317

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Γ′ are multisets. This318

inference rule can be converted to the derivation319

Ξ̂l

Σ, Σ′ : Ψ, Ψ′; · ⊢ B

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⊢ A
cutk.

320

Here, Ξ̂l is the result of weakening Ξl (using Proposition 20 in Appendix A.2). We can thus321

remove all occurrences of decidem on B in Ξr to obtain the proof Ξ′
r of Σ : Ψ, B; Γ ⊢ ∆.322

Since B is no longer used in this subproof, it can be strengthened (using Proposition 22323

in Appendix A.2) to get a proof of Σ : Ψ; Γ ⊢ ∆. This proof can now replace our original324

redex. Similarly, an occurrence of cutl can be used to rewrite instances of decidem into a325

key cut. The argument for eliminating key cuts follows the usual pattern of matching a326

left-introduction rule with a right-introduction.327

One can draw some analogies between the proof theory of ⇓ L2 and the meta-theory of328

typed λ-calculi. This connection is well developed for the ⇓ L0 calculus (see Section 5). More329

generally, Theorems 9 and 10 are closely related to η-expansion and β-reduction in type330

λ-calculi, and Theorem 10 corresponds to a weak normalization theorem.331

The completeness of ⇓ L2 proofs for linear logic is now a simple consequent of this332

cut-elimination theorem since it is possible to prove all the rules in (an unfocused) proof333

system for linear logic are admissible in ⇓+L2.334

▶ Theorem 11 (Completeness of ⇓ L2). Let B be an L2 Σ-formula provable in linear logic.335

The sequent Σ : ·; · ⊢ B has a ⇓ L2-proof.336

Several completeness theorems exist for focused proof systems. The first such theorem,337

stated by Andreoli [1], transformed cut-free proofs into focused proofs via permutation338

of inference rules. The completeness of ⇓ L2 was proved in [23] by mapping the logical339

formulas and focused proofs used by Andreoli to those in ⇓ L2. An alternative proof, based340

directly on phases rather than introduction rules, was given by Bruscoli and Guglielmi [2].341

Other completeness proofs leveraged the cut rule and cut elimination, rather than the direct342

manipulation of cut-free proofs. Examples of this approach can be found in [5, 19, 30, 34] for343

various fragments of linear and intuitionistic logic, and in [21] for classical logic. Theorem 11,344

which relies on Theorems 9 and 10, falls into this latter category.345

3 Parallel rule application within proofs346

We now provide a few examples of ⇓ L2 proofs in order to illustrate the ability of multifocused347

proofs to capture a notion of parallel rule application.348

3.1 Multiset rewriting349

An important class of examples supported by linear logic are those involved with multiset350

rewriting. Let H be the multiset rewriting system {⟨Li, Ri⟩ | i ∈ I} where for each i ∈ I351

(a finite index set), Li and Ri are finite multisets of atomic formulas. Define the relation352
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M =⇒H N on finite multisets to hold if there is some i ∈ I and some multiset C such that353

M is C ⊎ Li and N is C ⊎ Ri. (Here, ⊎ is multiset union.) Let =⇒∗
H be the reflexive and354

transitive closure of =⇒H .355

Given a multiset rewriting system H, we can encode the relation =⇒H easily into linear356

logic using one of two schemes. The first scheme employs the left-bounded multiset context357

of ⇓ L2 sequents. In this setting, select a new propositional constant, say q, and encode the358

pair ⟨{a1, . . . , am}, {b1, . . . , bn}⟩ ∈ H as the formula (b1 ⊸ · · · ⊸ bn ⊸ q) ⊸ a1 ⊸ · · · ⊸359

am ⊸ q.360

▶ Example 12. Consider the multiset rewriting system {⟨{a, b}, {c}⟩, ⟨{d}, {e}⟩}. Let Σ be361

the signature that declares that a, b, c, d, q are atomic formulas and let Ψ be the formulas362

{(c ⊸ q) ⊸ a ⊸ b ⊸ q, (e ⊸ q) ⊸ d ⊸ q}. The following partial proof illustrates how363

these formulas can encode multiset rewriting of the left-bound context.364

Σ : Ψ; c, d, Γ ⊢ q

Σ : Ψ; d, Γ ⊢ c ⊸ q

Σ : Ψ; d, Γ ⇓ · ⊢ c ⊸ q ⇓ ·

Σ : Ψ; · ⇓ a ⊢ · ⇓ a

Σ : Ψ; a ⊢ a

Σ : Ψ; a ⇓ · ⊢ a ⇓ ·

Σ : Ψ; · ⇓ b ⊢ · ⇓ b

Σ : Ψ; b ⊢ b

Σ : Ψ; b ⇓ · ⊢ b ⇓ · Σ : Ψ; · ⇓ q ⊢ · ⇓ q

Σ : Ψ; a, b, d, Γ ⇓ (c ⊸ q) ⊸ a ⊸ b ⊸ q ⊢ · ⇓ q

Σ : Ψ; a, b, d, Γ ⊢ q
decidem

365

Thus, there is a path in this proof that moves from the sequent Σ : Ψ; a, b, d, Γ ⊢ q to366

Σ : Ψ; c, d, Γ ⊢ q by the application of the rule given by the pair ⟨{a, b}, {c}⟩. However, this367

partial proof is not a bipole; it is comprised of three bipoles.368

From the proof-theoretic setting, there are at least three problems with this way of369

encoding multiset rewriting. First, an extraneous propositional constant q is required (in370

order to fill in the right-hand side of the context. Second, the core action in multiset rewriting371

(the rewrite step) does not correspond precisely to the core action in a focused proof system,372

namely, a bipole. Third, the parallel application of rewriting steps in multisets—a desirable373

feature of multiset rewriting—is also not captured in this setting: in principle, the extraneous374

constant q serves as a lock on the rewriting step (compare with Example 14).375

A second approach to encoding multiset rewriting performs the rewriting within the right-376

bounded multiset of sequents. In particular, we can encode ⟨{a1, . . . , am}, {b1, . . . , bn}⟩ ∈ H377

as the formula (b1 ` · · · ` bn) ⊸ a1 ` · · · ` am.378

▶ Example 13. Assume that a, b, c, d, e are atomic formulas and that the two formulas379

c ⊸ a ` b and e ⊸ d are members of Ψ. Consider the following derivation.380

Σ : Ψ; ∆ ⊢ c, e, Γ

Σ : Ψ; ∆ ⇓ · ⊢ c, e ⇓ Γ
release

Σ : Ψ; · ⇓ d ⊢ · ⇓ d, Γ
init

Σ : Ψ; ∆ ⇓ e ⊸ d ⊢ c ⇓ d, Γ
⊸L

Σ : Ψ; · ⇓ a ` b ⊢ · ⇓ a, b
`L, init

Σ : Ψ; ∆ ⇓ c ⊸ a ` b, e ⊸ d ⊢ · ⇓ a, b, d, Γ
⊸L

Σ : Ψ; ∆ ⊢ a, b, d, Γ
decidem

381

382

This bipole, which encodes the parallel composition of two rewriting
steps, corresponds to the following synthetic inference rule.

