
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Mechanized metatheory revisited

Dale Miller

Draft: August 29, 2019

Abstract When proof assistants and theorem provers implement the metatheory of

logical systems, they must deal with a range of syntactic expressions (e.g., types, for-

mulas, and proofs) that involve variable bindings. Since most mature proof assistants

do not have built-in methods to treat bindings, they have been extended with various

packages and libraries that allow them to encode such syntax using, for example, de

Bruijn numerals. We put forward the argument that bindings are such an intimate

aspect of the structure of expressions that they should be accounted for directly in the

underlying programming language support for proof assistants and not via packages

and libraries. We present an approach to designing programming languages and proof

assistants that directly supports bindings in syntax. The roots of this approach can be

found in the mobility of binders between term-level bindings, formula-level bindings

(quantifiers), and proof-level bindings (eigenvariables). In particular, the combination

of Church’s approach to terms and formulas (found in his Simple Theory of Types)

and Gentzen’s approach to proofs (found in his sequent calculus) yields a framework

for the interaction of bindings with a full range of logical connectives and quantifiers.

We will also illustrate how that framework provides a direct and semantically clean

treatment of computation and reasoning with syntax containing bindings. Some imple-

mented systems, which support this intimate and built-in treatment of bindings, will

be briefly described.

Keywords mechanized metatheory, λ-tree syntax, mobility of binders

1 Metatheory and its mechanization

Theorem proving—in both its interactive and automatic forms—has been applied in

a wide range of domains. A frequent use of theorem provers is to formally establish

correctness properties for specific programs: e.g., prove that a given program always

terminates and correctly sorts a list or prove that a given loop satisfies a given invariant.

A more niche domain to which theorem proving is applied is that of the metatheory

of programming languages. In this domain, one takes a formal definition of a particular

Inria Saclay and LIX/Ecole Polytechnique, Palaiseau, France

2

programming language’s static semantics (e.g., typing), dynamic semantics (e.g., eval-

uation), and translation semantics (e.g., compilation) and establishes properties about

all programs in that programming language. Typical examples of metatheorems are

the following.

1. If evaluation attributes values U and V to program M , then U and V are equal

(see, for example, [110, Theorem 2.4]). Thus, evaluation is a partial function.

2. If M is attributed the value V and it has the type A, then V has type A also. Thus,

types are preserved when evaluating an expression (see, for example, [163]).

3. Applicative bisimulation for the programming language is a congruence (see, for

example, [2,73]. Thus, equational-style rewriting can be used to reason about ap-

plicative bisimulation.

A theorem prover that is used for proving such metatheorems must deal with struc-

tures that are linguistic in nature: that is, metatheorems often need to quantify over

programs, program phrases, types, values, terms, and formulas. A particularly chal-

lenging aspect of linguistic expressions, one which separates them from other inductive

data structures (such as lists and binary trees), is their incorporation of bindings.

In fact, a number of research teams have used proof assistants to formally prove

significant properties of entire programming languages. Such properties include type

preservation, determinancy of evaluation, and the correctness of an OS microkernel

and of various compilers: see, for example, [79,82,84,113].

The authors of the POPLmark challenge [12] had pointed out that proving metathe-

orems about programming languages is often a difficult task given the proof assistants

available at that time (in 2005). In particular, their experiments with formulating the

metatheory of programming languages within various proof assistants led them to urge

the developers of proof assistants to improve their systems.

Our conclusion from these experiments is that the relevant technology has de-

veloped almost to the point where it can be widely used by language researchers.

We seek to push it over the threshold, making the use of proof tools common

practice in programming language research—mechanized metatheory for the

masses. [12]

These authors also acknowledge that poor support for binders in syntax was one prob-

lem that held back proof assistants from achieving even more widespread use by pro-

gramming language researchers and practitioners.

In the decade following the POPLmark challenge, a number of approaches to rep-

resenting syntax containing bindings have been proposed, analyzed, and applied to

metatheory issues. These approaches go by names such as locally nameless [26], nom-

inal reasoning [10,133,136,164], and parametric higher-order abstract syntax [29]. In

the end, nothing canonical seems to have arisen: see [11,135] for detailed compar-

isons between different representational approaches. On the other hand, most of these

approaches have been used to take existing mature proof assistants, such as Coq or

Isabelle, and extend them with new packages, new techniques, new features, and/or

new front-ends.

The incremental extension of mature proof assistants is only one way to address

this issue. In this paper, we highlight another approach to mechanized metatheory and

we use the following analogy to set the stage for that approach.

Early implementations of operating systems and distributed systems forced pro-

grammers to deal with concurrency, a feature not directly supported in early pro-

gramming languages. Various treatments of concurrency and distributed computing

3

were addressed by adding to mature programming languages thread packages, remote

procedure calls, and/or tuple spaces. Such additions made important contributions to

what computer systems could do in concurrent settings. Nonetheless, early pioneers

such as Dijkstra, Hoare, Milner, and Petri considered new ways to express and under-

stand concurrency via formalisms such as CCS, CSP, Petri Nets, π-calculus, etc. These

pioneers left the world of known and mature programming languages in an attempt to

find natural and direct treatments of concurrent behavior. While the resulting process

calculi did not provide a single, canonical approach to concurrency, their development

and study have led to significant insight into the nature of computation and interaction.

In a similar spirit, we will examine here an approach to metatheory that is not

based on extending mature theorem proving platforms. Instead, we look for means to

compute and reason with bindings within syntax that arise directly from logic and proof

theory, two topics that have a long tradition of allowing abstractions into the details

of syntactic representations. There has been a number of technical papers and a few

implementations that provide such an alternative approach to mechanized metatheory.

The goal of this paper is not technical: instead, it is intended to provide an overview

of this alternative approach.

2 Dropping mathematics as an intermediate

Before directly addressing some of the computational principles behind bindings in

syntax, it seems prudent to describe and challenge the conventional design of a wide

range of proof assistants.

Almost all ambitious theorem provers in use today follow the following two-step

approach to reasoning about computation [96].

Step 1: Implement mathematics. This step is achieved by picking a general, well un-

derstood formal system. Common choices are first-order logic, set theory [118],

higher-order logic [31,64], or some foundation for constructive mathematics, such

as Martin-Löf type theory [34,35,86].

Step 2: Reduce reasoning about computation to mathematics. Computational systems

can be encoded via a model-theoretic semantics (such as denotational semantics)

or as an inductive definition over a proof system encoding, say, an operational

semantics.

Placing (formalized) mathematics in the middle of this approach to reasoning about

computational systems is problematic since traditional mathematical approaches as-

sume extensional equality for sets and functions while computational settings may need

to distinguish such objects based on intensional properties. The notion of algorithm

is an example of this kind of distinction: there are many algorithms that can compute

the same function (say, the function that sorts lists of integers). In a purely exten-

sional treatment, functions are represented directly and descriptions of algorithms are

secondary. If an intensional default can be managed instead, then function values are

secondary (usually captured via the specification of evaluators or interpreters).

For an explicit example, consider whether or not the formula ∀w. λx.x 6= λx.w is

a theorem (assume that x and w are variables of some primitive type i). In a setting

where λ-abstractions denote functions (which is the usual extensional treatment), this

formula is equivalent to ∀w.¬∀x.x = w. As stated, we have not been provided enough

information to answer this question: in particular, this formula is true if and only if the

4

domain type i is not a singleton. If, however, we are in a setting where λ-abstractions

denote syntactic expressions, then it is sensible for this formula to be provable since

no (capture-avoiding) substitution of an expression of type i for the w in λx.w can

yield λx.x. Taking this latter step means, of course, separating λ-abstraction from the

mathematical notion of function.

A key methodological element of this paper is that we shall drop mathematics

as an intermediate and attempt to find a direct and intimate connection between

computation, reasoning, and logic.

Church’s Simple Theory of Types [31] is one of the most significant and early steps

taken in the design of a rich and expressive logic. In that paper, Church showed how

it was possible to turn the tables on the usual presentation of terms and formulas in

quantificational logic. Most presentations of quantification logic defined terms first and

then formulas were defined to incorporate such terms (within atomic formulas). Church,

however, defined the general notion of simply typed λ-term and defined formulas as a

subset of such λ-terms, namely, those of type o. The resulting formal system provided

an elegant way to reduce all formula-level bindings (e.g., the universal and existential

quantifiers) to the λ-binder. His approach also immediately captured the binders used

in the definite description operators and Hilbert’s ε-operator. Church’s presentation of

formulas and terms are used in many active computational logic systems such as the

HOL provers [66], Isabelle [119], and λProlog [99].

Actually, Church’s 1940 paper introduced two higher-order logics. Both of these

logics are based on the same notion of term and formulas and use the same inference

rules—namely, βη-conversion, substitution, modus ponens, and ∀-generalization—but

use different sets of axioms. The first of Church’s logics is often called elementary

type theory (ETT) [7] and involves using only axioms 1-6 which include the axioms

for classical propositional logic as well as the basic rules for quantificational logic at

higher-order (simple) types. The second of Church’s logics is the aforementioned simple

theory of types (STT). This logic arises by adding to ETT the axiom of choice, the

existence of infinite sets, and the extensionality of functions (axioms 7-11 in [31]).

Church’s goal in strengthening ETT by adding these additional axioms was to position

STT as a proper foundation for much of mathematics. Indeed, formal developments of

significant parts of mathematics can be found in Andrews’s textbook [8] and in systems

such as HOL [64,70].

When we speak of dropping mathematics as an intermediate, it is at this point

that we wish to rewind the steps taken by Church (and implementers of some proof

assistants): for the task of mechanized metatheory, we wish to return to ETT and not

accept all of the mathematics oriented axioms.

3 Elementary type theory

ETT is an appealing starting place for its parsimony in addressing both bindings in

formulas (quantification) and bindings in terms by mapping them both to bindings in

the simply typed λ-calculus. It provides both support for (higher-order) quantification

as well as for terms containing bindings. In addition, the equality theory of ETT is that

of α, β, and η-conversion which means that both alphabetic changes of bound vari-

able names and capture-avoiding substitutions are all accounted for by the logical rules

underlying ETT. The proof theory for ETT has been well developed for both both intu-

itionistic and classical variants of ETT (Church’s original version was based on classical

5

logic). Among the results know for ETT are cut-elimination [61,140,155], Herbrand’s

theorem and the soundness of Skolemization [91], completeness of resolution [6], and

unification [75]. Subsets and variants of ETT have been implemented and employed in

various computational logic systems. For example, the TPS theorem prover [105], the

core of the Isabelle theorem prover [121], the logic programming language λProlog [99],

and the proof system Minlog [147] are all based on various subsets of ETT. For more

about the history of the automation of ETT and STT see the handbook article [19].

The simple types in ETT are best thought of as syntactic categories and that

the arrow type γ → γ′ is the syntactic category of abstractions of category γ over

category γ′. Typing in this weak sense is essentially the same as Martin-Löf’s notion of

arity types [120]. In Church’s logic, the type o (omicron) is the type of formulas: other

primitive types provide for multisorted terms. For example, the universal quantifier

∀γ is not applied to a pair containing a variable of type γ and a formula (of type o)

but rather to an abstraction of type γ → o. Both ∀γ and ∃γ belong to the syntactic

category (γ → o) → o. When using ETT to encode some object-level language, the

terms and types of that language can be encoded as regular terms of two different

primitive types denoting the syntactic categories of object-level term and object-level

type.

Richer type systems, such as the dependently typed λ-calculi—known variously

as LF, λP , and λΠ [69,18]—are also important in a number of computational logic

systems, such as Coq [21], Agda [25], and Twelf [128]. Although we shall limit the

type system of our metalogic to be simple types, the intuitionistic variant of ETT is

completely capable of faithfully encoding such dependently typed calculi [43,151–153].

To be useful as the foundation of a mechanized metatheory, ETT needs extensions.

For example, ETT does not directly offer induction and coinduction which are both

clearly important for any logic hoping to prove metatheoretic results. Using a proof-

theoretic presentation of (the intuitionistic fragment of) ETT, Section 8 describes an

extension to ETT in which term equality is treated as a logical connective (following the

work by Schroeder-Heister [145] and Girard [62]) and inference rules for induction [89]

and coinduction [14,156,160] are added. Section 9 presents a further extension to ETT

with the addition of a generic quantifier [55,104,156].

In conclusion, we have explicitly ruled out Church’s extension of ETT to STT as a

proper foundation for specifying metatheory. Instead we shall illustrate that a separate

extension to ETT—based on introducing inference rules for equality, fixed points, and

∇-quantification—satisfy many of the needs for an expressible and implementable logic

for mechanizing metatheory. It is important to note that while STT is equipped to

deal with the mathematical notion of function (given the use of the definite description

choice operator and extensionality), the extensions to ETT we use here do not provide

a rich notion of function. Instead, relations are used to directly encode computations

and specifications. Of course, relations can encode functions: for example, the addition

of two natural numbers can be encoded by the relation belonging to the syntactic

category nat→ nat→ nat→ o (assuming that nat is a primitive type for which there

are the usual two constructors encoding zero and successor). In the weak setting of

ETT, the syntactic category nat → nat → nat does not contain the usual functional

notion of addition. Fortunately, metatheory abounds with relations that may or may

not be functional. For example, the following are all prominent relations in this setting:

a program and its types, a process and its transitions, and a formula and its proofs.

6

4 How abstract is your syntax?

Two of the earliest formal treatments of the syntax of logical expressions were given

by Gödel [63] and Church [31] and, in both of these cases, their formalization involved

viewing formulas as strings of characters. Even in the 1970’s, one could find logicians

using strings as representations of formulas: for example, in [6], an atomic formula is

defined as a formula-cum-string in which the leftmost non-bracket primitive symbol

is a variable or parameter. Clearly, such a view of logical expressions contains too

much information that is not semantically meaningful (e.g., white space, infix/prefix

distinctions, brackets, parenthesis) and does not contain explicitly semantically relevant

information (e.g., the function-argument relationship). For this reason, those working

with syntactic expressions generally parse such expressions into parse trees: such trees

discard much that is meaningless (e.g., the infix/prefix distinction) and record directly

more meaningful information (e.g., the child relation denotes the function-argument

relation). The names of bound variables are one form of “concrete nonsense” that

generally remains in parse trees.

