
MFPS XX1 Preliminary Version

A game semantics for proof search:
Preliminary results 1

Dale Miller and Alexis Saurin 2

INRIA-Futurs and École Polytechnique
Palaiseau, France

Abstract

We describe an ongoing project in which we attempt to describe a neutral approach
to proof and refutation. In particular, we present a language of neutral expressions
which contains one element for each de Morgan pair of connectives in (linear) logic.
Our goal is then to describe, in a neutral fashion, what it means to prove or refute.
For this, we use games where moves are described as transitions between positions
built with neutral expressions. In some settings, we can then relate winning a game
with provability or with validity.

Key words: proof theory, game semantics, neutral approach to
proof and refutation.

1 Introduction

Connections between games and logic are rather old and numerous [13]. Dia-
log games support the intuitive ideal that if one has a proof of a proposition,
one can always win against an opponent attempting to attack that proposi-
tion [6,16]. In the domain of linear logic, various categories of games have
been designed to give an abstract meaning to proofs and to proof normaliza-
tion [1,4,10,14]. We will be interested in linear logic here as well but from
the computation-as-proof-search perspective [19]. As is often the case, the
goals and semantics of proof search and proof normalization are quite differ-
ent. Loddo studied in his PhD thesis [15] connections between game theory
and Prolog computation (as well as CLP computation) while Pym and Ritter
studied recently [21] connections between games theory and proof search, but
our approach differs significantly from both of these works and comparisons
are difficult to draw.

1 This paper is an improved and corrected version of a paper presented at the workshop
GaLoP’05. We are grateful for the support of the ACI grants GEOCAL and Rossignol.
2 Email: dale [at] lix.polytechnique.fr and saurin [at] lix.polytechnique.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Miller and Saurin

We attempt to use games to provide a neutral approach to proof and
refutation. Consider, for example, that we are given a (Horn clause) logic
program P, and a query G. If P is a noetherian program, we expect an
attempt to prove G in Prolog to return either a finite success or a finite
failure. In the first case, we have a proof of G from P and in the second case
we have a proof of ¬G from (the completion of) P. This simple observation
is an interesting challenge to the basic premise of proof search. That is, proof
search tells us to establish first what we plan to prove, namely, either G or
¬G, and then to set about to prove that. Our (idealized) Prolog interpreter,
however, does one computation and concludes afterwords with either a proof
of G or a proof of ¬G. This suggests that there might be a neutral approach
to understanding proof search more generally.

We formalize this neutral approach to proof and refutation with Horn
clauses in Sections 2 and 3 by introducing a language of neutral expressions
which contains one constructor for each de Morgan pair of connectives in (lin-
ear) logic. Horn clauses are flat and represent only one “phase” in a compu-
tation: they support no alternation in polarities. In Section 4, we extend the
language of neutral expressions to include a “switch” operator that specifies
that its argument expression is to be processed by the other player allowing
the mixing of polarities and identify the class of simple expressions for which
game playing has a simpler and more manageable structure. In Section 5, we
present examples of simple expressions and their games and relate winning
strategies to proofs within a propositional setting. Section 6 shows that Hin-
tikka’s games for determining truth are captured by purely additive games.
Sections 7 and 8 discuss possible extensions to games and other future work.

2 Horn clauses and Prolog revisited

A Horn clause (in the iff-form) for the predicate p is a first-order formula

∀x1 . . .∀xn[p(x1, . . . , xn) ≡ G]

where n ≥ 0, p is an n-ary predicate symbol, and the clause’s body, G, is a
Horn clause goal formula whose free variables are in {x1, . . . , xn} and which
is built following grammar

G ::= > | ⊥ | A | G ∧ G | G ∨ G | ∃x G.

The syntactic variable A denotes atomic formulas: that is, a formula with a
predicate (a non-logical constant) as its head: the formulas ⊥ and > are not
atomic formulas since their top-level symbol will be defined using logic.

A Horn program is a finite set P of Horn clauses all for distinct predicates.
If we define p ≺ q for two predicates when q appears in the body of the Horn
clause for p, then P is noetherian if the transitive closure of ≺ is acyclic. Notice
that when P is noetherian, it can be rewritten to a logically equivalent logic

2

Miller and Saurin

program P ′ for which the relation ≺ is empty: that is, there are no atomic
formulas in the body of clauses in P ′. In noetherian programs, atoms are not
necessary.