Σ : Ψ; Γ ⊢ c, e, ∆

Σ : Ψ; Γ ⊢ a, b, d, ∆383

▶ Example 14. Assume that a, b, c, d, l are atomic formulas and that the two formulas384

b ` l ⊸ a ` l and d ` l ⊸ c ` l are members of Ψ. The atomic formula l serves as a kind385
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of lock, and this lock makes it impossible for there to be a parallel application of these two386

rules unless there are two occurrences of the lock. The following is a synthetic inference rule387

Σ : Ψ; Γ ⊢ b, d, l, l, ∆

Σ : Ψ; Γ ⊢ a, c, l, l, ∆
while the following is not a synthetic rule
(assuming that ∆ does not contain l).

Σ : Ψ; Γ ⊢ b, d, l, ∆

Σ : Ψ; Γ ⊢ a, c, l, ∆388

The Lolli logic programming language [16] is based on the logic L1 and the only form389

of multiset rewriting it provided followed the indirect style described in Example 12. The390

Forum [23] extension to Lolli is based on L2 and it can encode multiset rewriting in the391

more direct style of Example 13, although it did not provide for parallel rewriting steps392

since it was described using a single-focused proof system. The LolliMon logic programming393

language [22] and the Concurrent LF [33] extended L1 by allowing some occurrences of the394

positive linear logic connectives 1, ⊗, !, and ∃ and positively polarized atomic formulas. In395

that system, a direct form of multiset rewriting was also possible using the multiset encoded396

in the left bounded zone. The Concurrent LF did not permit multifocusing, but it did397

provide an equality theory within its dependently-type setting that could equate different398

non-overlapping rewrites occurring in different order.399

3.2 Multifocusing as parallel rule application400

Two notable aspects of the ⇓ L2 proof system makes it possible to deal with parallel rule401

application within a sequent calculus setting.402

First, focusing makes it possible to hide the sequential nature of the construction of403

synthetic inference rules. The order in which left introduction rules are applied within a404

multifocused proof is irrelevant since every order leads to the same result. The same applies405

to the order in which right-introduction rules are applied in multiple-conclusion proofs. Thus,406

the reliance on phases and synthetic rules means that the particular details of how a phase is407

constructed are hidden away.408

Second, the ⇓ L2 proof system contains a subtle feature: namely, the interaction between409

the right-hand zone between the ⊢ and the ⇓ and the use of the release rule to merged410

that zone with the rest of the right-hand context. Consider modifying sequents so that the411

right-hand zone between ⊢ and ⇓ is removed and rewriting the ⊸L inference rule as412

Σ : Ψ; Γ1 ⇓ Θ1 ⊢ B, ∆1 Σ : Ψ; Γ2 ⇓ C, Θ2 ⊢ ∆2

Σ : Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ ∆1, ∆2
⊸L∗.

413

The synthetic inference rules that we argued in Example 14 that should not exist can now414

be constructed with the rule ⊸L∗.415

Multifocusing sequent calculus proofs have been used to capture parallelism within well-416

known proof structures: in particular, maximally multifocused proofs have been used to417

capture the parallel rule applications that occur within expansion proofs [3] and proof nets [4].418

To the extent that we are using multifocusing to capture parallel rule application, a ⇓ L2419

proof of a sequent that does not mention ⊥ and ` will not exhibit this kind of parallelism.420

4 Linear negation in proofs421

The multiplicative false ⊥ separates the intuitionistic frameworks ⇓ L0 and ⇓ L1, where422

proofs are single-conclusion and single-focused, from the full linear logic framework ⇓ L2.423

(As we mentioned earlier, ` can be defined using L1 and ⊥.) Once ⊥ is present, it is natural424

to deal with the notion of linear negation, which can be encoded in ⇓ L2 using the “implies425
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false” construction. In the following pairs of sequents, the first sequent has a ⇓ L2 proof if426

and only if the second also has a ⇓ L2 proof.427

Σ : Ψ; Γ, B ⊸ ⊥ ⊢ ∆ ⊣⊢ Σ : Ψ; Γ ⊢ B, ∆
Σ : Ψ, (B ⇒ ⊥) ⊸ ⊥; Γ ⊢ ∆ ⊣⊢ Σ : Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆

Σ : Ψ, B; Γ ⊢ ∆ ⊣⊢ Σ : Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆
428

We define the delay operator ∂(B) to be (B ⊸ ⊥) ⊸ ⊥. While B and ∂(B) are provably429

equivalent, their roles within ⇓ L2 proofs can differ. Consider the following derivation.430

Σ : Ψ, ∂(B); Γ, B ⊢ ∆

Σ : Ψ, ∂(B); Γ, B ⊢ ⊥, ∆

Σ : Ψ, ∂(B); Γ ⊢ B ⊸ ⊥, ∆

Σ : Ψ, ∂(B); Γ ⇓ · ⊢ B ⊸ ⊥ ⇓ ∆ Σ : Ψ, ∂(B); · ⇓ ⊥ ⊢ · ⇓ ·

Σ : Ψ, ∂(B); Γ ⇓ ∂(B) ⊢ · ⇓ ∆

Σ : Ψ, ∂(B); Γ ⊢ ∆431

Thus, the following is an admissible rule432

Σ : Ψ, ∂(B); Γ, B ⊢ ∆

Σ : Ψ, ∂(B); Γ ⊢ ∆
, although we do not generally

have the rule

Σ : Ψ, B; Γ, B ⊢ ∆

Σ : Ψ, B; Γ ⊢ ∆
.