One way to get rid of bound variable names is to use de Bruijn’s nameless dummy

technique [36] in which (non-binding) occurrences of variables are replaced by positive

integers that count the number of bindings above the variable occurrence through which

one must move in order to find the correct binding site for that variable. While such

an encoding makes the check for α-conversion easy, it can greatly complicate other

operations, such as substitution, matching, and unification. While all such operations

can be supported and implemented using the nameless dummy encoding [36,83,116],

the bureaucracy needed to support that style of syntax clearly suggests that they are

best address within the implementation of a framework and not in the framework itself.

We list four principles about syntax that will guide our further discussion.

Principle 1: The names of bound variables should be treated in the same way

we treat white space: they are artifacts of how we write expressions and they

have no semantic content.

Of course, the name of variables are important for parsing and printing expressions (just

as is white space) but such names should not be part of the meaning of an expression.

This first principle simply repeats what we stated earlier. The second principle is a bit

more concrete.

Principle 2: All term-level and formula-level bindings are encoded using a

single binder.

With this principle, we are adopting Church’s approach [31] to binding in logic, namely,

that one has only λ-abstraction and all other bindings are encoded using that binder.

For example, the universally quantified expression (∀x.B x) is encoded as the expres-

sion (∀(λx.B x)), where ∀ is now treated as a constant of higher-type. Note that if B is

an expression not containing x free, then this latter expression is η-equivalent to (∀ B)

and universal instantiation of that quantified expression with the term t is simply the

result of using λ-normalization on the expression (B t). In this way, many details about

quantifiers can be reduced to details about λ-terms.

Principle 3: There is no such thing as a free variable.

This principle is Alan Perlis’s epigram 47 [124]. This principle acknowledges that every

variable and constant is actually declared somewhere, and that that location serves as

7

its binding. This principle also suggests the following, which is the main novelty in this

list of principles.

Principle 4: Bindings have mobility and the equality theory of expressions

must support such mobility [95,99].

Since the first three principles are most likely familiar to the reader, we describe the

last principle in more detail in the next section.

5 Mobility of bindings

We now illustrate the mobility of bindings by showing first how term-level binders

can move to formula-level binders (quantifiers) and then move to proof-level binders

(eigenvariables). We also illustrate how binders can move within term structures via

simple rewriting.

5.1 Binder movement from terms to formulas to proofs

Gentzen’s sequents are useful for describing the search for a proof since they explicitly

maintain the “current set of assumptions and the current attempted consequence.”

For example, the sequent ∆ ` B is the judgment that states that B is a consequence

of the assumptions in ∆. A literal translation of Gentzen’s sequents makes use of free

variables. In particular, when attempting to prove a sequent with a universal quantifier

on the right, the corresponding right introduction rule employs an eigenvariable that

must be a “new” or “fresh” variable. For example, in the inference figure

B1, . . . , Bn ` B0[v/x]

B1, . . . , Bn ` ∀xγ .B0
∀R,

the variable v is not free in the lower sequent but it may be free in the upper sequent.

Gentzen called such new variables eigenvariables. Unfortunately, written this way, this

inference figure violates the Perlis principle (Principle 3 in Section 4). Instead, we

augment sequents with a prefix Σ that collects eigenvariables and binds them over the

sequent. The universal-right introduction rule now reads as

Σ, v : γ : B1, . . . , Bn ` B0[v/x]

Σ : B1, . . . , Bn ` ∀xγ .B0
∀R,

where we assume that the eigenvariable signature contains always distinct variables

(as is always possible given α-conversion for binding constructs). As a result, sequents

contain both assumptions and eigenvariables as well as the target goal to be proved.

Eigenvariables are sequent-level bindings. (A second kind of sequent-level binding will

be introduced in Section 9).

To illustrate the notion of binder mobility, consider specifying the typing rela-

tion that holds between untyped λ-terms and simple types. Since this problem deals

with the two syntactic categories of expressions, we introduce two primitive types: tm

is the type of terms encoding untyped λ-terms and ty is the type of terms encod-

ing simple type expressions. Untyped λ-terms can be specified using two constructors

8

abs : (tm→ tm)→ tm and app : tm→ tm→ tm (note that there is no third construc-

tor for treating variables). Untyped λ-terms are encoded as terms of type tm using the

following translation function:

dxe = x, dλx.te = (abs (λx.dte)), and d(t s)e = (app dte dse).

The first clause here indicates that bound variables in untyped λ-terms are mapped to

bound variables in the encoding. For example, the untyped λ-term λw.ww is encoded as

(abs λw. app w w). This translation bijectively maps α-equivalence classes of untyped

λ-terms to αβη-equivalence classes of simply typed λ-terms of type tm: note that

such adequacy results traditionally use βη-long normal forms of type terms to encode

canonical term representations [69]. Scott’s encoding [148] of untyped λ-terms using a

certain domain D for which there were retracts between [D → D] and D is similar to

our syntactic encoding here: namely, the syntactic category tm plays the role of D and

the two constructors encode the two retracts abs : (tm → tm) → tm and app : tm →
(tm→ tm). Simple type expressions can be encoded by introducing two constants, say

i : ty and arrow : ty → ty → ty. Let of : tm → ty → o be the predicate encoding the

typing relation between untyped terms and simple types. (Following Church [31], we

use the type o as the type of formulas.)

The following inference rule is a plausible rule regarding typing.

Σ : ∆, of t (arrow i i) ` C
Σ : ∆,∀y(of t (arrow y y)) ` C ∀L

This rule states (when reading it from premise to conclusion) that if the formula C

follows from the assumption that t has type (arrow i i) then C follows from the stronger

assumption that t can be attributed the type (arrow y y) for all instances of y. In this

rule, the binding for y is instantiated: this inference rule is an example of Gentzen’s

rule for the introduction of the ∀ quantifier on the left.

The following formula can be used to specify what it means for a λ-abstraction to

have an arrow type.

∀B∀y∀y′[∀x(of x y ⊃ of (Bx) y′) ⊃ of (abs B) (arrow y y′)]. (∗)

Now consider the following combination of inference rules.

Σ, x : ∆, of dxe y ` of dBe y′

Σ : ∆ ` ∀x(of dxe y ⊃ of dBe y′)
∀R, ⊃ R

Σ : ∆ ` of dλx.Be (y → y′)
backchaining on (∗)

(Backchaining can be seen as a focused application of Gentzen-style inference rules

acting on a formula in ∆ [100]: we are assuming that the formula (∗) is a member of

∆.) These inferences illustrate how bindings can move during the construction of a

proof. In this case, the term-level binding for x in the lower sequent can be seen as

moving to the formula level binding for x in the middle sequent and then to the proof

level binding (as an eigenvariable) for x in the upper sequent. Thus, a binding is not

converted to a “free variable”: it simply moves.

This mobility of bindings needs support from the equality theory of expressions.

Clearly, equality already includes α-conversion by Property 1. As we shall now see, a

9

small amount of β-conversion is also needed. Rewriting these last inference rules using

the definition of the d·e translation yields the following inference figures.

Σ, x : ∆, of x y ` of (B x) y′

Σ : ∆ ` ∀x(of x y ⊃ of (B x) y′)
∀R

Σ : ∆ ` of (abs B) (arrow y y′)
backchaining

Note that here B is a variable of arrow type tm → tm and that instances of these

inference figures will create an instance of (B x) that may be a β-redex: that β-

redex has, however, a greatly restricted form. Also observe that the alternation of

quantifiers implies that any instantiation of B leaves the β-redex (B x) in the state

where the argument x is not free in the instance of B: this is enforced by the fact that

substitutions into formulas do not capture bound variables. Thus, the only form of

β-conversion that is needed to support this notion of binding mobility is the so-called

β0-conversion [92], defined as (λy.t)x = t[x/y], provided that x is not free in λy.t. (Note

that this conversion is equivalent to (λx.t)x = t in the presence of α-conversion.)

Mobility of bindings is supported using β0 since the internally bound variable y in

the expression (λy.t)x is replaced by the externally bound variable x in the expression

t[x/y]. Note that β0 supports the following symmetric interpretation of λ-abstraction.

– If t is a term over the signature Σ ∪ {x} then λ-introduction yields the term λx.t

which is a term over the signature Σ.

– If λx.s is a term over the signature Σ then the β0-reduction of ((λx.s) y) is a

λ-elimination yielding [x/y]t, a term over the signature Σ ∪ {y}.

Thus, β0-reduction provides λ-abstraction with a rather weak form of functional in-

terpretation: given a λ-abstraction and an increment to a signature, β0 yields a term

over the extended signature. The λ-abstraction has a dual interpretation since it takes

a term over an incremented signature and hides that increment.

5.2 Binder movement within terms

To further illustrate how β0 conversion supports the mobility of binders, consider how

one specifies the following rewriting rule: given a universally quantified conjunction,

rewrite it to be the conjunction of two universally quantified formulas. In this setting,

we would write something like

(∀(λx.(A x ∧B x))) 7→ (∀(λx.A x)) ∧ (∀(λx.B x)),

where A and B are schema variables. To rewrite an expression such as (∀λz(p z z ∧
q a z)) (where p, q, and a are constants), we first need to use β0-expansion to get the

expression

(∀λz[((λw. p w w)z) ∧ ((λw. q a w)z)]).

At this point, the variables A and B in the rewriting rule can be instantiated by the

terms λw. p w w and λw. q a w, respectively, which yields the rewritten expression

(∀(λx.(λw. p w w) x)) ∧ (∀(λx.(λw. q a w) x)).

Finally, a β0-reduction yields the expected expression (∀λx. p x x)∧ (∀λx. q a x). Note

that at no time did a bound variable become unbound.

10

(1)

◦
◦

◦

◦

◦

λ

λ

(2)

◦
◦

◦

◦

◦

λ

λ

λ

◦ λ

◦

@
@

(3)

◦

◦

◦

◦

λ

λ

λ

◦ λ

◦

@
@

(4)

◦

◦

◦

◦

λ

λ

Fig. 1 Moving from (1) to (2) involves β0-expansions; moving from (2) to (3) involves replac-
ing a λ-abstracted term; and moving from (3) to (4) involves β0-reduction. Here, @ denotes
application nodes.

Figure 1 graphically illustrates this process of rewriting in the presence of bindings.

Assume that we have a closed term (illustrated in (1) of Figure 1 as a large triangle)

and that we wish to replace an open subterm (the dark gray triangle) with another term

(the light gray triangle in image (4)). Since the subterm in (1) contains occurrences of

two bound variables, we write that subterm as t(x, y) (where we assign the names x

and y to those two bindings). When moving from image (1) to (2), we use β0-expansion

to replace t(x, y) with (λuλv.t(u, v))xy. Note that the subterm λuλv.t(u, v) is closed

and, as a result, it can be rewritten to, say, λuλv.s(u, v) (yielding (3)). Finally, β0-

reduction yields the term illustrated in (4). Thus, β0-expansion and reduction allows a

subterm be released from its dependency on bindings in its environment by changing

those dependencies into local bound variables. Of course, instead of simply rewriting

the open term t to the open term s, we needed to rewrite the closed abstraction

λuλv.t(u, v) to the closed abstraction λuλv.s(u, v).

6 Proof search provides a framework

From a proof-theoretic perspective, formal reasoning can be seen as a process that

builds a (sequent calculus) proof. The cut rule (the use of both modus ponens and

11

lemmas) is a dominate inference rule when reasoning is seen in this fashion [57]. The

proof search approach to computation [100] can also be seen as building sequent cal-

culus proofs that do not contain the cut rule. In general, cut-elimination is not part

of these approaches to computation or reasoning. With the growing use of formal sys-

tems to encode aspects of mathematical reasoning, there are starting to appear some

applications of cut-elimination within the reasoning process: consider, for example,

proof mining where formal proofs can be manipulated to extract mathematically use-

ful information [80]. In section 11, we shall provide a different set of examples where

cut-elimination is used to formally reason about computations specified using the proof-

search paradigm.

One of the appealing aspects of using proof search to describe computation and

reasoning is that it is possible to give a rich account of binder mobility (as illustrated

in Section 5). Thus, this paradigm allows for specifying recursive programming over

data with bindings as well as inductive reasoning about such specifications. As such,

proof search within ETT (even when restricted to not allow predicate quantification)

can accommodate all four principles dealing with abstract syntax that were listed in

Section 4.

We shall refer to computation-as-cut-free-proof-search as the logic programming

paradigm, following the foundations developed in [100]. The use of this term is not

intended to be narrowed to specific implementations of logic programming, such as

Prolog or λProlog: for example, both of those languages make use of depth-first search

even though such a search regime is often inappropriate for general logic programs.

The use of logic programming principles in proof assistants pushes against usual

practice: since the first LCF prover [65], many proof assistants have had intimate

ties to functional programming. Furthermore, many theorem provers view proofs con-

structively in the sense that computational content of proofs can be translated into

executable functional programs [20].

Most of the remainder of this paper provides an argument and some evidence that

the proof search paradigm is an appropriate and appealing setting for mechanizing

metatheory. Our focus will be on the specification of mechanized metatheory tasks

and not on their implementation: it is completely possible that logic programming

principles are used in specifications while a functional programming language is used

to implement that specification language (for example, current implementations of

λProlog and Abella are written in OCaml [1,40,141]).

6.1 Expressions versus values

Keeping with the theme mentioned in Section 2 that types denote syntactic categories,

the terms of logic should then denote expressions. If we are representing expressions

without bindings, then expressions denote themselves, in the sense of free algebras: for

example, the equality 3 = 1+2 fails to hold because the equality is placed between two

different expressions. While this is a standard expectation in the logic programming

paradigm, the functional programming paradigm recognizes this equality as holding

since, in that paradigm, expressions do not denote themselves but their value. That is,

in the functional programming paradigm, if we wish to speak of expressions, we would

need to introduce a datatype for abstract syntax (e.g., parse trees) and then one would

have different expressions for “three” and for “one plus two.”

12

The treatment of syntax with bindings within the functional programming paradigm

is generally limited to two different approaches. First, binders in syntax can be mapped

to function abstractions: thus, abstract syntax may contain functions. More about

this approach appears in Section 7. Second, one can build datatypes to denote syntax

trees using different representations of bindings, such as strings-as-variable-names or de

Bruijn’s nameless dummies [36]. The implementer of such a datatype would also need

to encode notions such as α-equality, free/bound distinctions, and capture-avoiding

substitution. Such an approach to encoding syntax with bindings is usually challenged

when attempting to treat Principles 3 and 4 of Section 4. In order to support the

notion that there are no free variables, contexts must be introduced and used as de-

vices for encoding bindings: such bindings usually become additional data-structures

and additional arguments and technical devices that must be treated with care. With

its formal treatment of contexts (based on Contextual Model Type Theory [117]), the

Beluga programming language [129] represents the state-of-the-art in this approach to

syntax.