One approach to the foundations of logic programming is based on proof
search in which computation is modeled by the search for a cut-free (and goal-
directed) proof of a given sequent [19]. As search progresses, the sequents for
which proofs are attempted change and this change represents the dynamics
of the computation modeled. Such a view of logic programming has been been
productive and has allowed the development of a number of logic programming
languages based on logics other than first-order classical logic.

The following observation appears, however, to be an interesting challenge
to this approach to logic programming. Consider a simple “logic engine”
that will attempt to prove a given goal G from a given Horn clause program,
and assume that this engine is also complete for noetherian programs (many
Prolog systems are examples of such engines). Thus, when given the goal
G and a noetherian program P, such an engine will return either yes or
no. The proof search interpretation of these responses is clear: yes means
that a proof of G has been found from P and no means that no such proof
exists. But another interpretation of no is that a proof of ¬G has been found
from P. This is the basic idea of the “negation by failure” approach in logic
programming which has been formalized in proof theory thanks to the artifact
of definitions [11,18,8]. Thus, we can say that Prolog has either proved G or
refuted G.

Thus the challenge to proof search is this: as just described, Prolog did
one computation, evidentially not committing to proving or refuting, and that
computation provided implicitly the proof of G or the refutation of G (that
is, a proof of ¬G). Proof search, however, assumes instead that one fixes at
the beginning a sequent to be proved and that the failed attempt to prove,
say, −→ G is not a proof of G −→ ⊥. A natural question then is to develop
this theme of neutral computation behind proof search and to see if we can
generalize it beyond the (too) simple setting of first-order Horn clauses.

3 Neutral expressions

Given the motivation above, when we start a search with, say, the goal G1∧G2,
we do not know if we will eventually be proving a conjunction or its de Morgan
dual, the disjunction ¬G1 ∨ ¬G2. Similarly, if we start the search with the
existential quantifier ∃x.G, we do not know if we will eventually be proving
an existential or a universal (∀x¬G). Thus, we introduce a new language of
neutral expressions on which to conduct search.

Neutral expressions are given using the following syntax.

N ::= 00 |
�
|

·
p t1 . . . tn | N + N | N × N | Qx.N

3

Miller and Saurin

Here, 00 and
�

are the units of + and ×, respectively. The variable x in the
expression Qx.N is bound in the scope of N : usual rules for bound variables
in syntax are assumed. When we translate neutral expressions back to logic,

the neutral expression constructor
·
p of arity n will correspond to the predicate

p of the same arity.

A first-order model M is defined in the usual way: we write |M| for the
domain of quantification of the model and we shall assume that for every
c ∈ |M| there is a parameter c̄ in the language of the logic. Function sym-
bols will be interpreted in the model is the obvious way: the function symbol
f is interpreted as the function fM such that the term f(t1, . . . , tn) is in-
terpreted as fM(tM1 , . . . , tMn). An atomic formula p(t1, . . . , tn) is true if the
n-tuple 〈tM1 , . . . , tMn 〉 is a member of the n-ary relation that M provides for
the predicate p.

A model of particular interest for us is the Herbrand model for signature
Σ: this is a model HΣ such that |HΣ| is the set of closed terms built from Σ
and in which the sole predicate that is interpreted is equality: HΣ |= t = s
if and only if t and s are identical closed terms. In such a model, there is no
need to distinguish between c and c̄.

Multisets of neutral expressions can be rewritten nondeterministically as
follows. Given a model M, the binary relation 7→ between finite multisets of
neutral expressions is given as follows:

�
, Γ 7→ Γ N × M, Γ 7→ N, M, Γ

N + M, Γ 7→ N, Γ Qx.N, Γ 7→ N [c̄/x], Γ, where c ∈ |M|

N + M, Γ 7→ M, Γ
·
p(t1, . . . , tn), Γ 7→ Γ, where M |= p(t1, . . . , tn)

Let 7→∗ be the reflective and transitive closure of 7→. If we consider the size
of a multiset of neutral expressions to be the total number of occurrences of
constructors in expressions in that multiset, then the size of multisets decreases
as they are rewritten. As a result, rewriting always terminates. Rewriting can
also be infinitely branching given the rule for Q and the assumption that there
are infinitely many closed terms t.