433

This latter rule is a form of contraction that is not immediately associated with focusing (as434

is the case with the decidem rule).435

5 The LJT± proof system for intuitionistic logic436

Let Neg be the negative intuitionistic connectives {t, ∧, ⊃, ∀} and let Pos be the positive437

intuitionistic connectives {f, ∨, ∃}.438

We map intuitionistic logic formulas over the connectives in Neg to formulas in linear439

logic connectives using the following obvious translation: A◦ = A for atomic formulas and440

t◦ = ⊤, (B ∧ C)◦ = B◦ & C◦, (B ⊃ C)◦ = B◦ ⇒ C◦, (∀x.B)◦ = ∀x.B◦
441

Let LJT− be the proof system in Figure 4 for intuitionistic logic over the connectives in Neg442

that results from renaming the L0 connectives in Figure 3 with the corresponding connectives443

in Neg. The implication-only fragment of this proof system is exactly the LJT proof system444

of [14]. The following proposition has an immediate proof, given the structural properties we445

have seen of ⇓ L2 proofs of L0 sequents.446

▶ Proposition 15. Let B be an intuitionistic formula over the connectives in Neg. The447

sequent Σ : ·; · ⊢ B◦ is provable in ⇓ L2 if and only if the sequent Σ : · ⊢ B has an LJT− proof.448

To the extent that maximal multifocused proofs are candidates for canonical proofs, we can449

conclude that LJT− proofs are canonical for the negative connectives since all multifocused450

proofs are single focused, and, hence, are maximal multifocused.451

We now extend the mapping of intuitionistic logic formulas into L2 formulas in a rather452

natural fashion in order to treat also the positive connectives: f◦ = ⊤ ⊸ ⊥, (B ∨ C)◦ =453

((B◦ ⇒ ⊥) & (C◦ ⇒ ⊥)) ⊸ ⊥, and (∃x.B)◦ as (∀x.(B◦ ⇒ ⊥)) ⊸ ⊥. To make for a stronger454

result, we add a positive truth t+ and a positive conjunction ∧+ to our intuitionistic logic.455
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These connectives are superfluous since we will be able to prove the formulas t and t+ and the456

formulas B∧C and B∧+ C are equivalent (in intuitionistic logic). None-the-less, we shall map457

them into linear logic differently: (t+)◦ as ⊥ ⊸ ⊥ and (B ∧+ C)◦ as (B◦ ⇒ C◦ ⇒ ⊥) ⊸ ⊥.458

We shall also derive different inference rules for them. Note two things about this extension.459

First, the results of such translations are much richer than for the negative connectives: for460

example, one occurrence of ∨ yields seven occurrences of linear logic connectives. Second,461

this translation uses ⊥, which leaves open the possibility to have multifocused proofs that462

are not single-focused.463

The soundness of this translation (Proposition 16) is proved by a simple induction on the464

structure of LJT± proofs; the proof of completeness (Proposition 17) is in Appendix A.3.465

▶ Proposition 16 (Soundness of (·)◦). Let B be a formula over the connectives in Neg ∪ Pos.466

If B is provable in LJT ±, then B◦ is provable in linear logic.467

▶ Proposition 17 (Completeness of (·)◦). Let B be a formula over the connectives in Neg∪Pos.468

If B◦ is provable in linear logic, then B is provable in the LJT ± proof system.469

▶ Example 18. The formula (a ∨ b) ⊃ p ⊃ p is clearly provable in intuitionistic logic. The470

LJF proof system [20] treats disjunctions and existentials on the left in a linear fashion: when471

such formulas appear on the left, they are introduced exactly once. Thus, the formula above472

has exactly one LJF proof, and that proof includes a (needless but harmless) case analysis. In473

LJT±, there are possibly many proofs of this formula, one for every invocation of the invert474

rule on a disjunctive assumption. This is similar to the proof system by Espírito Santo et475

al. [9] based on a polarized intuitionistic proof system that uses a “negation translation” for476

the disjunction477

6 Revisiting natural deduction478

Given the work of Herbelin [14], Espírito Santo [8], and others, the connection between479

focused proofs and natural deduction using only negative connectives is well established. It is480

also well known that the natural deduction treatment of the positive connectives is challenged481

by some of the same challenges experienced by the sequent calculus: elimination rules for the482

positive connectives can permute over each other without changing the essential nature of483

the proof. As a result, the definition and computation of normal-form proofs are complicated.484

In [13], Girard says, “one tends to think that natural deduction should be modified to correct485

such atrocities.” We illustrate one approach to making such a correction, but the cost will be486

an inference rule that can have a large number of premises. This approach is motivated by487

the treatment of left-introduction rules for the positive connectives in LJT± proofs.488

A formula is in disjunctive normal form if it is of the form489

∃x1 . . . ∃xp

( ∨ n

i=1

∧
+ mi

ji=1 Ni,ji

)
. (∗)490

The formula Ni,ji must be either atomic or have a negative connective as its top level491

connective. It is easy to show the following facts about disjunctive normal forms.492

1. These normal forms are unique up to renaming the existentially bound variables and493

the ordering of conjuncts and disjuncts (i.e., modulo commutativity for ∨ and ∧+ and494

identity for f and t+.495

2. The disjunctive normal form of a formula can be exponentially larger than the formula.496

3. The following invariant holds for rules in LJT±: if a rule has ⇑ Γ ⊢ in the conclusion and497

the premises contain ⇑ Γ1 ⊢, . . . , ⇑ Γn ⊢, then both
∧+Γ and (

∧+Γ1) ∨ · · · ∨ (
∧+Γn) have498

the same disjunctive normal form.499
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The disjunctive normal form can be used to describe the following parallel elimination500

for the positive connectives, which can be given as the figure on the left.501

P1 · · · Pp

(
Ni,1 . . . Ni,mi...

D

)n

i=1

D

Here, P1, . . . , Pp (p ≥ 1) are positive formulas
and the disjunctive normal form of P1 ∧+ · · ·∧+

Pp is given by (∗) above. The formula D can
be restricted to being either a positive formula
or an atomic formula. In this inference rule,
x1, . . . , xp are treated as (new) eigenvariables.

502

As we mentioned before, the drawback of this rule for elimination of positive connectives is503

that the number of hypothetical premises can be an exponential in the number of occurrences504

of logical connectives in the formulas P1, . . . , Pp.505

▶ Example 19. Assume that p ≥ 1 and that a1, . . . , ap, b1, . . . , bp are atomic formulas. A506

special case of the parallel elimination rule for positive formulas is the following.507

a1 ∨ b1 · · · ap ∨ bp

( {ai | i ∈ I} ∪ {bj | i /∈ I}...
D

)
I⊆{1,...,p}

D

This rule has p + 2p

premises.508

7 Future work509

As we mentioned at the start of Section 2, the ⇓ L2 proof system assumes that atomic510

formulas are negative. Since this assumption is baked into the design of ⇓ L2, it is unclear511

how one might accommodate atoms given a positive polarity. In the setting of intuitionistic512

and classical logics, various focused proof systems have considered settings where all atomic513

formulas are positive: see the classical proof system LKQ [6] and LJQ proof [7]. The LKF514

and LJF proof system [20] go further and allow positive and negative atomic formulas within515

the same proof. It would be interesting to consider modifying ⇓ L2 to allow mixing both516

positive and negative polarized atomic formulas.517

Extending this work to include higher-order quantification is a natural next step to518

consider given the successful higher-order extensions of ⇓ L0 in [10] and LKQ and LKT in [6].519