The logic programming paradigm with its emphasis on expressions instead of val-

ues provides another approach to treating syntax containing bindings that simply in-

volves adopting an equality theory on expressions. In particular, by supporting both

α-conversion and β0-conversion it is possible for both Principle 1 and 4 to be supported.

It has been know since the late 1980’s that the logic programming paradigm can sup-

port the theory of α, η, and full β–conversions and, as such, it can support a suitably

abstract approach to syntax with bindings: for example, the systems λProlog [99,114],

Twelf [128], and Isabelle [122] provide such a proof search based approach to abstract

syntax. While unification of simply typed λ-terms modulo αβη is undecidable in gen-

eral [74], the systematic search for unifiers has been described [75]. It is also known

that within the higher-order pattern unification restriction, unification modulo αβ0η is

not only decidable and unary but it is also complete for unification modulo αβη [92].

This restricted form of unification is all that is needed to automatically support the

kind of term processing illustrated in Figure 1.

6.2 Dominance of relational specifications

The focus of most efforts to mechanize metatheory is to build tools that make it possible

to prove various properties of entire programming languages or specification languages

(such as the λ-calculus and the π-calculus). The static semantics of such languages

is usually presented as typing systems. Their dynamic semantics is usually presented

as either small step semantics, such as is used in structural operational semantics

(SOS) [134], or as big step semantics, such as is used in natural semantic [77]. In all of

these styles of semantic specifications, relations and not functions are the direct target

of specifications. For example, the specification of proof systems and type systems use

binary predicates such as Ξ ` B or T : γ. A binary relation, such as M ⇓ V , is also

used when specifying the evaluation of, say, a functional program M to a value V . In

case it holds that evaluation is a (partial) function, then it is a metatheorem that

∀M ∀V ∀V ′ [M ⇓ V ∧M ⇓ V ′ ⊃ V = V ′]

Relations and not functions are the usual specification vehicle for capturing a range of

programming semantics.

13

P
A
−−→ P ′

P +Q
A
−−→ P ′

Q
A
−−→ Q′

P +Q
A
−−→ Q′

P
A
−−→ P ′

P |Q
A
−−→ P ′ |Q

Q
A
−−→ Q′

P |Q
A
−−→ P |Q′

P
A
−−→ P ′ Q

Ā
−−→ Q′

P |Q
τ
−−→ P ′ |Q′

Fig. 2 Some of the rules defining the labeled transitions for CCS. Tokens starting with a
capital letter are schematic variables.

kind proc , act type.

type tau act.
type bar act -> act.

type plus , par proc -> proc -> proc.
type one proc -> act -> proc -> o.

one (plus P Q) A P’ :- one P A P’.
one (plus P Q) A Q’ :- one Q A Q’.
one (par P Q) A (par P’ Q) :- one P A P’.
one (par P Q) A (par P Q’) :- one Q A Q’.
one (par P Q) tau (par P’ Q’) :- one P A P’, one Q (bar A) Q’.

Fig. 3 The logic programming specification of SOS rules for CCS, written using the syntax
of λProlog [99]. Here, the kind keyword declares proc and act as two syntactic categories
denoting processes and actions, respectively. Tokens starting with a capital letter are variables
that are universally quantified around the individual clauses.

For a concrete example, consider the small step semantic specification of CCS [106]

which is usually given by defining the ternary relation of labeled transition systems

P
a
−−→ Q between two processes P and Q and an action a. Figure 2 contains an SOS

specification of the labeled transitions for CCS using inference rules. The connection

between those inference rules and logic programming clauses is transparent: in partic-

ular, those inference rules can be written naturally as the logic programming clauses

in Figure 3. The close connection between such semantic specifications and logic pro-

gramming allows for the immediate animation of such specifications using common

logic programming interpreters. For example, both typing judgments and SOS speci-

fications have been animated via a Prolog interpreter in the Centaur project [33] and

via a λProlog interpreter for computational systems employing binders [9,67,99].

The connection between semantic specifications and logic programs goes further

than mere animation. Such logic programs can be taken as formal specifications which

can then be used to prove properties about the computational systems they specify. For

example, logic programs have been systematically transformed in meaning preserving

ways in order to prove that a certain abstract machine implements a certain functional

programming language [68]. Logic programs can also be used to specify and animate

sophisticated transformations of functional programs such as closure conversion, code

hoisting, and CPS transformations [172]. The Twelf system provided automated tools

for reasoning about certain logic programs, thereby allowing direct proofs of, for ex-

ample, progress theorems and type preservation [127,146]. A systematic approach to

reasoning about logic programming specifications in Abella is described in Section 11.

14

6.3 Trading side conditions for more expressive logics

The inference rules used to specify both static semantics (e.g., typing) and dynamic

semantics (e.g., small-step and big-step operational semantics) often contain an assort-

ment of side conditions. Such side conditions can break and obscure the declarative

nature of specifications: their presence can signal that a more expressive logical frame-

work for specifications could be used.

The inference rules in Figure 2 for describing the transition system for CCS have no

side conditions and their mapping into first-order Horn clauses (Figure 3) is unproblem-

atic. Consider, however, some simple specifications regarding the untyped λ-calculus.

The specification of call-by-value evaluation for untyped λ-terms can be written as

M ⇓ λx.R N ⇓ U S ⇓ V
(M N) ⇓ V

provided S = R[U/x].

There, the side condition requires that S is the result of substituting U for the free

variable x in R. Similarly, when specifying a typing discipline on untyped λ-terms, we

typically see specifications such as

Γ, x : γ ` t : σ
Γ ` λx.t : γ → σ

provided x /∈ fv(Γ).

Here, the side condition specifies that the variable x is not free the context Γ . In systems

such as the π-calculus, which includes sophisticated uses of bindings, transition system

come with numerous side conditions. Take, for example, the open inference rule [108]:

P
x̄y−→ P ′

(y)P
x̄(w)−→ P ′{w/y}

provided y 6= x, w /∈ fv((y)P ′).

Here the side condition has two conditions on variable names appearing in that infer-

ence rule.

We will illustrate in Sections 8 and 10.2 how the side conditions in the inference rules

above can all be eliminated simply by encoding those rules in a logic richer than first-

order Horn clauses. In particular, the logic underlying λProlog, the hereditary Harrop

formulas [100], provide an immediate specification of these rules, in part, because

the intuitionistic logic theory of hereditary Harrop formulas directly supports binder

mobility and rich quantified expressions.

6.4 Substitution lemmas for free

One of the reasons to use a logic to formalize static and dynamic semantic specifications

is that that formalism can have significant formal properties of its own. For example,

proof search as a computation paradigm usually constructs cut-free proofs. A famous

metatheorem of intuitionistic logic is the cut-elimination theorem of Gentzen [57]: if

properly used, the cut-elimination theorem can be seen as the “mother of all substitu-

tion lemmas.” An example of a substitution lemma is the following: if λx.B has type

γ → γ′ and N has type γ then the result of substituting N for x in B, i.e., [N/x]B,

has type γ′. To illustrate this claim, we return to the specification of the of predicate

given in Section 5. This binary relation relates the syntactic categories tm (for untyped

15

λ-terms) and, say, ty (for simple type expressions). The logical specification of the of

predicate might attribute integer type or list type to different expressions: for example,

the following clause specifies typing for the non-empty list constructor ::.

∀T : tm ∀L : tm ∀y : ty [of T y ⊃ of L (list y) ⊃ of (T :: L) (list y)].

Consider an attempt to prove the sequent Σ : ∆ ` of (abs R) (t → t′) where the

assumptions (the theory) contains only one rule for typing an abstraction and that

this assumption is the clause (∗) from Section 5. Since the introduction rules for ∀ and

⊃ are invertible, the sequent above is provable if and only if the sequent

Σ, x : ∆, of x t ` of (R x) t′

is provable. Given that we are committed to using a proper logic (such as intuitionistic

logic), it is the case that instantiating an eigenvariable in a provable sequent yields a

provable sequent. Thus, the sequent Σ : ∆, of N t ` of (R N) t′ must be provable.

Thus, we have just shown, using nothing more than rather simple properties of logic

that if

Σ : ∆ ` of (abs B) (t→ t′) and Σ : ∆ ` of N t

then (using modus ponens) Σ : ∆ ` of (B N) t′. (Of course, instances of the term

(B N) can be β-redexes and the reduction of such redexes results in the substitution

of N into the bound variable of the term that instantiates B.) Such lemmas about

substitutions are common and often difficult to prove [5,168]: in this setting, this lemma

is essentially an immediate consequent of using logic and logic programming principles.

In Section 11, we illustrate how the two-level logic approach [56,90] implemented in

the Abella theorem prover provides a general methodology that explicitly uses the

cut-elimination theorem in this fashion.

7 λ-tree syntax

The term higher-order abstract syntax (HOAS) was originally defined as an approach

to syntax that used “a simply typed λ-calculus enriched with products and polymor-

phism” [126].1 It seems that few researchers currently use this term in a setting that in-

cludes products and polymorphism (although simple and dependently typed λ-calculus

are often used). A subsequent paper identified HOAS as a technique “whereby variables

of an object language are mapped to variables in the metalanguage” [128]. While this

definition of HOAS seems the dominating one in the literature, this term is problematic

for at least two reasons.

First, the adjective “higher-order” is both ambiguous (see [99, Section 1.3]) and

unnecessary. In particular, the underlying notions of binder mobility and unification of

terms discussed in Section 5 is valid without reference to typing and it is the order of

a type that usually determines whether or not a variable is first-order or higher-order.

When it comes to unification, in particular, it seems more appropriate to view pattern

unification as a mild extension to first-order unification (which can be described without

reference to types [92, Section 9.3]) than it is to view it as an extreme restriction to

1 The reader who is not familiar with the term HOAS can safely skip to the last paragraph
of this section.

16

“higher-order unification” (which, in general, requires knowing the types of variables).

Thus, if types are not essential, why retain the adjective “higher-order”?

Second, this definition of HOAS is fundamentally ambiguous since the metalan-

guage (often the programming language) can vary a great deal. For example, if the

metalanguage is a functional programming language or an intuitionistic type theory,

the binding in syntax is usually mapped to the binding available for defining functions.

In this setting, HOAS representation of syntax incorporates function spaces in expres-

sions [37,71]. If the metalanguage is a logic programming language such as λProlog

or Twelf, then the λ-abstraction available in those languages does not correspond to

function spaces but to the weaker notion of hiding variables within a term, thereby

producing a term of an abstracted syntactic type (see Section 2).

Referring to these different approaches to encoding syntax with the same expression

leads to misleading statements in the literature, such as the following.

– The authors of [49] say that HOAS’s “big drawback, in its original form at least,

is that one looses the ability to define functions on syntax by structural recursion

and to prove properties by structural induction—absolutely essential tools for our

intended applications to operational semantics.”

– In [142, p. 365], we find the statement that “higher-order abstract syntax used in

a shallow embedding” when applied to “the π-calculus have been studied in Coq

and λProlog. Unfortunately, higher-order datatypes are not recursive in a strict

sense, due to the function in the continuations of binders. As a consequence, plain

structural induction does not work, making syntax-analysis impossible. Even worse,

in logical frameworks with object-level constructors, so-called exotic terms can be

derived.” Similar problems claimed about HOAS can also be found in [72,85].

If not read carefully, these negative conclusions about HOAS can be interpreted as

applying to all methods of encoding object-level bindings into a metalevel binding.

Since most higher-order languages allow functions to be defined with conditionals and

recursion, syntax encoded with functions have “exotic” items (combinators related to

conditionals and recursive definitions) injected into that syntax. While exotic terms

can appear in Coq encodings [37], they are not possible in λProlog since it contains

neither function spaces nor combinators for building functions using conditionals and

recursion.

The term “λ-tree syntax” was introduced in [102] to avoid this ambiguous term.

With its obvious parallel to the term “parse tree syntax,” this term names an ap-

proach to the syntactic representation described in the previous sections that relies on

the notions of syntactic-categories-as-types, αβ0η-conversion, and mobility of bindings.

In particular, λ-tree syntax is the form of HOAS available in the logic programming

languages λProlog and Twelf. In both of those languages, it has long been known

how to write relational specifications that compute by recursion over the syntax of ex-

pressions containing bindings. At the end of the 1990’s, explicit reasoning about such

relational specifications was part of the Twelf project [128] and was being developed

for λProlog specifications following the “two-level logic approach” [88,90]. The Abella

proof assistant was designed, in part, to reasoning about relational specifications: that

prover is routinely used to prove inductive and coinductive theorems involving λ-tree

syntax (see [15,51,56]). Abella is described in more detail in Section 11. Furthermore,

various model-theoretic approaches to HOAS and λ-tree syntax are available: for exam-

ple, Kripke-style models are used in [93,111] while a category of (covariant) presheaves

is used in [48]. Finally, a couple of functional programming languages, namely, Bel-

17

uga [129] and MLTS [60], have been designed that introduce a binding construct that

directly supports λ-tree syntax.

8 Computing and reasoning with λ-tree syntax

The proof theory of the intuitionistic version of ETT with higher-order (but not pred-

icate) quantification provides a rich computational setting for the direct manipulation

of λ-tree syntax. This section illustrates this claim.

8.1 Relational specifications using λ-tree syntax

A common method to specify the call-by-value evaluation of untyped λ-terms is using

natural semantics [77] (also known as big-step semantics). For example, the following

two inference rules (of which the second was already mentioned in Section 6.3)

λx.R ⇓ λx.R
M ⇓ λx.R N ⇓ U S ⇓ V

(M N) ⇓ V
provided S = R[N/x]

are commonly taken to be the definition of the binary relation · ⇓ · which relates

two untyped λ-terms exactly when the second is the value (following the call-by-value

strategy for reduction) of the first. Note that the rule for evaluating an application

involves a side condition that refers to a (capture-avoiding) substitution.

Using the encoding in Section 5.1 of the untyped λ-calculus, the inference rules

displayed above can be written as

abs R ⇓ abs R
M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V

In these inference rules, the schematic variables M , N , U , and V have type tm while

the schematic variable R has type tm → tm. Note that the side condition involving

substitution, written as S = R[N/x] above, has been removed and the application

(R N) appears instead. Since the equality theory of ETT contains β-conversion, in-

stances of the term (R U) are β-redexes if the instance of R is an abstraction. In that

case, the result of performing a β-reduction would result in the formal substitution

of the argument U into the abstracted variable of R, thereby correctly implement-

ing the substitution proviso of the first pair of displayed inference rules above. These

two inference rules are encoded naturally in intuitionistic logic as the following Horn

clauses.