We shall be interested in whether or not an expression N (considered as

a singleton multiset) rewrites (via 7→∗) to {}. If 00 ∈ Γ or if
·
p(t1, . . . , tn) ∈ Γ

where p(t1, . . . , tn) is false in M then Γ cannot reduce to {}.
In Figure 1, the positive and negative translations of neutral expressions

into logic are provided. Notice that the only logical connectives in the range
of [·]+ are positive (synchronous), while those in the range of [·]− are negative
(asynchronous), using the terminology of, say, [3,9].

In order to state a formal connection between the multiset rewriting above
and provability, we introduce a proof system for first-order MALL (multiplica-
tive, additive, linear logic) with equality. This proof system is the standard
one-sided presentation [7] for the propositional connectives and for the quan-
tifiers (∀ introduction, for example, employs eigenvariables in the usual way).
In order to deal with equality, however, we use the following inference rules,

4

Miller and Saurin

N [N]+ [N]−

00 0 >
�

1 ⊥
·
p(t1, . . . , tn) p(t1, . . . , tn) ¬p(t1, . . . , tn)

N1 + N2 [N1]
+ ⊕ [N2]

+ [N1]
− & [N2]

−

N1 × N2 [N1]
+ ⊗ [N2]

+ [N1]
− ..

..

........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. [N2]
−

Qx.N ∃x.[N]+ ∀x.[N]−

Fig. 1. Translations of neutral expressions.

which have been developed in a number of recent papers [5,8,17,23]:

− t = t
− ∆θ

− ¬(t = s), ∆
†

− ¬(t = s), ∆
‡

The proviso † requires that t and s are unifiable and θ is their most general
unifier (∆θ is the multiset resulting from applying θ to all formulas in ∆).
The proviso ‡ requires that t and s are not unifiable. The free variables of a
sequent are also called eigenvariables.

Notice that the equality rule with success of unification is treated multi-
plicatively while failed unification is treated additively (third rule). Notice
moreover that each case of application of a rule corresponds to a unit of linear
logic: the rule for the success of equality corresponds to 1 while the rule for
the success of inequality corresponds to ⊥. On the other hand, the rule for
the failure of inequality corresponds to the > rule while the (absence of) rule
for the failure of equality corresponds to the (absence of) rule for 0.

A slight novelty of our proof system for MALL is that we do not need the
cut rule (since it is admissible for the usual reasons) and we do not need the
initial rule. This last result is slightly more surprising since usually the best
one can do in getting rid of the initial rule is to use it only for atomic formu-
las. But since we have introductions for equality and not other predicates are
assume in this version of MALL with equality, there are no atoms: hence, the
initial rule is not needed at all. The fact that we can actually use a proof with-
out cut and initial is important for our exercise here since those are the only
two rules that mention the same formula twice and at two different polarities.
In the game setting, the thing that corresponds most closely to inference rules
is the non-deterministic rewriting of expressions, and such rewritings are free
of reference to polarities.

Proposition 3.1 Let Σ be a fixed signature and assume that multiset rewrit-
ing is defined for HΣ. Let N be a neutral expression over Σ and

·
= and assume

provability is for first-order MALL over equality. If N 7→∗ {} then ` [N]+. If
N cannot be rewritten to {} then ` [N]−.

5

Miller and Saurin

Proof. Let k ≥ 0 and define 7→k to be the k-fold join of 7→ (in particu-
lar, 7→0 is multiset equality). We prove by induction on k that if n ≥ 0
and {N1, . . . , Nn} 7→k {} then for all j ∈ {1, . . . , n}, ` [Nj]

+. If k = 0
then n = 0 then the conclusion is immediate. Assume that k > 0 and that
{N1, . . . , Nn} 7→k {}. Consider the cases for the first step of this rewriting.
The result follows easily by noticing that the rewriting rules for neutral ex-
pressions correspond to right-introduction rules for their positive translations.