This paper suggests an interesting pedagogic presentation of linear logic and its proof520

theory: start with L0 and moves upward to the more expressive L1 and L2, thereby521

introducing into proofs notions of resources and parallel rule application.522

8 Conclusion523

This paper offers a new perspective on the proof theory of full linear logic, shifting the524

traditional classical foundation to an intuitionistic one. Instead of the standard progression525

through MLL, MALL, and full linear logic, which rely heavily on De Morgan duality, proof526

nets, and/or one-sided sequent calculi, our approach treats both intuitionistic and linear527

implications as primitives within the familiar framework of two-sided sequents. We propose an528

alternative development: from L0, a core intuitionistic logic, to L1, which incorporates linear529

implication, and finally to L2, which extends L1 with multiplicative falsity and disjunction.530

Central to our contribution is the multifocused, multiple-conclusion proof system ⇓ L2531

for full linear logic. We demonstrate how ⇓ L2 subsumes existing sequent systems for L0 and532

L1, while also introducing a formal definition of parallel rule application via multifocusing.533
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Crucially, we show that this form of parallelism, which is non-trivial in ⇓ L2, is absent534

in proofs involving only L0 or L1 formulas. Furthermore, our work revisits and refines535

existing results, offering novel treatments of disjunction and existential quantification within536

intuitionistic sequent calculus and natural deduction. These innovations lead to more intuitive537

and modular proof systems. The cut elimination theorem, detailed in the appendix, provides538

the essential foundation for the results presented in this paper.539
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A Some omitted proofs640

We limit the ⇓ L2 proofs we reason about in this appendix to single-focused proofs. This641

restriction does not limit the main results, which are essentially about provability. Dealing642

with the nature of, say, cut-elimination with multifocused proofs is an interesting project,643

but one that would only complicate the results we prove here.644

A.1 The generalized initial rule645

◀ Theorem 9 (Admissibility of the generalized initial rule) Let B be an L2 Σ-formula. The646

sequent Σ : ·; B ⊢ B has a ⇓ L2 proof.647

Proof. Let Ψ ∪ {B} be a multiset of L2 Σ-formulas. We describe how to build an ⇓ L2648

proof of Σ : Ψ; B ⊢ B by induction on the structure of the formula B. By Proposition 7,649

there is a right phase with endsequent Σ : Ψ; B ⊢ B and with one premise for every path650

P in B. In particular, if the associated sequent for P is Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢651

A1, . . . , Ap, then the premise of the right-introduction phase that corresponds to this path is652

Σ, Σ′ : C1, . . . , Cn; B, B1, . . . , Bm ⊢ A1, . . . , Ap. We can now use the decidem rule to select653

the occurrence of B in the left-bounded context. By Proposition 8, there is a left-introduction654

phase corresponding to P such that the sequents655

{Σ, Σ′ : Ψ, C1, . . . , Cn; · ⊢ Ci}n
i=1 ∪ {Σ, Σ′ : Ψ, C1, . . . , Cn; Bi ⊢ Bi}m

i=1656

must all be provable (the θ in Proposition 8 is set to the identity substitution on the variables657

in Σ′). The inductive assumption proves the second group of sequents, and the first group is658

proved using the decidem rule to Ci. The inductive assumption completes this proof. ◀659

A.2 The cut-elimination theorem for ⇓ L2660

Section 2 introduced two cut rules involving ⇓ L2 sequents. We call those two cut rules the661

regular cut rules since we now introduce a new cut rule called the key cut.662

Σ : Ψ; Γ1 ⊢ B, ∆ Σ : Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ : Ψ; Γ1, Γ2 ⊢ ∆, A
cutk

663

Here, A is a multiset (possibly empty) of atomic formulas. The key cut is the only cut rule664

containing a ⇓-sequent. The formula B is the cut-formula in this rule. To help prove the665

cut-elimination theorem, we extend the ⇓+L2 proof system to include the key cut. A proof is666

cut-free if it has no occurrences of these three cut rules.667

The cut-elimination argument uses various measurements attached to occurrences of both668

regular and key-cut rules. A thread in the ⇓+L2 proof Ξ is a list of sequent occurrences669

S1, . . . , Sn in Ξ such that n ≥ 1, S1 is an occurrence of the init rule, Sn is the endsequent670

https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1145/1328897.1328482
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of Ξ, and, for i = 1, . . . , n − 1, there is an inference rule occurrence of Ξ that has Si as a671

premise and Si+1 as its conclusion. Such a thread is said to have length n.672

The rank of Ξ is the maximal number of occurrences of decide and cut rules in threads in673

Ξ that do not contain a sequent occurrence that is the left premise of a cutl, cut !, or cutk.674

The degree of a formula is the number of occurrences of logical connectives in that formula.675

Every occurrence of a cut rule in a given proof is given a measure as follows. Let Ξ be the676

subproof determined by having that occurrence of cut as its last inference rule. We define677

|Ξ| to be the pair of natural numbers ⟨d, w⟩, where d is the degree of its cut formula, and w678

is the rank of Ξ. Such pairs are well-ordered using the lexicographic ordering on pairs. The679

following two propositions are proved by simple inductions on the structure of ⇓+L2 proofs.680

▶ Proposition 20 (Weakening ⇓+L2 proofs). If Σ : Ψ; Γ ⊢ A has a ⇓+L2 proof Ξ then681

Σ, Σ′ : Ψ, Ψ′; Γ ⊢ A has a ⇓+L2 proof Ξ′. Furthermore, every instance of a cut rule in Ξ682

corresponds to an instance of cut in Ξ′ and they have the same measure.683

▶ Proposition 21 (Substitution into ⇓+L2 proofs). Let Σ be a signature, x be a variable not684

declared in Σ, τ be a primitive type, and t be a Σ-term of type τ . If Σ, x : τ : Ψ; Γ ⊢ A has685

a ⇓+L2 proof Ξ then Σ : Ψ[t/x]; Γ[t/x] ⊢ A[t/x] has a ⇓+L2 proof Ξ′. Furthermore, every686

instance of a cut rule in Ξ corresponds to an instance of cut in Ξ′ and they have the same687

measure.688

The following proposition states that if a formula occurrence in the unbounded zone of a689

sequent is never decided on within the proof of that sequent, then that occurrence can be690

removed from its zone. This proposition is proved by a simple induction on the structure of691

⇓+L2 proofs.692

▶ Proposition 22 (Strengthening ⇓+L2 proofs). Assume that we have a ⇓+L2 proof Ξ of693

Σ : Ψ, B; Γ ⊢ ∆ (resp. Σ : Ψ, B; Γ ⇓ D ⊢ · ⇓ ∆) in which there is no occurrence of decidem694

used with the formula B. Then there is a ⇓+L2 proof Ξ′ of Σ : Ψ; Γ ⊢ ∆ (respectively,695