∀R (eval (abs R) (abs R))

∀M∀N∀U∀V ∀R (eval M (abs R) ∧ eval N U ∧ eval (R U) V ⊃ eval (app M N) V)

Here, the infix notation · ⇓ · is replaced by the prefixed symbol eval and the type of

the quantified variables M , N , U , V , and R is the same as when they were used as

schematic variables above. The λProlog syntax for this specification is given in Figure 4:

here kinds and types are explicitly declared and several standard logic programming

conventions are used to displayed Horn clauses (upper case letters denote variables that

are universally quantified around the full clause, conjunctions are written as a comma,

and implication is written as :- denoting “implied-by”).

18

kind tm type.
type abs (tm -> tm) -> tm.
type app tm -> tm -> tm.
type eval tm -> tm -> o.

eval (abs R) (abs R).
eval (app M N) V :- eval M (abs R), eval N U, eval (R U) V.

Fig. 4 The kind and type declarations and the logic program clauses specifying call-by-value
evaluation for the untyped λ-calculus.

type copy tm -> tm -> o.
type subst (tm -> tm) -> tm -> tm -> o.

copy (app M N) (app P Q) :- copy M P, copy N Q.
copy (abs M) (abs N) :- pi x\ copy x x => copy (M x) (N x).

subst M T S :- pi x\ copy x T => copy (M x) S.

Fig. 5 A relational specification of object-level substitution.

8.2 A specification of object-level substitution and its correctness proof

As was illustrated above, the presence of β-conversion in ETT (and λProlog) makes

it immediate to encode object-level substitution. Such substitution can be specified

without reference to full β-conversion using only relational specifications and binder

mobility. In particular, Figure 5 contains the specification of two predicates that can be

used to capture such substitution. That figure makes use of three additional λProlog

conventions: the backslash denotes λ-abstraction; pi denotes the logical constant for

encoding universal quantification; and => denotes implication. Following Church [31],

the expression pi x\ denotes the universal quantification of the variable x.

In isolation, the copy predicate encodes equality in the following sense. Let C denote

the set of clauses in Figure 5. The judgment C ` copyM N is provable if and only if M

and N are equal (that is, βη-convertible). The forward direction of this theorem can be

proved by a simple induction on the uniform proof [100] of the judgment C ` copyM N .

The converse is proved by induction on the structure of the βη-long normal form of

terms of type tm. If the copy predicate is used hypothetically, as in the specification

of the subst relation, then it can be used to specify substitution. The following is

an immediate (and informal) proof of the following correctness statement for subst:

C ` subst R M N is provable if and only if N is equal to the βη-long normal form

of (R M). The proof of the converse direction is, again, done by induction on the βη-

long form of M (of type tm → tm). The forward direction has an even more direct

proof: the only way one can prove C ` subst R M N is to prove C, copy x M `
copy (R x) N , where x is a new eigenvariable. Since instantiating an eigenvariable in a

sequent with any term of the same type yields another provable sequent, then we know

that C, copy M M ` copy (R M) N is provable. By the previous theorem about copy,

we also know that C ` copy M M holds and by the cut rule of the sequent calculus

(modus ponens), we know that C ` copy (R M) N is provable which means (using

again the theorem about copy) that N is equal to (R M).

19

kind ty type.
type i, j ty. % Examples of primitive types
type arr ty -> ty -> ty. % The arrow type
type of tm -> ty -> o.

of (app M N) A :- of M (arr B A), of N B.
of (abs R) (arr A B) :- pi x\ of x A => of (R x) B.

Fig. 6 A relational specification of object-level typing.

One of the keys to reasoning about relational specifications using logical specifica-

tions is the central use of sequent calculus judgments. For example, in the argument

above, we did not attempt to reason by induction on the provability of ` copy M N

but rather on the provability of the sequent Γ ` copy M N for suitable context Γ .

8.3 The open-world and closed-world perspectives

As previous examples have illustrated, the specification of atomic formulas, such as

of M N and copy M N, assume the open world assumption. For example, in order to

prove copy (abs R) (abs S) from assumptions C, the process of searching for a proof

generates a new member (an eigenvariable) of the type tm, say c, and adds the formula

copy c c to the set of assumptions C. Thus, we view the type tm and the theory (the

logic program) about members of that type as expandable. Such an open world perspec-

tive is common in relational specification languages that manipulate λ-tree syntax [69,

99,100,128].

The open-world perspective to specifications has, however, a serious problem: in

that setting, it is not generally possible to prove interesting negations. Figure 6 contains

the λProlog specification of simple typing of untyped λ-terms. Note that the second

clause in that figure encodes the formula (∗) in Section 5.1. Given those clauses, one

would certainly want to prove that self-application in the untyped λ-calculus does not

have a simple typing: for example, our metalogic should be strong enough to prove

Σ : P ` ¬ ∃y : ty. of (abs λx (app x x)) y,

where Σ is a signature (containing at least the type declarations in Figures 4 and 6)

and P is the specification of the (of · ·) predicate in Figure 6. However, the inference

rules of the intuitionistic logic principles that we have motivated so far are not strong

enough to prove this negation: such a proof requires the use of induction.

The contrast to the open-world perspective is the familiar closed-world perspective.

Consider proving the theorem ∀n[fib(n) = n2 ⊃ n ≤ 20], where fib(n) is the nth

Fibonacci number. Of course, we do not attempt a proof by assuming the existence of

a new (non-standard) natural number n for which the Fibonacci value is n2. Instead,

we prove that among the (standard) natural numbers, we find that there are only three

values of n (0, 1, and 12) such that fib(n) = n2 and that all three of those values are

less than 20. The set of natural numbers is closed and induction allows us to prove

such theorems about them.

Thus, it seems that in order to prove theorems about λ-tree syntax, we need both

the open-world and the close-world perspectives: the trick is, of course, discovering how

it is possible to accommodate these two conflicting perspectives at the same time.

20

8.4 Induction, coinduction, and λ-tree syntax

Since any formalization of metatheory needs to include induction and coinduction

reasoning principles, we shall assume that these should be part of the logic we are

using for reasoning. There are many ways to provide schemes for least and greatest

fixed points within a proof theory setting. Gentzen used the familiar invariant-based

induction rule to encode Peano arithmetic and to prove its consistency [58]. Both

Schroeder-Heister [145] and Girard [62] considered sequent calculi that allowed for

the unfolding of fixed point expressions but neither of them considered the problem

of capturing least and greatest fixed points. Proof systems for intuitionistic and linear

logics containing induction and coinduction were developed in a series of papers [14,55,

89,156,160]. For the rest of this paper, we assume that the metalogic is an intuitionistic

logic with inference rules for induction and coinduction. The logic G in [55] is an

intuitionistic logic with induction and coinduction that can be used as such a metalogic.

While we shall not describe the proof theory of that logic in detail here, we mention

the following.

– Inductive and coinductive definitions generally need to be stratified in some manner

so that cut-elimination can be proved and, as a consequence, the full logic is shown

to be consistent.

– Inductive and coinductive definitions are encoded not as a theory or set of assump-

tions but as either auxiliary components to a sequent calculus [89,145] or as term

structures via µ- and ν-expressions [14,17].

Given that we have adopted these strong principles in the logic, the closed-world

perspective is enforced. We can recover the open-world perspective in this setting by

following two steps. First, the∇ (nabla) quantifier (described in Section 9) reintroduces

the notion of generic quantification. Second, the two-level logic approach to reasoning

(described in Section 11) allows us to embed within our (closed world) reasoning logic

an inductive data structure which encodes the sequent calculus of the specification logic

that permits the open world perspective.

9 The ∇-quantifier

Consider the following problem (taken from [103]) about reasoning with an object-logic.

Let H be the set containing the following three (quantified) formulas.

∀x∀y (q x x y), ∀x∀y (q x y x), ∀x∀y (q y x x)

Here, q is a predicate constant of three arguments. The sequent

H ` ∀u∀v (q 〈u, t1〉 〈v, t2〉 〈v, t3〉)

is provable (in either Gentzen’s LJ or LK sequent calculus [57]) only if terms t2 and t3
are equal. If we use curly brackets to denotes the provability of object-level sequents,

then this statement about object-level provability can be formalized as

∀t1∀t2∀t3
(
{H ` ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉]} ⊃ t2 = t3

)
.

Since object-level sequent calculus provability is inductively defined, one should be

able to explicitly write a meta-level definition for {P ` G} that captures object-level

21

provability of the sequent P ` G. When writing such a definition, one can imagine

trying to treat the object-level universal quantifier as a metalevel universal quantifier,

as in the following formula.

∀t1∀t2∀t3
(
[∀u∀v{H ` (q 〈u, t1〉 〈v, t2〉 〈v, t3〉)}] ⊃ t2 = t3

)
This second formula is only provable, however, if there are at least two different mem-

bers of the underlying object-level type. That approach to proving this second formula

is unfortunate since the original formula is provable without any assumptions about

the inhabitants of the object-level types. Thus, it seems to be a mistake to reduce the

object-level universal quantifier to the metalevel universal quantifier.

For a similar but simpler example, consider the ξ inference rule, often written as

t = s

λx.t = λx.s
.

This inference rule violates the Perlis principle (Principle 3 in Section 4) since occur-

rences of x in the premise are free. If we fix this violation by inserting the universal

quantifier into the rule

∀x (t = s)

λx.t = λx.s

then the equivalence ∀x (t = s) ≡ (λx.t = λx.s) can be proved. As argued in Section 2,

this equivalence is problematic for λ-tree syntax since we want ∀w ¬(λx.x = λx.w) to

be provable because it is impossible for there to be a (capture-avoiding) substitution

for w into λx.w that results in the term λx.x. However, since this latter formula is

equivalent to ∀w ¬∀x (x = w) this (first-order) formula cannot be proved since it is

false for a first-order model with a singleton domain.

The ∇-quantifier [103,104] provides an elegant logical treatment of these two exam-

ples. While this new quantifier can informally be described as providing a formalization

of “newness” and “freshness” in a proof system, it is possible to describe it more for-

mally using the mobility-of-binders theme. In particular, sequents are generalized from

having one global signature (the familiar Σ) to also having several local signatures,

Σ : σ1 . B1, . . . , σn . Bn ` σ0 . B0,

where σi is a list of variables, locally scoped over the formula Bi. The expression σi . Bi
is called a generic judgment. The ∇-introduction rules moves a formula-level binding

to a generic judgment-level binding (when reading these proof rules from conclusion to

premise).

Σ : (σ, xγ) . B, Γ ` C
Σ : σ . ∇xγ .B, Γ ` C

∇L
Σ : Γ ` (σ, xγ) . B

Σ : Γ ` σ . ∇xγ .B
∇R

In these rules, the variable x is assumed to not occur in the local signature to which it

is added: such an assumption is always possible since α-conversion is available for all

term, formula, and sequent-level bindings. The generic judgment (x1, . . . , xn) . t = s

can be identified, at least informally, with the generic judgment . ∇x1 · · ·∇xn.(t = s)

and with the formula ∇x1 · · ·∇xn.(t = s). Since these introduction rules are the same

on the left and the right, one expects that this quantifier is self-dual. Instead of listing

22

all the other inference rules for formulas using this extended sequent, we simply note

that the following equivalences involving logical connectives hold as well.

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx⇒ Cx) ≡ ∇xBx⇒ ∇xCx
∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⇒ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥

Note that the scope of a∇ quantifier can be moved in over all propositional connectives.

Moving it’s scope below the universal and existential quantifier requires the familiar

notion of raising [94]: that is, the when ∇ moves inside a quantified expression, the

type of the quantified variable must be raised by the type of the ∇-quantified variable.

While they are formally different, the ∇-quantification is similar to the Gabbay

and Pitt’s freshness quantifier [50]: they are both self dual, i.e., ∇x¬Bx ≡ ¬∇xBx,

and in weak settings (roughly Horn clauses), they coincide [53].

The ∇-quantifier is the missing quantifier for formulating the ξ-rule: that is, the

rule can now be written as
∇x (t = s)

λx.t = λx.s
.

Thus, the formulas ∇x1 · · ·∇xn (t = s) and (λx1 . . . λxn.t) = (λx1 . . . λxn.s) are

provably equivalent. This treatment of the ξ-rule using ∇ appears to be similar to

the semantic treatment of that rule using lambda algebras with indeterminates given

in [149]. Using this inference rule, the following three formulas are equivalent.

∀w ¬(λx.x = λx.w) ∀w ¬∇x (x = w) ∀w ∇x (x 6= w).

Furthermore, all of these formulas are provable.

In general, ∇ does not imply ∀: that is, (∇x.Bx) ⊃ (∀x.Bx) is not generally

provable. For example, assume that i is a primitive type and a and b are two constants

of type i. The formula∇x (x 6= a) ⊃ ∀x (x 6= a) is not provable since clearly∇x (x 6= a)

is provable while ∀x (x 6= a) is not true. It is, however, the case that in certain settings

∇ does imply ∀: an important example of such a theorem is presented in Section 11.

Full details of sequent calculi involving ∇-quantification are provided elsewhere

(see, [55,104]). While we do not present the full sequent calculus rules here, we shall

focus on the rules that actually complete a proof (i.e., rules with no premises). For

example, the leaves of a sequent calculus proof might involve either the > on the right-

hand-side or ⊥ on the left-hand-side. There are two other possible leaves. The one

involving equality would contain the generic judgment (x1, . . . , xn) . t = s which can

be viewed as just another way to write the equality λx1 · · ·λxn.t = λx1 · · ·λxn.s. The

final possibility involves a generalization of the initial rule: In particular, when is a

sequent of the form Σ : Γ, σ . A ` σ′ . A′ to be considered initial. There seems to be

two natural approaches to defining the initial rule in the presence of generic judgments.

Minimal approach One approach declares Σ : Γ, (x1, . . . , xn) . A ` (y1, . . . , ym) . A′

to be initial exactly when λx1 · · ·λxn.A and λy1 · · ·λym.A′ are λ-convertible. Such a

definition seems too strong, however, since the order of variables in two different local

context does not seem important: in particular, it would seem natural that ∇x∇y.B
should be logically equivalent to ∇y∇x.B. Adopting this additional interchange prin-

ciple is called the minimal approach and was used and analyzed in [13]. In that setting,

local signature contexts are allowed to exchange the order of their variables.