Next we show that by induction on the size of multisets of neutral expres-
sions (where one counts the number of occurrences of constructors of such
expressions as their size) that if {N1, . . . , Nn} is a multiset of open neutral
expressions, all of whose free variables are in the set V, and for every ground
substitution θ with domain containing V, we have {N1θ, . . . , Nnθ} 67→ {} then
`V [N1]

−, . . . , [Nn]−. This invariant makes the rule for the quantifier im-
mediate. The main interesting case is the rule for equality. Assume that
N1 is t

·
= s and that for every ground substitution θ, we have that {tθ

·
=

sθ, N2θ, . . . , Nnθ} 67→ {}. Now either t and s are unifiable or not. If they are not
unifiable, there there is an immediate proof of `V ¬(t = s), [N2]

−, . . . , [Nn]−

by using the equality proof rule marked with ‡. If t and s are unifiable, let
σ be a unifier for them. The sequent `V ¬(t = s), [N2]

−, . . . , [Nn]− is prov-
able using the equality proof rule marked with † if we can show that the
sequent `V ′ [N2σ]−, . . . , [Nnσ]− is provable. Here, V ′ is results from V be
removing members of the domain of σ and adding variables that are free in
the range of σ. To prove this, let ρ be any ground substitution for the do-
main V ′ and show that {(N2σ)ρ, . . . , (Nnσ)ρ} 67→ {}. If there was, in fact,
a path from {(N2σ)ρ, . . . , (Nnσ)ρ} to {}, then there would be a path from

{(tσ)ρ
·
= (sσ)ρ, (N2σ)ρ, . . . , (Nnσ)ρ}. But this is a contradiction since σ◦ρ is a

closed substitution for V. Since {(N2σ)ρ, . . . , (Nnσ)ρ} 67→ {} and this multiset
is smaller, we know by the inductive assumption, that `V ′ [N2σ]−, . . . , [Nnσ]−

and, hence, so too is `V ¬(t = s), [N2]
−, . . . , [Nn]−. 2

We have now successfully characterized a neutral approach to proof search
in the noetherian Horn clause setting. The neutral computation involves the
search of the non-deterministic multiset rewriting tree. If the empty multi-
set is found, then a proof of a positive translation has been found; in fact,
the rewritings along the path to the empty multiset can be used directly to
build the proof. If, on the other hand, the search completes without finding
the empty multiset, then the entire search tree is used to build the proof of
the negative translation. This search in the rewriting tree can make use of
variables and unification in order to avoid infinitely branching search. As a
result, it is decidable whether or not a given expression can be rewritten to
the empty multiset.

Notice that we have started with Horn clause logic which allowed for only
two propositional connectives, ∧ and ∨, and then ended with a proposition
involving four connectives. If one thinks of Horn clauses truth functionally
this seems odd since the set {∧,∨} is closed by taking de Morgan duals. A

6

Miller and Saurin

standard proof search analysis of Horn clauses embedded within linear logic
maps classical conjunction ∧ to ⊗ and the classical disjunction to ⊕ (see, for
example, [12, Section 4]): their duals are thus two additional connectives ..

..

........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ and
&. In this way, the four binary connectives used in Figure 1 are anticipated.

4 Neutral expressions for two players

The output of [·]+ contains only synchronous connectives and the output of
[·]− contains only asynchronous connectives. So far, there is no accounting
for formulas containing both kinds of connectives. To account for formulas in
which polarities can switch from one of these kinds to the other, we will add
to the language of neutral expressions an operator that switches polarity: in
particular, the language of neutral expressions is extended as follows

N ::= . . . | lN.

If Γ is the multiset {N1, . . . , Nn} then lΓ is the multiset {lN1, . . . , lNn}
(n ≥ 0). The functions for translating neutral expressions into formulas are
extended in the obvious way: [lN]− = [N]+ and [lN]+ = [N]−. Notice that
adding this operator is close to the standard approach in games theory in
which the difference between the two players is not in the rules they can apply
but their alternation during plays.

In the non-deterministic rewriting of neutral expressions, a switched ex-
pression does not rewrite. Such expressions represent expressions that are to
be given to the other player to rewrite. To be more precise, we shall consider
the question of whether or not the expression N can be rewritten to a set of
the form lΓ. Such rewritings mean that the current player has successfully
completed all of her rewritings and is prepared to offer to the next player the
expressions in Γ on which to work.