Σ : Ψ; Γ ⇓ D ⊢ · ⇓ ∆). Furthermore, every instance of a cut rule in Ξ corresponds to an696

instance of cut in Ξ′, and they have the same measure.697

We single out instances of atomic cutk rules for special treatment. Note that the right698

premise of an atomic cutk rule can only be proved using init.699

Σ : Ψ; Γ ⊢ ∆, A Σ : Ψ; · ⇓ A ⊢ · ⇓ A
init

Σ : Ψ; Γ ⊢ ∆, A
cutk

700

This derivation can be written more simply as (assuming A is atomic).701

Σ : Ψ; Γ ⊢ ∆, A

Σ : Ψ; Γ ⊢ ∆, A
Rep

702

This rule resembles the repetition rule used by Mints [26] to prove a cut-elimination theorem703

for a different logic. An important feature of atomic key cut rules is that their measure704

is always ⟨0, 1⟩ since the proof structure in their left premise is not part of the measure.705

Ultimately, our cut-elimination procedure will eliminate all cuts except for atomic key cuts.706

After those eliminations are made, a second procedure will eliminate all atomic key cuts.707

A ⇓+L2 proof is called a ⇓aL2-proof if the only occurrences of cut rules in it are atomic708

key cuts. A redex is a ⇓+L2 proof where the last inference rule is a regular or key cut and709

where that rule’s two premises are ⇓aL2-proofs. A redex is classified as atomic or non-atomic710
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depending on whether the cut formula of its final cut rule is atomic or non-atomic. A redex711

is also classified by the kind of cut rule it has as its final rule.712

It is easy to prove that the side-formulas on the right-bounded zone for the Rep rule (the713

schematic variable ∆ above) can be restricted to contain only atomic formulas: that is, the714

conclusion of such rules can be assumed to be border sequents. As a result, Proposition 7715

can be used to characterize additionally the right-introduction phase of ⇓aL2-proofs.716

We now provide several lemmas that show how various redexes can be replaced with717

proofs involving strictly smaller redexes.718

▶ Lemma 23 (Replace cut ! with cutk). Let Ξ be a cut ! redex. Then there exists a proof of719

the same endsequent in which the only instances of cut rules are either cutl or atomic cutk,720

and all such instances of cuts have a measure strictly less than |Ξ|.721

Proof. Consider the following cut !-redex Ξ.722

Ξl

Σ : Ψ; · ⊢ B

Ξr

Σ : Ψ, B; Γ ⊢ ∆

Σ : Ψ; Γ ⊢ ∆
cut !

723

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts.724

Consider a subderivation of Ξr that ends in decidem, such as725

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ ⊢ A
decidem,

726

where the variables bound in Σ′ are not bound in Σ and where Ψ′ is a multiset. This inference727

rule can be converted to the derivation728

Ξ̂l

Σ, Σ′ : Ψ, Ψ′; · ⊢ B

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ ⊢ A
cutk,

729

where Ξ̂l is the result of weakening Ξl using Proposition 20. In this way, we can remove730

all occurrences of decidem on B in Ξr to obtain the proof Ξ′
r of Σ : Ψ, B; Γ ⊢ ∆. By731

Proposition 22, we can strengthen Ξ′
r to get a proof Ξ′′

r of Σ : Ψ; Γ ⊢ ∆. This proof can now732

replace our original redex. Since all new occurrences of cuts have B as their cut formula733

and since the rank part of the measure of redexes does not consider the subproof of the left734

premise of cut ! and cutl, the measure of the cut-rules in Ξ′′
l is strictly smaller than |Ξ|. ◀735

The previous lemma removed a cut ! by converting some decidem rules into cutk rules.736

The treatment of the cutl rule is not so easily handled. In particular, we will use the following737

lemma to show that the “side cut” case can be treated by moving a cutl rule over an entire738

left-introduction phase.739

▶ Lemma 24 (Side cut l case). Let Ξ be a cutl-redex such that a decide rule is the last740

inference rule of the proof of the right premise. If the formula selected is not the cut formula,741

then there exists a ⇓+L2 proof with the same endsequent in which all instances of cuts have a742

measure strictly less than |Ξ|.743

Proof. The decide rule that ends the proof of the right premise must select its focus from744

either the bounded or unbound zone on the left. We consider these two cases below.745
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Case: The decide rule selects from the bounded zone. Let Ξ be the following proof.746

Ξl

Σ : Ψ; Γ ⊢ C, ∆

Ξr

Σ : Ψ; Γ′, C ⇓ B ⊢ · ⇓ A

Σ : Ψ; Γ′, B, C ⊢ A
decidem

Σ : Ψ; Γ, Γ′, B ⊢ ∆, A
cutl

747

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts, and748

A is a multiset of atomic formulas. By Proposition 8,1 the sequent Σ : Ψ; Γ′, C ⇓ B ⊢ · ⇓ A is749

the endsequent of a left-introduction phase with a multiset of premises P such that there is750

a path P in B with the associated sequent751

Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap,752

and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that753

1. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;754

2. Γ′ ∪ {C} is the multiset union Γ1 ∪ · · · ∪ Γm; and755

3. P is {Σ : Ψ; · ⊢ Ciθ}n
i=1 ∪ {Σ : Ψ; Γi ⊢ Biθ, Ai}m

i=1.756

Since the left-phase is multiplicative, there is a unique k ∈ {1, . . . , m} such that C occurs in757

Γk. Let Γ′
k be the result of removing one occurrence of C from Γk. Thus, one of the premises758

in P is Σ : Ψ; Γ′
k, C ⊢ Bkθ, Ak. By using the cutl rule we have, together with a proof of the759

above sequent, the following proof.760

Ξl

Σ : Ψ; Γ′ ⊢ C, A Σ : Ψ; Γ′
k, C ⊢ Bkθ, Ak

Σ : Ψ; Γ′, Γ′
k ⊢ Bkθ, Ak, A

cutl
761

By using the same path above, we can move this left-introduction phase below the cutl rule.762

Thus, the original cutl rule has been moved up, and its measure has decreased.763

Case: The decide rule selects from the unbounded zone. Let Ξ be the following proof,764

and assume that B is a member of Ψ.765

Ξl

Σ : Ψ; Γ ⊢ C, ∆

Ξr

Σ : Ψ; Γ′, C ⇓ B ⊢ · ⇓ A

Σ : Ψ; Γ′, C ⊢ A
decidem

Σ : Ψ; Γ, Γ′ ⊢ ∆, A
cutl

766

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts, and767

A is a multiset of atomic formulas. This case is treated the same as the previous case. ◀768

· · ·
Ξi

Σi : Ψi; Γi, B ⊢ Ai · · ·
...