23

Nominal approach Besides exchange, it might also seem natural to allow a form of

strengthening: that is, to allow the equivalence of∇x.B with B whenever x is not free in

B. A consequence of such an equivalence is that all types are non-empty. For example,

the formula ∃xi.B is not provable if the type i does not contain any inhabitants.

However, the formula ∇yi∃xi.B might be provable: there is, at least, one inhabitant of

type i, namely, the nominal y. This kind of argument can easily be generalized to show

that this strengthening equivalence implies that types for which one uses ∇ necessarily

contain an infinite number of members. Baelde has argued [13] that certain adequacy

issues can be complicated when strengthening is allowed and Gacek has described how

to address most of those issues [52, Section 4.2]. The strengthening principle has been

formally studied [54,52,55,158] and implemented in the Abella theorem prover [15].

The nominal approach also allows for a different way of writing local (generic) contexts

within sequents. Via the strengthening rule, all local contexts can have the same number

of variables (just add more variables to those local contexts that are shorter than the

local context of maximum length). Furthermore, all contexts can use the same variable

names (using α-conversion). In such a setting, then, instead of writing the many local

signatures that are now all the same, we can write that local signature as if it is

global (although acting locally). Such a convention is taken, for example, in displaying

sequents within the Abella prover.

10 The Abella proof assistant

Most of the proof theory principles and logic designs that we have motivated so far are

implemented in the Abella interactive theorem prover. First implemented by Gacek

in 2009 as part of his PhD [52], this prover has attracted a number of users and

additional developers. Abella is written in OCaml and the most recent versions of

the system are available via GitHub and OPAM [1]. A tutorial appears in [15]. The

logical foundation that is closest to that which is implemented is the logic G in [55].

The approach to induction and coinduction in Abella differs significantly from that

based on proof theory: in particular, the proof rules in G for induction and coinduction

require explicitly providing invariants and co-invariants. However, Abella leaves such

invariants implicit, opting for a more natural and convenient kind of guarded circular

reasoning to account for induction and coinduction.

10.1 A simple proof using Abella

Before illustrating how Abella can deal with bindings in specifications and in reasoning,

we first illustrate how to use this system to prove a few elementary theorems. Figure 7

displays the Abella specification of the natural number type, the constructors for that

type, the predicate that describes the set of natural numbers, and the ternary relation

that defines addition of natural numbers. Figure 8 displays the statement of three

theorems that prove the commutativity of addition. Readers familiar with the Coq

theorem prover will no doubt see a similarity to this style of declaration and proof

script.

To illustrate the style of inductive reasoning that is used in Abella, we present some

of the details in the proof of the plus_com theorem in Figure 8. After the statement

24

Kind nat type.
Type z nat.
Type s nat -> nat.

Define nat : nat -> prop by
nat z ;
nat (s N) := nat N.

Define plus : nat -> nat -> nat -> prop by
plus z N N ;
plus (s M) N (s K) := plus M N K.

Fig. 7 An Abella specification of natural numbers and addition

Theorem plus_zero : forall N, nat N -> plus N z N.
induction on 1. intros. case H1.

search.
apply IH to H2. search.

Theorem plus_succ :
forall M N K, plus M N K -> plus M (s N) (s K).

induction on 1. intros. case H1.
search.
apply IH to H2. search.

Theorem plus_comm :
forall M N K, nat K -> plus M N K -> plus N M K.

induction on 2. intros. case H2.
apply plus_zero to H1. search.
case H1. apply IH to H4 H3. apply plus_succ to H5. search.

Fig. 8 An Abella theorem file proving the commutativity of addition

of the theorem and the issuance of the induction on 2 and intros proof tactics, the

Abella proof state is denoted by a sequent written as follows.

Variables: M N K

IH : forall M N K, nat K -> plus M N K * -> plus N M K

H1 : nat K

H2 : plus M N K @

============================

plus N M K

The list of variables in the first line are the eigenvariables that are bound over this

sequent. The assumption IH is the inductive assumption and H1 and H2 are two ad-

ditional assumptions that can be used to prove the last formula displayed. Note the

addition of the annotation * in the inductive hypothesis and @ in the H2 assumption:

these are used to stop (guard against) the fallacious circular reasoning that could result

by applying the inductive hypothesis too quickly in the proof. In particular, inductive

restrictions are represented by tagging an atomic formula with * (smaller) and with @

(equal). These annotations are used to implicitly track the size of inductive arguments

rather than using explicit numeric values. Experience with Abella suggests that using

these annotations is much more natural than requiring the insertion of an actual invari-

25

ant (as required by the proof system for G): the soundness of using such annotations

is argued in [52].

To continue with this proof, one must perform a case analysis on H2 before applying

the inductive hypothesis. In particular, the case H2 proof step results in two subcases

(in both cases, the @ annotation is replaced with a * annotation). The first one is

represented by the proof state

Variables: K

IH : forall M N K, nat K -> plus M N K * -> plus N M K

H1 : nat K

============================

plus K z K

This case can be proved by invoking the previously proved lemma plus_zero. The

second case is represented by the proof state

Variables: N K1 M1

IH : forall M N K, nat K -> plus M N K * -> plus N M K

H1 : nat (s K1)

H3 : plus M1 N K1 *

============================

plus N (s M1) (s K1)

The case H1 command performs inversion on the H1 assumption: that is, the only way

that (s K1) can be a natural number is for K1 to be a natural number: the state of the

proving session is now

Variables: N K1 M1

IH : forall M N K, nat K -> plus M N K * -> plus N M K

H3 : plus M1 N K1 *

H4 : nat K1

============================

plus N (s M1) (s K1)

The apply IH to H4 H3 proof step employs the inductive assumption (since the *

annotations in IH and H3 match) and the plus_succ theorem completes the proof.

10.2 The π-calculus

The π-calculus [107,108] is an interesting challenge for formalization since its metathe-

ory must deal with not only bindings, substitution, and α-conversion but also with

induction and coinduction. This calculus also has a mature theory [109,144] which is a

great aid in developing and judging formalizations. We shall assume that the reader is

already familiar with the traditional formalization and meta-theory of the π-calculus

as given in these references. In this section, we present an alternative formalization of

the π-calculus that makes use of the ∇-quantifier and the logic G.

10.2.1 Encoding the syntax of the π-calculus

In order to encode the π-calculus processes, we introduce two primitive types p and n

denoting the syntactic categories for processes and names, respectively. The syntax of

26

Kind n, p type.

Type null p.
Type taup p -> p.
Type plus , par p -> p -> p.
Type match , out n -> n -> p -> p.
Type in n -> (n -> p) -> p.
Type nu (n -> p) -> p.

Fig. 9 Abella specifications for the syntax of the finite π-calculus.

processes for the π-calculus is generally given as follows:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (y)P | [x = y]P.

Expressions in the π-calculus can be formalized as simply typed λ-terms using the

signature of constants given in Figure 9. That signature contains one constructor of

type p for each different kind of expression allowed. In particular, there are two binding

constructors: the restriction operator (y)P is encoded using the constant nu of type

(n -> p) -> p and the input prefix x(y).P is encoded using the constant in of type

n -> (n -> p) -> p. The expressions (nu (y\ P y)) and (in x (y\ P y)) encodes

π-calculus expressions of the form (y)Py and x(y).Py, respectively, where the expression

Py is a term of type p which may contain a free occurrence of the variable y of type n.

Since the equality of simply typed λ-terms used here includes the η-rule, the expressions

(nu (y\ P y)) and (in x (y\ P y)) can also be written as (nu P) and (in x P).

Formally, this version of the π-calculus is usually referred to as the finite π-calculus

since it lacks a replication operator or any method for recursive definitions. Versions of

the π-calculus with replications or recursive definitions can be treated similarly [159].

10.2.2 Encoding the labeled transition system

In order to encode π-calculus transitions we introduce a new primitive type for the

syntactic category of action expressions. There are three constructors for actions: τ : a

for silent actions, ↓ : n → n → a for input actions, and ↑ : n → n → a for output

actions. The action of inputting y on channel x is written as ↓xy : a and the action

of outputting y on channel x is written as ↑xy : a. The bound actions are expressions

of the form ↓x : n → a (bound input on channel x) and ↑x : n → a (bound output

on channel x). Constructors for encoding τ , ↑, and ↓ are given in the first lines of

Figure 10.

One-step transitions for π-calculus expressions are encoded using two ternary-

predicates: the arrow ·
·
−−→ · of type p → a → p → prop and the arrow ·

·
−−⇀ ·

of type p → (n → a) → (n → p) → prop. Here, P
A
−−→ Q encodes a transition where

A is a free or silent action and P
A
−−⇀ Q encodes a transition where A is a bound

action. In particular, P
↓ x
−−⇀ M encodes the fact that P makes a bound input action

↓x : n→ a to the abstracted process M : n→ p and P
↑ x
−−⇀ M encodes the fact that

P makes a bound output action, ↑x : n→ a to the abstracted process M : n→ p.

27

The following rules are from the semantic definition of the π-calculus in [108].

x̄y.P
x̄y
−−→ P

P
α
−−→ P ′

(y)P
α
−−→ (y)P ′

y 6∈ n(α)
P

x̄y
−−→ P ′

(y)P
x̄(w)
−−→ P ′{w/y}

y 6= x

w 6∈ fv((y)P ′)

These inference rules—named output-act, res, and open, respectively—are easily

encoded using the following clauses.

one (out X Y P) (up X Y) P ;

one (nu P) A (nu P’) := nabla x, one (P x) A (P’ x);

oneb (nu M) (up X) P’ :=

nabla y, one (M y) (up X y) (P’ y);

oneb (nu P) A (y\ nu (x\ P’ x y)) :=

nabla x, oneb (P x) A (P’ x);

The rule called res is encoded with two clauses since the original rule can be applied

to both free and bound action transitions. Note that there is no need to encode the side

conditions present in the inference rule version of these rules since the usual notion of

quantifier scoping (including the ∇-quantifier) correctly captures those side conditions.

Note also that the type of the bound variable P’ in these clauses varies: in the second

and fourth clauses, its type is n→ p while in the third clause, its type is n→ n→ p.

The full encoding of the one step (late) transitions for the finite π-calculus (that is,

the rules from [108] except for the IDE rule) is given in Figure 10. The correctness of

this encoding is discussed in [104,156].

It is proved in [104, Theorem 7.10] that when implications (and, hence, negations)

are not present in the body of a specification, then occurrence of ∇ in that specification

can be replaced with ∀ (and vice-versus) and the same atomic formulas are provable.

Thus, if we are only interested in proving atomic formulas, then all of the ∇-quantifiers

in Figure 10 can be changed to ∀ and there would be no difference between those two

definitions as to the one and onep atomic formula that are provable. Specifications

of the π-calculus containing universal quantifiers instead have been written in, say,

λProlog [99,102].

Consider using this transition definition in the context of a negation. The process

(y)[x = y]x̄w.0, where w is some constant, cannot make a (free or bound) transition

since y has to be “new” and cannot be equal to x. Thus the following formula is

provable using the specification in Figure 10.

∀x∀Q∀α.[((y)[x = y](x̄w.0)
α
−−→ Q) ⊃ ⊥]

This theorem and its brief proof can be entered into Abella as follows (here, w is a

constant of type name):

Theorem example1 : forall x Q A,

one (nu y\ match x y (out x w null)) A Q -> false.

intros. case H1. case H2.

The last step in this proof formally involves a unification that is rather similar to the

unification problem mentioned in Section 9: that is, this last step in the proof succeeds

because the unification problem (λy.x) = (λy.y) fails (since there is no substitution for

the free variable x that makes these terms equal).

28

Kind act type.
Type tau act.
Type up, dn n -> n -> act.

Define
one : p -> act -> p -> prop ,
oneb : p -> (n -> act) -> (n -> p) -> prop

by
oneb (in X M) (dn X) M ;
one (out X Y P) (up X Y) P ;
one (taup P) tau P ;
one (match X X P) A Q := one P A Q ;
oneb (match X X P) A M := oneb P A M ;
one (plus P Q) A R := one P A R ;
one (plus P Q) A R := one Q A R ;
oneb (plus P Q) A M := oneb P A M ;
oneb (plus P Q) A M := oneb Q A M ;
one (par P Q) A (par P’ Q) := one P A P’ ;
one (par P Q) A (par P Q’) := one Q A Q’ ;
oneb (par P Q) A (x\ par (M x) Q) := oneb P A M ;
oneb (par P Q) A (x\ par P (N x)) := oneb Q A N ;
one (nu P) A (nu Q) := nabla x, one (P x) A (Q x);
oneb (nu P) A (y\ nu (x\ Q x y)) := nabla x, oneb (P x) A (Q x);
oneb (nu M) (up X) N := nabla y, one (M y) (up X y) (N y) ;
one (par P Q) tau (nu y\ par (M y) (N y)) :=

exists X, oneb P (dn X) M /\ oneb Q (up X) N ;
one (par P Q) tau (nu y\ par (M y) (N y)) :=

exists X, oneb P (up X) M /\ oneb Q (dn X) N ;
one (par P Q) tau (par (M Y) T) :=

exists X, oneb P (dn X) M /\ one Q (up X Y) T ;
one (par P Q) tau (par R (M Y)) :=

exists X, oneb Q (dn X) M /\ one P (up X Y) R.

Fig. 10 Specifications of the one step (late) transitions for the finite π-calculus.

10.2.3 Some of the metatheory of the π-calculus

The quality of this specification of the π-calculus transition semantics is high, as illus-

trated by the following observations.

When instantiating the quantifiers (implicitly) quantifying the many clauses in

Figure 10, the resulting formulas may contain subterms that are not β-normal. Only

the last two clause rules yield instances in which the resulting β-redexes are actually

not β0-redexes (Section 5). If we delete those last two clauses from Figure 10, we get the

πI -calculus (the π-calculus with internal mobility [143]). Since the only β-conversion

needed is β0-conversion, we can view the πI -calculus as a subset of the π-calculus in

which β-conversion is only used to provide binder mobility (in the sense described in

Section 5) and not more.