Σ : Ψ; Γ, B ⊢ ∆

Remark: Let Ξ be a ⇓+L2 proof of Σ : Ψ; Γ, B ⊢ ∆.769

If ∆ contains a logical connective, then this proof is of770

the form displayed to the right. Here, Ai is a multiset771

of atomic formulas; Γ is a sub-multiset of Γi; Ψ is a sub-772

multiset of Ψi; all the inference rules elided here are either773

right-introduction rules or atomic key cuts; and the last inference rule of the subproofs Ξi’s774

are one of the decide rules. An instance of cutl on B in the endsequent can then be lifted to775

several instances of cutl with Ξi. This does not change the measure of any cuts. Next we776

resolve the cut/decide pairing as described in the following proof.777

1 While Proposition 8, was proved for ⇓ L2 proofs, it also holds in the presence of cut rules since no cut
rule contains a ⇓ in its conclusion.
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▶ Lemma 25 (Replace cut l with cutk). Let Ξ be a cutl redex. Then there exists a proof of778

the same endsequent in which the only instances of cut rules are cutk, and all such instances779

of cuts have a measure strictly less than |Ξ|.780

Proof. Consider the following cutl-redex Ξ.781

Ξl

Σ : Ψ; Γ1 ⊢ B, ∆1

Ξr

Σ : Ψ; Γ2, B ⊢ ∆2

Σ : Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutl

782

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts. Given783

the remark above, we only need to consider the situation where the right-bounded context784

contains only atomic formulas and that the last inference rule of Ξr is a decide rule.785

Case: Ξr ends in the decidem rule. If the formula selected for the focus is B, then the786

proof Ξr has the form787

Ξ′
r

Σ : Ψ; Γ′
2 ⇓ B ⊢ · ⇓ ∆′

2

Σ : Ψ; Γ′
2, B ⊢ ∆′

2
decidem.

788

This instance of the cutl rule above can be replaced with the following instance of cutk.789

Ξl

Σ : Ψ; Γ1 ⊢ B, ∆1

Ξ′
r

Σ : Ψ; Γ2 ⇓ B ⊢ · ⇓ ∆2

Σ : Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutk

790

If the formula selected for the focus is some other formula than B, then the proof Ξr has the791

form (Γ2 is of the form C, Γ′
2)792

Ξ′
r

Σ : Ψ; Γ′
2, B ⇓ C ⊢ · ⇓ ∆2

Σ : Ψ; Γ′
2, B, C ⊢ ∆2

decidem.
793

We now use Lemma 24 to construct a ⇓+L2 proof of Σ : Ψ; Γ′
2, C ⊢ ∆2 of lower right rank.794

Case: Ξr ends in the decidem rule. Then the redex Ξ necessarily ends in a side cut, so795

Lemma 24 provides the necessary rewriting of this redex. ◀796

▶ Lemma 26 (Reduce cutk). Let Ξ be a non-atomic cutk redex. Then there exists a proof of797

the same endsequent in which the redexes it has are cutl and cut !-redexes all with a measure798

strictly less than |Ξ|.799

Proof. Consider a cutk-redex Ξ of the form800

Ξl

Σ : Ψ; Γ1 ⊢ B, ∆
Ξr

Σ : Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ : Ψ; Γ1, Γ2 ⊢ ∆, A
cutk,

801

where Ξl and Ξr are ⇓aL2 proofs. Since B is not atomic, Ξl ends in a right-introduction802

phase and Ξr ends in a left-introduction phase. By Proposition 8, there is a path P in B803

that has the associated sequent representation804

Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap,805
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and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that A is the806

multiset union {A1θ, . . . , Apθ}∪A1 ∪· · ·∪Am, Γ is the multiset union Γ1 ∪· · ·∪Γm, and this807

phase has n + m premises {Σ : Ψ; · ⊢ Ciθ}n
i=1 ∪ {Σ : Ψ; Γi ⊢ Biθ, Ai}m

i=1. By Proposition 7,808

Ξl ends with a right-introduction phase that contains a premise of the form809

Ξ0
Σ, Σ′ : Ψ, C1, . . . , Cn; Γ, B1, . . . , Bm ⊢ A′, A1, . . . , Ap.810

By repeated application of Proposition 21, we know that the sequent811

Ξ′
0

Σ : Ψ, C1θ, . . . , Cnθ; Γ, B1θ, . . . , Bmθ ⊢ A′, A1θ, . . . , Apθ812

has a ⇓aL2 proof. We can take Ξ′
0 and use cutl and cut ! with the proofs of the n+m premises813

above to yield a proof with n + m occurrences of these cut rules to provide a proof without814

occurrences of cutk of the endsequent Σ : Ψ; Γ, Γ′ ⊢ ∆, A. Note that the size of each of the815

cut formulas C1θ, . . . , Cnθ, B1θ, . . . , Bmθ is strictly smaller than the size of the original cut816

formula B. ◀817

We are now in a position to prove the cut-elimination theorem for ⇓+L2 proofs.818

◀ Theorem 10 (Cut elimination for ⇓+L2) Let B be an L2 Σ-formula. If the sequent819

Σ : ·; · ⊢ B has a ⇓+L2 proof, then it has an ⇓ L2 proof.820

Proof. We divide this proof into two parts. The first part proves that if a sequent has a ⇓+L2821

proof, then it has a ⇓aL2-proof. The second part proves that if a sequent has a ⇓aL2-proof822

then it has a (cut-free) ⇓ L2 proof.823

Thus, assume that we have a ⇓+L2 proof. We proceed by induction on the number of824

occurrences of cut rules in that proof that are not atomic key cuts. If the number of such825

redexes is zero, we are finished with the first part of this proof. Otherwise, select a redex Ξ826

that is not an atomic key cut redex. We prove by induction on the measure |Ξ| that this827

redex can be replaced by a ⇓aL2-proof of the same endsequent. If Ξ is a cut !-redex then828

apply Lemma 23; if Ξ is a cutl-redex then apply Lemma 25; and, finally, if Ξ is a non-atomic829

cutk-redex then apply Lemma 26. The results of such applications are proofs of the same830

endsequent as Ξ in which all redexes have a measure strictly less than |Ξ|. Thus, by induction,831

all of these can be replaced by ⇓aL2-proofs.832

To complete the second part of this proof, we proceed to prove by induction that if the833

⇓aL2-proof Ξ contains n ≥ 0 occurrences of atomic key cases, then there is a ⇓ L2 proof of834

the same endsequent. Pick any atomic key cut occurrence in Ξ. That occurrence resembles835

the Rep rule, which is trivial to remove. ◀836

A.3 The completeness of (·)◦
837

For convenience, define B• for positive intuitionistic formulas B as follows: f• = ⊤, (B∨C)• =838

(B◦ ⇒ ⊥) & (C◦ ⇒ ⊥), (∃x.B)• = ∀x.(B◦ ⇒ ⊥), (t+)• = ⊥ ⊸ ⊥, (B ∧+ C)• = B◦ ⇒ C◦ ⇒839

⊥. Thus, for B a positive intuitionistic formula, B◦ is the same formulas as B• ⊸ ⊥.840

◀ Proposition 17 (Completeness of (·)◦) Let B be a formula over the connectives in841

Neg ∪ Pos. If B◦ is provable in linear logic, then B is provable in the LJT ± proof system.842

Proof. Let B be a formula over the connectives in Neg ∪ Pos. If B◦ is provable in linear843

logic, then Σ : ·; · ⊢ B◦ has a ⇓ L2 proof. There are a few different kinds of sequents that844

can appear in such a ⇓ L2 proof, and we need to consider ⇓ L2 proofs of sequents which are845
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in one of the following shapes: Σ : Ψ◦; · ⊢ B◦ or Σ : Ψ◦; B• ⊢ · or Σ : Ψ◦; · ⇓ B◦ ⊢ · ⇓ A or846

Σ : Ψ◦; · ⇓ B• ⊢ · ⇓ ·. Note that if the left-bounded zone is non-empty, then that zone contains847

one formula which is the result of (·)• of a positive formula, and the right zone is empty.848

Remark: If the sequent Σ : Ψ; B• ⇓ (C)◦ ⊢ · ⇓ · has a proof (when B is a positive formula)849

then C is also positive. This remark is easily proved by induction on the structure of C.850

We can now translate ⇓ L2 proofs of these four kinds of sequents directly into LJT± proofs.851

We proceed by induction on the structure of an ⇓ L2 proof Ξ of these kinds of sequents.852

Case: Ξ is a proof of Σ:Ψ◦; · ⊢ B◦. If B is positive, then Ξ has a subproof of Σ:Ψ◦; B• ⊢ ·:853

the translation of that proof (see below) is the needed LJT± proof. If B is negative, we854

consider the last inference rule of Ξ, which is either ⊤R, &R, ⇒ R, or ∀R. In each of these855

cases, the translation is achieved by first translating the immediate subproof(s) and then856

adding the corresponding LJT± rules of tR, ∧R, ⊃ R, and ∀R. The right introduction rules857

for the negative connectives arise this way.858

Case: Ξ is a proof of Σ : Ψ◦; B• ⊢ ·, where B is a positive formula. This sequent is859

the conclusion of a decide rule that selects either B• or a member of Ψ◦. The former860

case is considered below. In the latter case, this is only possible (by the remark above) if861

the selected member C of Ψ is a positive formula. Ξ contains a subproof of the sequent862

Σ : Ψ◦; B• ⇓ C• ⊸ ⊥ ⊢ · ⇓ · and this has a subproof of Σ : Ψ◦; B• ⊢ C•. By considering863

all cases for the positive formula C, Ξ will contain subproofs of the shape Σ′ : Ψ′◦; B• ⊢ ·.864

The translation of those subproofs and the corresponding left-introduction rules, yields the865

required translation.866

Case: Ξ is a proof of Σ : Ψ◦; · ⇓ B◦ ⊢ · ⇓ A. If B is a negative formula, then Ξ must867

be the right introduction of either ⊤, &, ⇒, or ∀. The required LJT± proof results from868

applying the right introduction rules for t, ∧, ⊃, or ∀ to the transformations of the associated869

subproofs of Ξ. If B is a positive formula, then Ξ must end with870

Σ : Ψ◦; · ⊢ B•, A

Σ : Ψ◦; · ⇓ · ⊢ B• ⇓ A Σ : Ψ◦; · ⇓ ⊥ ⊢ · ⇓ ·

Σ : Ψ◦; · ⇓ B• ⊸ ⊥ ⊢ · ⇓ A
.

871

If we now consider each case for the positive formula B, we see that invertibility will yield872

direct translations of the corresponding left introduction. For example, if B is B1 ∨ B2 then873

the Ξ proof of Σ : Ψ◦; · ⇓ (B1 ∨ B2)◦ ⊢ · ⇓ A contains a subproof of874

Σ : Ψ◦; · ⊢ (B◦
1 ⇒ ⊥) & (B◦

2 ⇒ ⊥), A,875

which in turn contains subproofs of Σ : Ψ◦, B◦
i ; · ⊢ A, for i ∈ {1, 2}. The full translation uses876

the ∨L rule of LJT±.877

Case: Ξ is a proof of Σ : Ψ◦; · ⇓ B• ⊢ · ⇓ ·. This case emulates the right introduction rule878

of LJT± for the positive connectives. For example, if B is B1 ∨ B2 then Ξ must have the879

form Σ : Ψ◦; · ⇓ (B◦
1 ⇒ ⊥) & (B◦

2 ⇒ ⊥) ⊢ · ⇓ · and this means that there must be a subproof880

of Ξ of Σ : Ψ◦; · ⊢ B◦
i .881

Note that the abstraction mechanism of synthetic inference rules allows hiding the internal882

presence of multiple conclusion sequents even within an intuitionistic proof.883

◀884
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Right phase rules

Σ : Ψ; Γ ⊢ ⊤, ∆
⊤R

Σ : Ψ; Γ ⊢ B, ∆ Σ : Ψ; Γ ⊢ C, ∆

Σ : Ψ; Γ ⊢ B & C, ∆
&R

Σ : Ψ; Γ ⊢ ∆

Σ : Ψ; Γ ⊢ ⊥, ∆
⊥R

Σ : Ψ; Γ ⊢ B, C, ∆

Σ : Ψ; Γ ⊢ B ` C, ∆
` R

Σ : Ψ; B, Γ ⊢ C, ∆

Σ : Ψ; Γ ⊢ B ⊸ C, ∆
⊸ R

Σ : B, Ψ; Γ ⊢ C, ∆

Σ : Ψ; Γ ⊢ B ⇒ C, ∆
⇒ R

y : τ, Σ : Ψ; Γ ⊢ B[y/x], ∆

Σ : Ψ; Γ ⊢ ∀τ x.B, ∆
∀R

Left phase rules

Σ : Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
⊥L

Σ : Ψ; Γ1 ⇓ B, Θ1 ⊢ Θ3 ⇓ ∆1 Σ : Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ : Ψ; Γ1, Γ2 ⇓ B ` C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
`L

Σ : Ψ; Γ ⇓ Bi, Θ ⊢ Θ′ ⇓ ∆

Σ : Ψ; Γ ⇓ B1 & B2, Θ ⊢ Θ′ ⇓ ∆
&Li, i ∈ {1, 2}

Σ : Ψ; Γ ⇓ B[t/x], Θ ⊢ Θ′ ⇓ ∆

Σ : Ψ; Γ ⇓ ∀τ x.B, Θ ⊢ Θ′ ⇓ ∆
∀L

Σ : Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ : Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ : Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L