The definition of simulation for the π-calculus can be given as the greatest fixed

point of the following recursive definition.

sim P Q
4
= ∀A,P ′ [P

A
−−→ P ′ ⇒ ∃Q′.Q

A
−−→ Q′ ∧ sim P ′ Q′] ∧

∀X,P ′ [P
↓X
−−⇀ P ′ ⇒ ∃Q′.Q

↓X
−−⇀ Q′ ∧ ∀w.sim (P ′w) (Q′w)] ∧

∀X,P ′ [P
↑X
−−⇀ P ′ ⇒ ∃Q′.Q

↑X
−−⇀ Q′ ∧∇w.sim (P ′w) (Q′w)]

29

CoDefine bisim : p -> p -> prop by
bisim P Q :=
(forall A P’, one P A P’ ->

exists Q’, one Q A Q’ /\ bisim P’ Q’) /\
(forall X M, oneb P (dn X) M ->

exists N, oneb Q (dn X) N /\ forall W, bisim (M W) (N W)) /\
(forall X M, oneb P (up X) M ->

exists N, oneb Q (up X) N /\ nabla w, bisim (M w) (N w)) /\
(forall A Q’, one Q A Q’ ->

exists P’, one P A P’ /\ bisim P’ Q’) /\
(forall X N, oneb Q (dn X) N ->

exists M, oneb P (dn X) M /\ forall W, bisim (M W) (N W)) /\
(forall X N, oneb Q (up X) N ->

exists M, oneb P (up X) M /\ nabla w, bisim (M w) (N w)).

Fig. 11 Bisimulation for the π-calculus

Bound actions use two different quantifiers to handle the continuation of a process: an

input bound action uses ∀ while the output bound action uses ∇. The corresponding

coinductive definition of bisimulation is displayed using Abella syntax in Figure 11.

As proved in [104], this coinductive definition corresponds to open bisimulation on

the finite π-calculus. If we changed from the intuitionistic logic of Abella to classical

logic instead, then late bisimulation is captured. In particular, late bisimulation can

be captured by assuming ∀x∀y. x = y ∨ x 6= y, a particular instance of the excluded

middle [159].

The specification for the π-calculus above (and some variants of it) has also been

used in formal proofs of various aspects of the metatheory of the π-calculus. For ex-

ample, the Abella website [1] contains a formal proof that open bisimulation is a con-

gruence and that bisimulation-up-to bisimilarity [106,139] is sound (see also [27]). The

modal logics for π-calculus given in [109] have also been formalized in the logic un-

derlying Abella [4,161,159]. The model checker Bedwyr [16] provides an automated

implementation of part of Abella: that implementation provides a basic model checker

for the π-calculus [157] and some extensions of it [162].

The Coq theorem prover has been used to formalize the metatheory of the π-

calculus. Generally, two kinds of packages have been added to Coq for this purpose.

First, a package that provides flexible methods for doing coinduction following, say,

the Knaster-Tarski fixed point theorems, is necessary. Indeed, such a package has been

implemented and used to prove various metatheorems surrounding bisimulation-up-to

(including the subtle metatheory surrounding weak bisimulation) [22,137,138]. Sec-

ond, a package for the treatment of bindings and names that are used to describe the

operational semantics of the π-calculus. Such packages exist (for example, see [10])

and, when combined with treatments of coinduction, may allow one to make progress

on the metatheory of the π-calculus. Recently, the Hybrid systems [44] has shown a

different way to incorporate both induction, coinduction, and binding into a Coq (and

Isabelle) implementation. Such an approach could be seen as one way to implement

this metatheory task on top of an establish formalization of mathematics. A still dif-

ferent approach to using Coq was taken by Honsell, Miculan, and Scagnetto in [72] in

their “Theory of Context.” While their logical foundations is rather different from that

described here, their specifications of, say, bisimulation strongly resemble the specifi-

cations given above. In particular, the ∇-quantifier can be used to define in Abella a

30

Kind atm , atmlist type.

Type nl atmlist.
Type cons atm -> atmlist -> atmlist.

Type tt o.
Type atom atm -> o.
Type or, and o -> o -> o.
Type imp atm -> o -> o.
Type all (tm -> o) -> o.
Type ex (tm -> o) -> o.

Define seq : nat -> atmlist -> o -> prop by
seq (s N) L tt ;
seq (s N) L (atom A) := mem A L ;
seq (s N) L (or A B) := seq N L A ;
seq (s N) L (or A B) := seq N L B ;
seq (s N) L (and A B) := seq N L A /\ seq N L B ;
seq (s N) L (imp A B) := seq N (cons A L) B ;
seq (s N) L (all G) := nabla x, seq N L (G x) ;
seq (s N) L (ex G) := exists X, seq N L (G X) ;
seq (s N) L (atom A) := exists B, prog A B /\ seq N L B.

Fig. 12 Definition of provability in the specification level logic.

freshness predicate fresh x t which holds if x is a nominal that does not appear free in

t. If we let B be a formula whose free variables are among z, x1, . . . , xn, and let x be

the term x1 :: . . . :: xn :: nil (where :: and nil are constructors for lists), then the three

formulas

∇z.B ∃z.(fresh z x ∧B) ∀z.(fresh z x ⊃ B)

are provably equivalent in Abella [55]. Replacing the freshness predicate with the notin

predicate of [72] illustrates the strong similarity between their encoding of bisimulation

and the one in Figure 11.

11 The two-level logic approach as implemented in Abella

At the end of Section 8, the need for both the open-world assumption (for a declar-

ative treatment of λ-tree syntax) and the closed-world assumption (for the treatment

of induction) was motivated. Following the two-level logic approach of [56,90], we now

present an Abella (reasoning-level logic) specification of provability for an object-level

logic (essentially a restricted form of λProlog). This design will formally allow estab-

lishing “substitution lemmas for free” by using cut-elimination.

Consider the specification of an (object) logic (terms of type o) as well as of cut-free

provability via the seq predicate. In this example, object-level formulas are limited

so that the left of an implication is restricted to be only an atomic formula. This

restriction is sometimes used to make the formal presentation of object-level provability

simpler [88,90]: the recent versions of Abella, however, removes that restriction [15,

171]. This specification is also partial since it does not define the (obvious) membership

relation mem on atmlist nor the prog relationship. This latter relation is used to hold

the logic programming specification on which we plan to prove theorems. For example,

31

Theorem seq_monotone : forall L1 L2 G N,
seq N L1 G -> (forall X, mem X L1 -> mem X L2) -> seq N L2 G.

Theorem seq_cut : forall K L G N M,
nat N -> seq N (cons K L) G -> nat M -> seq M L (atom K) ->

exists P, nat P /\ seq P L G.

Fig. 13 Some metatheorems which have been proved about the specification level logic.

Theorem mem_inst : forall L A,
nabla (x:tm), mem (A x) (L x) -> forall T, mem (A T) (L T).

Theorem seq_inst : forall N L G,
nabla (x:tm), seq N (L x) (G x) -> forall T, seq N (L T) (G T).

Fig. 14 Two theorems of the form ∇x.P (x) ⊃ ∀x.P (x).

the evaluation and typing rules for the untyped λ-calculus given in Figures 4 and 6 can

be written as the following definition of prog within Abella. (Essentially, prog is the

prefix version of what is written as the infix symbol :- in λProlog.)

Define prog : atm -> o -> prop by

prog (eval (abs R) (abs R)) tt ;

prog (eval (app P Q) V) (and (atom (eval P (abs R)))

(atom (eval (R Q) V))) ;

prog (of (abs R) (arrow A B))

(all x\ imp (of x A) (atom (of (R x) B))) ;

prog (of (app P Q) B) (and (atom (of P (arrow A B)))

(atom (of Q A))).

For the sake of providing variety, this definition of eval encodes call-by-name evaluation

whereas the specification in Figure 4 encodes call-by-value evaluation.

The two theorems in Figure 13 state properties of object-level provability. Theorem

seq_monotone states that when every member of the list of hypotheses L1 is a member

of the list of hypotheses L2 then the existence of a proof of height bounded by N using

L1 guarantees the existence of a proof of height bounded by N using L2. This theorem

can be used to show that contraction and weakening are admissible rules of inference.

Theorem seq_cut states that atomic instances of the cuts rule are admissible.

As noted in Section 9, it is not generally the case that ∇x.P (x) ⊃ ∀x.P (x) is

provable. There are a number of situations, however, where this entailment does hold.

For example, Theorem mem_inst in Figure 13 states that this entailment holds when

the property P (x) refers to membership in a list and Theorem seq_inst states that

this also holds for object-level provability. Both of these theorems can be proved by

straightforward induction.

Given the theorems above regarding properties of the object-logic, we can now

formally prove the type-preservation theorem that was informally proved in Section 6.4.

Given the encoding described above, this can be written as

Theorem type_preserve : forall E V A M N N’,

nat N’ -> lt N N’ -> seq N nl (atom (eval E V)) ->

nat M -> seq M nl (atom (of E A)) ->

exists P, nat P /\ seq P nl (atom (of V A)).

32

Although this encoding is a bit awkward to read, the formal proof in Abella of this

theorem follows the proof outline given in Section 6.4: where an eigenvariable is in-

stantiated, the theorem seq_inst is invoked and where modus ponens was used, the

theorem seq_cut is invoked.

Abella provides object-level provability as a built-in feature. In particular, the

Abella expression {L |- G} abbreviates exists N, nat N /\ seq N L G: if the list L is

empty, then that expression is written simply as {G}. The three theorems seq_monotone,

seq_cut, and seq_inst are made available as specific tactics within Abella. Further-

more, Abella can build the prog predicate from (restricted) λProlog logic program and

signature files.

To illustrate these features within Abella, assume that the clauses in Figures 4

and 6 are gathered together into one logic program that is loaded into Abella (via

the prog binary predicate). The type_preserve theorem above can be rewritten and

formally proved correct using the following.

Theorem type_preserve :

forall E V T, {eval E V} -> {of E T} -> {of V T}.

induction on 1. intros. case H1.

search.

case H2.

apply IH to H3 H6. case H8. apply IH to H4 H7.

inst H9 with n1 = U. cut H11 with H10.

apply IH to H5 H12. search.

Just before the inst command is issued, the proof system of Abella appears as follows.

Variables: V T U R N M B

IH : forall E V T, {eval E V}* -> {of E T} -> {of V T}

H3 : {eval M (abs R)}*

H4 : {eval N U}*

H5 : {eval (R U) V}*

H6 : {of M (arr B T)}

H7 : {of N B}

H9 : {of n1 B |- of (R n1) T}

H10 : {of U B}

============================

{of V T}

The list of variables (in the first line) are the eigenvariables that are bound in this

sequent. The inductive hypothesis is labeled with IH and the asterisks on some of

the assumptions are part of Abella’s approach to doing induction (as mentioned in

Section 10.1: see [15,52] for more on this approach to induction). Assumption H9 cap-

tures the object-level provability judgment that for a fresh object-level eigenvariable

n1 (captured as a nominal), that the object-level sequent {of n1 B |- of (R n1) T}

is provable. The inst H9 with n1 = U is responsible for instantiating the nominal n1

with the term U yielding the hypothesis

H11 : {of U B |- of (R U) T}

That is, since H9 holds generically (that is, for a nominal n1) then it holds for every

instant of that nominal. Similarly, the cut command applies that hypothetical to the

assumption H10 and this yields the additional assumption

33

H12 : {of (R U) T}

Applying the inductive hypothesis IH to hypotheses H5 and H12 finally yields the de-

sired goal. The combination of the inst and cut commands provides an elegant and

completely formal proof of the key substitution lemma in the proof, namely that if the

type of (abs R) is the arrow type (arr B T) and if U has type B then the result of

instantiating the abstract (abs R) with U, that is, (R U), has type T. The proof of this

substitution lemma follows the simple line of reasoning described in Section 6.4.

The Abella system has been successfully used to prove a range of metatheoretic

properties about well known formal systems. Several such examples are listed below:

the formal treatment of several of these topics can be found on the Abella prover’s

website [1].

– Untyped λ-calculus: Takahashi’s proof of the Church-Rosser property using com-

plete developments, a characterization of β-reduction via paths through terms;

Loader’s proof of standardization; type preservation of call-by-name and call-by-

value for simple types and system F types; and Huet’s proof of the cube property

of λ-calculus residuals [3].

– Simply typed λ-calculus: Tait’s logical relations argument for weak normalization

and Girard’s proof of strong normalization.

– Object-level proof systems: cut-elimination and the completeness of a Frege-style

proof system.

– Formalized metatheory for the process calculi CCS and π-calculus: see Section 10.2

and [4,159].

– Specifications and correctness proofs for various techniques used by compilers for

functional programming languages [170,172].

12 Related work

Two broad avenues of attacking the general area of mechanizing metatheory have

been developed. One such approach has involved designing and implementing computer

systems that provide tools for analyzing and automating entire programming languages

and specification languages. While there are too many such systems to survey them

here, we mention a few from different periods during the last 3 decades. Two systems

from Inria in the 1980’s were the Mentor [38] and Centaur systems [24]. The Ergo

Support System [81] was also from that same period: that system proposed to use the

Elf automation of LF signatures for capturing programming language specifications.

The following systems have been built to support reasoning about various concurrency

calculi: the Concurrency Workbench [32], the Mobility Workbench [169], and the more

recent Psi-calculus Workbench [23]. A number of recent textbooks have been written

that use the Agda and Coq proof assistants to formally reason about programs and

programming languages [30,130,154]. The OTT system [150] provides a convenient

means for defining the static and dynamic semantics of programming languages and

for exporting those definitions to various proof assistants.

A second approach to mechanizing metatheory has been to look into the founda-

tions of logic—particularly following the perspectives found in proof theory and type

theory—and uncover logical principles that can be directly employed to support mech-

anized metatheory. As we have illustrated here, pursuing this course has occasionally

lead researchers to develop new logical principles (for example, λ-tree syntax) and

34

connectives (for example, the ∇-quantifier). This line of research can be traced back

to Church’s Simple Theory of Types [31] since it contains the main ingredients for

supporting λ-tree syntax. Because Church was interested in supporting mathematical

reasoning, his addition of mathematical axioms (extensionally and choice, in partic-

ular) made the theory of λ-expressions in the resulting system too strong to support

λ-tree syntax: the weaker Elementary Type Theory (ETT) does provide, however, a

good starting point. Probably the first computational system that captured some as-

pects of λ-tree syntax was the template-based rewriting system of Huet & Lang [76] in

which second-order matching was used to match and rewrite program expressions con-

taining bindings. λProlog was the first programming language to support the full range

of features needed to manipulate λ-tree syntax [97,98,101] and the Elf system [125]

provided similar support by automating proof search based on LF dependently-typed

λ-calculus.

Shortly after these first programming language systems appeared, tools for per-

forming inductive proofs over λ-tree syntax were implemented. The first such system

was Twelf [128], an extension to the Elf system that could determine, for example,

that given dependently-typed relations were total and/or functional. A proof theory

for induction (over natural numbers) and an early implementations of the two-level

logic approach to reasoning based on the Pi proof editor [41] are given in [87–89]. With

the addition of the ∇-quantifier [103,104] and stronger forms of induction and coin-

duction [14,54,160], the G logic was design to incorporate these various features: it is

that logic which is built into the Abella theorem prover. Besides the Abella and Twelf

system, a number of other implemented systems support some or all aspects of λ-tree

syntax: these include Beluga [129], Hybrid [44], Isabelle [123], Minlog [147], and the

Teyjus [115] and ELPI [40] implementations of λProlog. Some of these systems have

been explicitly compared and contrasted in recent papers [45,46,78,112]. Addition-

ally, benchmark problems that are unique to metaprogramming problems have been

proposed to test the ability of mechanized metatheory provers [12,47].

There is a spectrum of how abstract or concrete the encoding of bindings in syntax

can be in different computer systems. The λ-tree syntax approach is at the abstract

extreme since it hides away completely the names of bindings and it allows term-level

binding to move into bindings of the surrounding proof state. Techniques that encode

bindings with string names are, in many ways, too concrete. The use of de Bruijn’s

nameless dummies [36] provides some abstraction but often many concrete details

remain to clutter up meaningful semantic specifications. Intermediate approaches are

also possible: for example, the nominal logic approach of Pitts and Gabbay [131,49],

which abstracts away variable names without using the notion of binder mobility, has

successfully been attached to a number of programming languages, logics, and theorem

provers [10,28,132,136,164–166].

13 Conclusions

We have argued that parsing concrete syntax into parse trees does not yield a suffi-

ciently abstract representation of expressions and we have motivated the λ-tree syntax

approach for treating binders more abstractly. For a programming language or proof

assistant to support this level of abstraction in syntax, equality of syntax must be

based on α and at least the β0 subset of β conversion and must allow for the mobility

of binders from within terms to within formulas (i.e., quantifiers) and proof state (i.e.,

35

eigenvariables). We have also argued that the logic programming paradigm—broadly

interpreted—provides an elegant and high-level framework for specifying both compu-

tation and deduction involving syntax containing bindings. This framework is offered

up as an alternative to the more conventional approaches to mechanizing metatheory

using formalizations based on more conventional mathematical concepts. While the

POPLmark challenge was based on the assumption that increments to existing provers

will solve the problems surrounding the mechanization of metatheory, we have argued

against that assumption.

We have described an extension of ETT targeting metatheory and not mathematics.

The resulting logic provides for λ-tree syntax in a direct fashion, via binder-mobility,∇-

quantification, and the unification of λ-terms. Induction over syntax containing bind-

ings is available: in its richest setting, such induction is done over sequent calculus

proofs of typing derivations. The Abella interactive theorem prover, which includes

these logical principles, has been used to capture important aspects of the metatheory

of the λ-calculus, π-calculus, programming languages, and object-logics.

The shift from conventional proof assistants based on functional programming prin-

ciples to assistants based on logic programming principles does disrupt a number of

aspects of proof assistants. For example, when computations are naturally considered

as functional, it seems that there is a loss of expressiveness and effectiveness if one must

write those specifications using relations. Recent work shows, however, that when a re-

lation actually encodes a function, it is possible to use the proof search framework

to actually compute that function [59]. A popular feature of many proof assistants is

the use of tactics and tacticals, which have been implemented using functional pro-

grams since their introduction [65]. There are good arguments, however, that those

operators can be given elegant and natural implementations using (higher-order) logic

programs [39,42,99]. We have tried to argue in this paper that the disruptions that

result from such a shift are well worth exploring.

Finally, we have argued that basic aspects of provers—terms and equality on

them—need to be rethought and re-implemented in order to build a new approach

to proving. During the past 30 years, a number of researchers have been working on

developing the theoretical background and related implementations to help validate

this new approach to theorem proving of metatheory. Two such computer systems,

λProlog and Abella, are highlighted.

Acknowledgments. I thank Gopalan Nadathur and the anonymous reviewers for

their many helpful comments on an earlier draft of this paper. This work was funded

in part by the ERC Advanced Grant ProofCert.

References

1. The Abella prover, 2012. Available at http://abella-prover.org/.
2. S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics in

Functional Programming, pages 65–116. Addison-Welsey, Reading, MA, 1990.
3. Beniamino Accattoli. Proof pearl: Abella formalization of lambda calculus cube prop-

erty. In Chris Hawblitzel and Dale Miller, editors, Second International Conference on
Certified Programs and Proofs, volume 7679 of LNCS, pages 173–187. Springer, 2012.

4. Ki Yung Ahn, Ross Horne, and Alwen Tiu. A Characterisation of Open Bisimilarity
using an Intuitionistic Modal Logic. In Roland Meyer and Uwe Nestmann, editors, 28th
International Conference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 7:1–7:17, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

36

5. Thorsten Altenkirch. A formalization of the strong normalization proof for system F in
LEGO. In Typed Lambda Calculi and Applications (TLCA), volume 664, pages 13–28,
1993.

6. Peter B. Andrews. Resolution in type theory. J. of Symbolic Logic, 36:414–432, 1971.
7. Peter B. Andrews. Provability in elementary type theory. Zeitschrift fur Mathematische

Logic und Grundlagen der Mathematik, 20:411–418, 1974.
8. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Kluwer Academic Publishers, second edition, 2002.
9. Andrew W. Appel and Amy P. Felty. Polymorphic lemmas and definitions in λProlog

and Twelf. Theory and Practice of Logic Programming, 4(1-2):1–39, 2004.
10. Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie

Weirich. Engineering formal metatheory. In 35th ACM Symp. on Principles of Program-
ming Languages, pages 3–15. ACM, January 2008.

11. Brian Aydemir, Stephan A. Zdancewic, and Stephanie Weirich. Abstracting syntax.
Technical Report MS-CIS-09-06, University of Pennsylvania, 2009.

12. Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and
Steve Zdancewic. Mechanized metatheory for the masses: The POPLmark challenge. In
Theorem Proving in Higher Order Logics: 18th International Conference, number 3603
in LNCS, pages 50–65. Springer, 2005.

13. David Baelde. On the expressivity of minimal generic quantification. In A. Abel and
C. Urban, editors, International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP 2008), number 228 in ENTCS, pages 3–19, 2008.

14. David Baelde. Least and greatest fixed points in linear logic. ACM Trans. on Computa-
tional Logic, 13(1), 2:1-2:44, April 2012.

15. David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Al-
wen Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2), 2014.

16. David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. The
Bedwyr system for model checking over syntactic expressions. In F. Pfenning, editor,
21th Conf. on Automated Deduction (CADE), number 4603 in LNAI, pages 391–397,
New York, 2007. Springer.

17. David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In N. Der-
showitz and A. Voronkov, editors, International Conference on Logic for Programming
and Automated Reasoning (LPAR), volume 4790 of LNCS, pages 92–106, 2007.

18. Henk P. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125–154, April 1991.

19. Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In J. Siekmann,
editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages 215–
254. North Holland, 2014.

20. Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program
extraction from normalization proofs. Studia Logica, 82(1):25–49, 2006.

21. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, 2004.

22. Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 457–468. ACM, 2013.

23. Johannes Borgstrom, Ramūnas Gutkovas, Ioana Rodhe, and Björn Victor. The psi-calculi
workbench: A generic tool for applied process calculi. ACM Trans. Embed. Comput. Syst.,
14(1):9:1–9:25, January 2015.

24. P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual.
Centaur: the system. In Third Annual Symposium on Software Development Environ-
ments (SDE3), pages 14–24, Boston, 1988.

25. Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - A functional language
with dependent types. In TPHOLs, volume 5674, pages 73–78. Springer, 2009.

26. Arthur Charguéraud. The locally nameless representation. Journal of Automated Rea-
soning, pages 1–46, May 2011.

27. Kaustuv Chaudhuri, Matteo Cimini, and Dale Miller. A lightweight formalization of the
metatheory of bisimulation-up-to. In Xavier Leroy and Alwen Tiu, editors, Proceedings of
the 4th ACM-SIGPLAN Conference on Certified Programs and Proofs, pages 157–166,
Mumbai, India, January 2015. ACM.

37

28. James Cheney and Christian Urban. Alpha-Prolog: A logic programming language with
names, binding, and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz, editors,
Logic Programming, 20th International Conference, volume 3132 of LNCS, pages 269–
283. Springer, 2004.

29. Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In
James Hook and Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, pages 143–156. ACM, 2008.

30. Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduc-
tion to the Coq Proof Assistant. MIT Press, 2013.

31. Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic Logic,
5:56–68, 1940.

32. Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency workbench:
A semantics-based tool for the verification of concurrent systems. ACM Transactions on
Programming Languages and Systems (TOPLAS), 15(1):36–72, 1993.

33. Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, Laurent Hascoët, and Gilles
Kahn. Natural semantics on the computer. Research Report 416, INRIA, Rocquencourt,
France, June 1985.

34. Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

35. Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
Computation, 76(2/3):95–120, February/March 1988.

36. Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with an application to the Church-Rosser theorem.
Indagationes Mathematicae, 34(5):381–392, 1972.

37. Joëlle Despeyroux, Amy Felty, and Andre Hirschowitz. Higher-order abstract syntax in
Coq. In Second International Conference on Typed Lambda Calculi and Applications,
pages 124–138, April 1995.

38. Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard Lang. Programming
environments based on structured editors: The MENTOR experience. Technical report,
Inria, 1980.

39. Cvetan Dunchev, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing HOL in an
higher order logic programming language. In Gilles Dowek, Daniel R. Licata, and Sandra
Alves, editors, Proceedings of the Eleventh Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, LFMTP 2016, Porto, Portugal, June 23, 2016, pages
4:1–4:10. ACM, 2016.

40. Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: fast,
embeddable, λProlog interpreter. In Martin Davis, Ansgar Fehnker, Annabelle McIver,
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28,
2015, Proceedings, volume 9450 of LNCS, pages 460–468. Springer, 2015.

41. Lars-Henrik Eriksson. Pi: an interactive derivation editor for the calculus of partial induc-
tive definitions. In A. Bundy, editor, Proceedings of the Twelfth International Conference
on Automated Deduction, volume 814 of LNAI, pages 821–825. Springer, June 1994.

42. Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic program-
ming language. In Ninth International Conference on Automated Deduction, number 310
in LNCS, pages 61–80, Argonne, IL, May 1988. Springer.

43. Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming
language. In Mark Stickel, editor, Proceedings of the 1990 Conference on Automated
Deduction, volume 449 of LNAI, pages 221–235. Springer, 1990.

44. Amy Felty and Alberto Momigliano. Hybrid: A definitional two-level approach to rea-
soning with higher-order abstract syntax. J. of Automated Reasoning, 48:43–105, 2012.

45. Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. The next 700 challenge prob-
lems for reasoning with higher-order abstract syntax representations: Part 1–A common
infrastructure for benchmarks. Technical report, Arxiv, 2015.

46. Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. The next 700 challenge problems
for reasoning with higher-order abstract syntax representations: Part 2–A survey. J. of
Automated Reasoning, 55(4):307–372, 2015.

47. Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. Benchmarks for reasoning with
syntax trees containing binders and contexts of assumptions. Mathematical Structures
in Computer Science, 28:1507-1540, 2017.

38

48. M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In 14th
Symp. on Logic in Computer Science, pages 193–202. IEEE Computer Society Press,
1999.

49. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
In 14th Symp. on Logic in Computer Science, pages 214–224. IEEE Computer Society
Press, 1999.

50. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2001.

51. Andrew Gacek. The Abella interactive theorem prover (system description). In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Fourth International Joint Conference
on Automated Reasoning, volume 5195 of LNCS, pages 154–161. Springer, 2008.

52. Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Compu-
tational Systems. PhD thesis, University of Minnesota, 2009.

53. Andrew Gacek. Relating nominal and higher-order abstract syntax specifications. In Pro-
ceedings of the 2010 Symposium on Principles and Practice of Declarative Programming,
pages 177–186. ACM, July 2010.

54. Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic judgments with
recursive definitions. In F. Pfenning, editor, 23th Symp. on Logic in Computer Science,
pages 33–44. IEEE Computer Society Press, 2008.

55. Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information
and Computation, 209(1):48–73, 2011.

56. Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to rea-
soning about computations. J. of Automated Reasoning, 49(2):241–273, 2012.

57. Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935.

58. Gerhard Gentzen. New version of the consistency proof for elementary number theory. In
M. E. Szabo, editor, Collected Papers of Gerhard Gentzen, pages 252–286. North-Holland,
Amsterdam, 1938. Originally published 1938.

59. Ulysse Gérard and Dale Miller. Separating functional computation from relations. In
Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic (CSL 2017), volume 82 of LIPIcs, pages 23:1–23:17, 2017.

60. Ulysse Gérard and Dale Miller. Functional programming with λ-tree syntax: a progress
report. In 13th international Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, Oxford, United Kingdom, July 2018.

61. Jean-Yves Girard. Une extension de l’interpretation de Gödel à l’analyse, et son applica-
tion à l’élimination des coupures dans l’analyse et la théorie des types. In J. E. Fenstad,
editor, 2nd Scandinavian Logic Symposium, pages 63–92. North-Holland, Amsterdam,
1971.

62. Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, February 1992.

63. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte der Mathematischen Physik, 38:173–198, 1931. English
Version in [167].

64. M. J. C. Gordon and T. F. Melham. Introduction to HOL – A theorem proving environ-
ment for higher order logic. Cambridge University Press, 1993.

65. Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of LNCS. Springer, 1979.

66. Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin, Colin Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction: Essays in Honour of Robin
Milner, pages 169–186. MIT Press, 2000.

67. John Hannan. Extended natural semantics. J. of Functional Programming, 3(2):123–152,
April 1993.

68. John Hannan and Dale Miller. From operational semantics to abstract machines. Math-
ematical Structures in Computer Science, 2(4):415–459, 1992.

69. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

70. John Harrison. HOL light: an overview. In International Conference on Theorem Proving
in Higher Order Logics, pages 60–66. Springer, 2009.

71. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Symp. on
Logic in Computer Science, pages 204–213. IEEE Computer Society Press, 1999.

39

72. Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in (co)inductive type
theories. Theoretical Computer Science, 2(253):239–285, 2001.