Σ : Ψ; · ⊢ B Σ : Ψ; Γ ⇓ C, Θ ⊢ Θ′ ⇓ ∆

Σ : Ψ; Γ ⇓ B ⇒ C, Θ ⊢ Θ′ ⇓ ∆
⇒L

Σ : Ψ; · ⇓ B ⊢ · ⇓ B
init

Phase switching rules

Σ : Ψ1, Ψ2; Γ1 ⇓ Ψ̂2, Γ2 ⊢ · ⇓ ∆

Σ : Ψ1, Ψ2; Γ1, Γ2 ⊢ ∆
decidem

Σ : Ψ; Γ ⊢ Θ, ∆

Σ : Ψ; Γ ⇓ · ⊢ Θ ⇓ ∆
release

The decidem rule is restricted so that (i) the union Ψ̂2, Γ2 is non-empty, (ii) ∆ is a multiset
of atomic formulas, and (iii) Ψ2 and Ψ̂2 are instantiated with multisets of formulas so that
every formula with a non-zero multiplicity in one of them also has a non-zero multiplicity
(not necessarily equal) in the other. The quantifier rules have the usual provisos: y /∈ Σ in
∀R, and t is a Σ-term of type τ in ∀L.

Figure 1 The ⇓ L2 focused proof system.
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Σ : Ψ; Γ ⊢ ⊤
⊤R

Σ : Ψ; Γ ⊢ B Σ : Ψ; Γ ⊢ C

Σ : Ψ; Γ ⊢ B & C
&R

Σ : Ψ; B, Γ ⊢ C

Σ : Ψ; Γ ⊢ B ⊸ C
⊸ R

Σ : B, Ψ; Γ ⊢ C

Σ : Ψ; Γ ⊢ B ⇒ C
⇒ R

y : τ, Σ : Ψ; Γ ⊢ B[y/x]

Σ : Ψ; Γ ⊢ ∀τ x.B
∀R

Σ : Ψ; Γ ⇓ Bi ⊢ A

Σ : Ψ; Γ ⇓ B1 & B2 ⊢ A
&Li

Σ : Ψ; Γ ⇓ B[t/x] ⊢ A

Σ : Ψ; Γ ⇓ ∀τ x.B ⊢ A
∀L

Σ : Ψ; · ⇓ A ⊢ A
init

Σ : Ψ; · ⊢ B Σ : Ψ; Γ ⇓ C ⊢ A

Σ : Ψ; Γ ⇓ B ⇒ C ⊢ A
⇒L

Σ : Ψ; Γ1 ⊢ B Σ : Ψ; Γ2 ⇓ C ⊢ A

Σ : Ψ; Γ1, Γ2 ⇓ B ⊸ C ⊢ A
⊸L

Σ : Ψ, B; Γ ⇓ B ⊢ A

Σ : Ψ, B; Γ ⊢ A
decide !

Σ : Ψ; Γ ⇓ B ⊢ A

Σ : Ψ; Γ, B ⊢ A
decidel

Figure 2 The ⇓ L1 proof system

Σ : Ψ ⊢ ⊤
⊤R

Σ : Ψ ⊢ B Σ : Ψ ⊢ C

Σ : Ψ ⊢ B & C
&R

Σ : B, Ψ ⊢ C

Σ : Ψ ⊢ B ⇒ C
⇒ R

y : τ, Σ : Ψ ⊢ B[y/x]

Σ : Ψ ⊢ ∀τ x.B
∀R

Σ : Ψ ⇓ Bi ⊢ A

Σ : Ψ ⇓ B1 & B2 ⊢ A
&Li

Σ : Ψ ⇓ B[t/x] ⊢ A

Σ : Ψ ⇓ ∀τ x.B ⊢ A
∀L

Σ : Ψ ⇓ A ⊢ A
init

Σ : Ψ ⊢ B Σ : Ψ ⇓ C ⊢ A

Σ : Ψ ⇓ B ⇒ C ⊢ A
⇒L

Σ : Ψ, B ⇓ B ⊢ A

Σ : Ψ, B ⊢ A
decide !

Figure 3 The rules that result from restricting ⇓ L2 to L0 sequents.
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Σ : Ψ ⊢ t
tR

Σ : Ψ ⊢ B Σ : Ψ ⊢ C

Σ : Ψ ⊢ B ∧ C
∧R

Σ : B, Ψ ⊢ C

Σ : Ψ ⊢ B ⊃ C
⊃R

y : τ, Σ : Ψ ⊢ B[y/x]

Σ : Ψ ⊢ ∀τ x.B
∀R

Σ : Ψ, N ⇓ N ⊢ Pa

Σ : Ψ, N ⊢ Pa

decidem
Σ : Ψ ⇓ A ⊢ A

init

Σ : Ψ ⇓ Bi ⊢ A

Σ : Ψ ⇓ B1 ∧ B2 ⊢ A
∧Li

Σ : Ψ ⇓ B[t/x] ⊢ A

Σ : Ψ ⇓ ∀τ x.B ⊢ A
∀L

Σ : Ψ ⊢ B Σ : Ψ ⇓ C ⊢ A

Σ : Ψ ⇓ B ⊃ C ⊢ A
⊃L

Figure 4 The LJT− proof system

Σ : Ψ ⊢ Bi

Σ : Ψ ⊢ B1 ∨ B2
∨R

Σ : Ψ ⊢ B[t/x]

Σ : Ψ ⊢ ∃x.B
∨R

Σ : Ψ ⊢ t+ t+R
Σ : Ψ ⊢ B Σ : Ψ ⊢ C

Σ : Ψ ⊢ B ∧+ C
∧+R

Σ : Ψ, P ⇑ P ⊢ Pa

Σ : Ψ, P ⊢ Pa

invert
Σ : Ψ, N ⊢ Pa

Σ : Ψ ⇑ N ⊢ Pa

done

Σ : Ψ ⇑ B, Γ ⊢ Pa Σ : Ψ ⇑ C, Γ ⊢ Pa

Σ : Ψ ⇑ B ∨ C, Γ ⊢ Pa

∨L
Σ : Ψ ⇑ f, Γ ⊢ Pa

fL

Σ : Ψ ⇑ B, C, Γ ⊢ Pa

Σ : Ψ ⇑ B ∧+ C, Γ ⊢ Pa
∧+L

Σ : Ψ ⇑ Γ ⊢ Pa

Σ : Ψ ⇑ t+, Γ ⊢ Pa
t+L

Σ : Ψ ⇑ B[t/x], Γ ⊢ Pa

Σ : Ψ ⇑ ∃x.B, Γ ⊢ Pa

∃L

Here, PA ranges over either positive formulas or atomic formulas, and P (in the invert rule)
is a non-empty multiset of positive formulas.

Figure 5 The additional rules for the LJT± proof system.
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