73. Douglas J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 124(2):103–112, 1996.

74. Gérard Huet. The undecidability of unification in third order logic. Information and
Control, 22:257–267, 1973.

75. Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1:27–57, 1975.

76. Gérard Huet and Bernard Lang. Proving and applying program transformations ex-
pressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

77. Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and
Martin Wirsing, editors, Proceedings of the Symposium on Theoretical Aspects of Com-
puter Science, volume 247 of LNCS, pages 22–39. Springer, March 1987.

78. Jonas Kaiser, Brigitte Pientka, and Gert Smolka. Relating system F and λ2: A case
study in Coq, Abella and Beluga. In Dale Miller, editor, FSCD 2017 - 1st International
Conference on Formal Structures for Computation and Deduction, pages 21:1–21:19,
Oxford, UK, September 2017.

79. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd Symposium on Operating Systems Principles (22nd SOSP’09),
Operating Systems Review (OSR), pages 207–220, Big Sky, MT, October 2009. ACM
SIGOPS.

80. Ulrich Kohlenbach and Paulo Oliva. Proof mining: a systematic way of analysing proofs
in mathematics. Proceedings of the Steklov Institute of Mathematics, 242:136–164, 2003.

81. Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo Support System:
An integrated set of tools for prototyping integrated environments. In Peter Henderson,
editor, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, pages 25–34. ACM Press, November
1988.

82. Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,
2009.

83. Chuck Liang, Gopalan Nadathur, and Xiaochu Qi. Choices in representing and reduction
strategies for lambda terms in intensional contexts. Journal of Automated Reasoning,
33:89–132, 2005.

84. Donald MacKenzie. Mechanizing Proof. MIT Press, 2001.
85. Petar Maksimović and Alan Schmitt. HOCore in coq. In Interactive Theorem Proving -

6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceed-
ings, number 9236 in LNCS, pages 278–293. Springer, 2015.

86. Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes.
Bibliopolis, Napoli, 1984.

87. Raymond McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis,
University of Pennsylvania, December 1997.

88. Raymond McDowell and Dale Miller. A logic for reasoning with higher-order abstract
syntax. In Glynn Winskel, editor, 12th Symp. on Logic in Computer Science, pages
434–445, Warsaw, Poland, July 1997. IEEE Computer Society Press.

89. Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and
induction. Theoretical Computer Science, 232:91–119, 2000.

90. Raymond McDowell and Dale Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Trans. on Computational Logic, 3(1):80–136, 2002.

91. Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.
92. Dale Miller. A logic programming language with lambda-abstraction, function variables,

and simple unification. J. of Logic and Computation, 1(4):497–536, 1991.
93. Dale Miller. Abstract syntax and logic programming. In Logic Programming: Proceedings

of the First Russian Conference on Logic Programming, 14-18 September 1990, number
592 in LNAI, pages 322–337. Springer, 1992.

94. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

95. Dale Miller. Bindings, mobility of bindings, and the ∇-quantifier. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, 18th International Conference on Computer Science Logic
(CSL) 2004, volume 3210 of LNCS, page 24, 2004.

40

96. Dale Miller. Finding unity in computational logic. In Proceedings of the 2010 ACM-
BCS Visions of Computer Science Conference, ACM-BCS ’10, pages 3:1–3:13. British
Computer Society, April 2010.

97. Dale Miller and Gopalan Nadathur. Higher-order logic programming. In Ehud Shapiro,
editor, Proceedings of the Third International Logic Programming Conference, pages
448–462, London, June 1986.

98. Dale Miller and Gopalan Nadathur. A logic programming approach to manipulating
formulas and programs. In Seif Haridi, editor, IEEE Symposium on Logic Programming,
pages 379–388, San Francisco, September 1987.

99. Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012.

100. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as
a foundation for logic programming. Annals of Pure and Applied Logic, 51(1–2):125–157,
1991.

101. Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop formulas and
uniform proof systems. In David Gries, editor, 2nd Symp. on Logic in Computer Science,
pages 98–105, Ithaca, NY, June 1987.

102. Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM Computing
Surveys, 31, September 1999.

103. Dale Miller and Alwen Tiu. A proof theory for generic judgments: An extended abstract.
In Phokion Kolaitis, editor, 18th Symp. on Logic in Computer Science, pages 118–127.
IEEE, June 2003.

104. Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. on
Computational Logic, 6(4):749–783, October 2005.

105. Dale A. Miller, Eve Longini Cohen, and Peter B. Andrews. A look at TPS. In Donald W.
Loveland, editor, Sixth Conference on Automated Deduction, volume 138 of LNCS, pages
50–69, New York, 1982. Springer.

106. Robin Milner. Communication and Concurrency. Prentice-Hall International, 1989.
107. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Part

I. Information and Computation, 100(1):1–40, September 1992.
108. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Part

II. Information and Computation, 100(1):41–77, 1992.
109. Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile processes.

Theoretical Computer Science, 114(1):149–171, 1993.
110. Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.
111. John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus.

Annals of Pure and Applied Logic, 51(1-2):99–124, 1991.
112. Alberto Momigliano, Brigitte Pientka, and David Thibodeau. A case-study in program-

ming coinductive proofs: Howe’s method. Submitted, 2017.
113. J. Strother Moore. A mechanically verified language implementation. J. of Automated

Reasoning, 5(4):461–492, 1989.
114. Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International

Logic Programming Conference, pages 810–827, Seattle, August 1988. MIT Press.
115. Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus — A compiler and

abstract machine based implementation of λProlog. In H. Ganzinger, editor, 16th Conf.
on Automated Deduction (CADE), number 1632 in LNAI, pages 287–291, Trento, 1999.
Springer.

116. Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalization
of environments. Theoretical Computer Science, 198(1-2):49–98, 1998.

117. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual model type
theory. ACM Trans. on Computational Logic, 9(3):1–49, 2008.

118. Adam Naumowicz and Artur Korni lowicz. A brief overview of Mizar. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving in
Higher Order Logics, volume 5674 of LNCS, pages 67–72, 2009.

119. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer, 2002.

120. Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s
type theory : an introduction. International Series of Monographs on Computer Science.
Oxford: Clarendon, 1990.

121. Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of Logic
Programming, 3:237–258, 1986.

41

122. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS.
Springer Verlag, 1994.

123. Lawrence C. Paulson. A generic tableau prover and its integration with isabelle. J. UCS,
5(3):73–87, 1999.

124. Alan J. Perlis. Epigrams on programming. ACM SIGPLAN Notices, pages 7–13, Septem-
ber 1982.

125. Frank Pfenning. Elf: A language for logic definition and verified metaprogramming. In
4th Symp. on Logic in Computer Science, pages 313–321, Monterey, CA, June 1989.

126. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the
ACM-SIGPLAN Conference on Programming Language Design and Implementation,
pages 199–208. ACM Press, June 1988.

127. Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive
systems. In Proceedings of the 1992 Conference on Automated Deduction, number 607
in LNCS, pages 537–551. Springer, June 1992.

128. Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-logical
framework for deductive systems. In H. Ganzinger, editor, 16th Conf. on Automated
Deduction (CADE), number 1632 in LNAI, pages 202–206, Trento, 1999. Springer.

129. Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and rea-
soning with deductive systems (system description). In J. Giesl and R. Hähnle, editors,
Fifth International Joint Conference on Automated Reasoning, number 6173 in LNCS,
pages 15–21, 2010.

130. Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Cătălin Hricu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey.
Programming Language Foundations, volume 2 of Software Foundations. Online, 2010.

131. A. M. Pitts and M. J. Gabbay. A Metalanguage for Programming with Bound Names
Modulo Renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program
Construction. 5th International Conference, MPC2000, Ponte de Lima, Portugal, July
2000. Proceedings, volume 1837 of LNCS, pages 230–255. Springer, Heidelberg, 2000.

132. Andrew M. Pitts. Nominal logic, A first order theory of names and binding. Information
and Computation, 186(2):165–193, 2003.

133. Andrew M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):459–506,
2006.

134. Gordon D. Plotkin. A structural approach to operational semantics. J. of Logic and
Algebraic Programming, 60-61:17–139, 2004.

135. The POPLmark Challenge webpage. http://www.seas.upenn.edu/~plclub/poplmark/,
2015.

136. François Pottier. Static name control for FreshML. In 22nd Annual IEEE Symposium
on Logic in Computer Science (LICS 2007), pages 356–365. IEEE, 2007.

137. Damien Pous. Weak bisimulation upto elaboration. In C. Baier and H. Hermanns, editors,
CONCUR, volume 4137 of LNCS, pages 390–405. Springer, 2006.

138. Damien Pous. Complete lattices and upto techniques. In Zhong Shao, editor, APLAS,
volume 4807 of LNCS, pages 351–366, Singapore, November 2007. Springer.

139. Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof method. In
Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coin-
duction, pages 233–289. Cambridge University Press, 2011.

140. Dag Prawitz. Hauptsatz for higher order logic. Journal of Symbolic Logic, 33:452–457,
1968.

141. Xiaochu Qi, Andrew Gacek, Steven Holte, Gopalan Nadathur, and Zach Snow. The
Teyjus system – version 2, 2015. http://teyjus.cs.umn.edu/.

142. C. Röckl, D. Hirschkoff, and S. Berghofer. Higher-order abstract syntax with induction
in Isabelle/HOL: Formalizing the pi-calculus and mechanizing the theory of contexts. In
F. Honsell and M. Miculan, editors, Proc. FOSSACS’01, volume 2030 of LNCS, pages
364–378. Springer, 2001.

143. Davide Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical
Computer Science, 167(2):235–274, 1996.

144. Davide Sangiorgi and David Walker. π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

145. Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, 8th Symp.
on Logic in Computer Science, pages 222–232. IEEE Computer Society Press, IEEE,
June 1993.

42

146. Carsten Schürmann and Frank Pfenning. Automated theorem proving in a simple meta-
logic for LF. In Claude Kirchner and Hélène Kirchner, editors, 15th Conf. on Automated
Deduction (CADE), volume 1421 of Lecture Notes in Computer Science, pages 286–300.
Springer, 1998.

147. Helmut Schwichtenberg. MINLOG reference manual. LMU München, Mathematisches
Institut, Theresienstraße, 39, 2011.

148. Dana Scott. Outline of a mathematical theory of computation. In Proceedings, Fourth
Annual Princeton Conference on Information Sciences and Systems, pages 169–176.
Princeton University, 1970. Also, Programming Research Group Technical Monograph
PRG–2, Oxford University.

149. Peter Selinger. The lambda calculus is algebraic. Journal of Functional Programming,
12(6):549–566, 2002.

150. Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge,
Susmit Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working semanticist.
Journal of Functional Programming, 20(01):71–122, 2010.

151. Zachary Snow, David Baelde, and Gopalan Nadathur. A meta-programming approach to
realizing dependently typed logic programming. In Temur Kutsia, Wolfgang Schreiner,
and Maribel Fernández, editors, ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming (PPDP), pages 187–198, 2010.

152. Mary Southern and Kaustuv Chaudhuri. A two-level logic approach to reasoning about
typed specification languages. In Venkatesh Raman and S. P. Suresh, editors, 34th In-
ternational Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), volume 29 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 557–569, New Delhi, India, December 2014. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

153. Mary Southern and Gopalan Nadathur. A λProlog based animation of Twelf speci-
fications. The International Colloquium on Implementation of Constraint and Logic
Programming Systems (CICLOPS), 2014.

154. Aaron Stump. Verified functional programming in Agda. Morgan & Claypool, 2016.
155. Moto-o Takahashi. A proof of cut-elimination theorem in simple type theory. Journal of

the Mathematical Society of Japan, 19:399–410, 1967.
156. Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis,

Pennsylvania State University, May 2004.
157. Alwen Tiu. Model checking for π-calculus using proof search. In Mart́ın Abadi and Luca

de Alfaro, editors, Proceedings of CONCUR’05, volume 3653 of LNCS, pages 36–50.
Springer, 2005.

158. Alwen Tiu. A logic for reasoning about generic judgments. In A. Momigliano and
B. Pientka, editors, Int. Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP’06), volume 173 of ENTCS, pages 3–18, 2006.

159. Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. ACM Trans. on Computational Logic, 11(2), 2010.

160. Alwen Tiu and Alberto Momigliano. Cut elimination for a logic with induction and
co-induction. Journal of Applied Logic, 10(4):330–367, 2012.

161. Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success and finite failure in
an automated prover. In Empirically Successful Automated Reasoning in Higher-Order
Logics (ESHOL’05), pages 79–98, December 2005.

162. Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: An equivalence checker for security
protocols. In Atsushi Igarashi, editor, Programming Languages and Systems: 14th Asian
Symposium, APLAS 2016, Hanoi, Vietnam, November 21 - 23, 2016, Proceedings, pages
87–95. Springer International Publishing, 2016.

163. Mads Tofte. Type inference for polymorphic references. Information and Computation,
89:1–34, 1990.

164. Christian Urban. Nominal reasoning techniques in Isabelle/HOL. Journal of Automated
Reasoning, 40(4):327–356, 2008.

165. Christian Urban, James Cheney, and Stefan Berghofer. Mechanizing the metatheory of
LF. ACM Transactions on Computational Logic (TOCL), 12(2):15, 2011.

166. Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL. In
R. Nieuwenhuis, editor, 20th Conf. on Automated Deduction (CADE), volume 3632 of
LNCS, pages 38–53. Springer, 2005.

167. Jean van Heijenoort. From Frege to Gödel: A Source Book in Mathematics, 1879-1931.
Source books in the history of the sciences series. Harvard Univ. Press, Cambridge, MA,
3rd printing, 1997 edition, 1967.

43

168. Myra VanInwegen. The Machine-Assisted Proof of Programming Language Properties.
PhD thesis, University of Pennsylvania, May 1996.

169. Björn Victor and Faron Moller. The mobility workbencha tool for the π-calculus. In
Computer Aided Verification, pages 428–440. Springer, 1994.

170. Yuting Wang. A Higher-Order Abstract Syntax Approach to the Verified Compilation of
Functional Programs. PhD thesis, University of Minnesota, December 2016.

171. Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur. Reasoning
about higher-order relational specifications. In Tom Schrijvers, editor, Proceedings of the
15th International Symposium on Princples and Practice of Declarative Programming
(PPDP), pages 157–168, Madrid, Spain, September 2013.

172. Yuting Wang and Gopalan Nadathur. A higher-order abstract syntax approach to ver-
ified transformations on functional programs. In Peter Thiemann, editor, Programming
Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture
Notes in Computer Science, pages 752–779. Springer, 2016.