A useful measure of a neutral expression is the maximum number of
switched expressions that it can yield on some non-deterministic rewriting.
Consider the function \(N) from an expression N to a natural number defined
as follows: \(00) = \(

�
) = \(A) = 0 for any atomic expression A; \(lN) = 1;

\(Qx.N) = \(N); \(N1 + N2) = max(\(N1), \(N2)); and \(N1 ×N2) = \(N1) +
\(N2). An expression N is simple if \(N) ≤ 1 and for every subexpression lN ′

of N , N ′ is simple. A multiset {N1, . . . , Nk} (where k ≥ 0) of expressions is
simple if N1 × · · · × Nk is simple. Clearly, for any expression N , \(N) = 0 if
and only if N does not contain a switch. Alternatively, simple expressions can
be defined by the grammar:

Z ::= A | 00 |
�
| Z + Z | Z × Z | Qx.Z

S ::= Z | S + S | Z × S | S × Z | Qx.S | lS,

where A, S, and Z are syntactic variables ranging over atomic expressions,
simple expressions, and expressions without occurrences of l, respectively.

7

Miller and Saurin

Lemma 4.1 Let Γ be a simple multiset. If Γ 7→ ∆ then ∆ is simple. If
Γ 7→∗ l∆ then ∆ is simple and contains at most one element.

5 Games for simple expressions

We first present some basic notions of games as they will be applied here. Let
P be a set of positions and let ρ be a binary relationship on P that describes
moves from one position to another. The pair 〈P, ρ〉 is an arena. A play is
a sequence P1.P2.Pn of ρ-related moves: that is, for all i = 0, . . . , n − 1,
Pi ρ Pi+1. For now we shall assume that ρ is noetherian: no infinite plays are
possible. If σ is a set of plays then the set σ/N is defined to be {S | N.S ∈ σ}.

A ∀∃-strategy for N is a prefixed closed set σ of plays such that N ∈ σ and
for all M such that N ρ M , the set σ/N is a ∃∀-strategy for M . A ∃∀-strategy
for N is a prefixed closed set σ of plays such that N ∈ σ and for at most one
position M such that N ρ M , the set σ/N is a ∀∃-strategy for M . Notice
that if σ is a strategy for N (∀∃-strategy or ∃∀-strategy) then σ/N may be
empty (that is, σ = {N}) but for different reasons: if σ is a ∀∃-strategy, then
σ/N may be empty only if there is no M such that N ρ M while if σ is an
∃∀-strategy, σ/N may be empty for arbitrary positions.

A winning ∀∃-strategy σ is a ∀∃-strategy such that all maximal sequences
in σ are of odd length (i.e., contain an even number of moves). A winning
∃∀-strategy σ is a ∀∃-strategy such that all maximal sequences in σ are of
even length (i.e., contain an odd number of moves). We shall sometimes call a
winning ∀∃-strategy (resp. a winning ∃∀-strategy) a ∀∃-win (resp., ∃∀-win).

We do not name our players as the opponent and the player but prefer
instead to name them more symmetrically as the current player and the other
player. Elsewhere, a ∀∃-strategy is called simply a strategy and ∃∀-strategy
is called a counter-strategy.

We consider games based on simple expressions in this paper. Games based
on non-simple expressions is a subject for future work (see Section 7.1).

Let the set of positions P be the set of neutral expressions. The move
relation, ρ, is defined as the smallest relation such that N ρ 00 if N 7→∗ {} and
N ρ M if N 7→∗ {lM}. We now consider the nature of winning ∀∃-strategies
and winning ∃∀-strategies based on this move relation.

If N does not contain l then there is either no move from N or the only
move possible is to 00. In the first case, there exists a winning ∀∃-strategy for
N . In the second case, there is a winning ∃∀-strategy for N (since the second
player can make no move from 00).

Since all plays are finite and all terminal positions for a game are clas-
sified as a win for one player or the other, games for simple expressions are
determinate: that is, given a simple expression N , there is either a winning
∀∃-strategy or a winning ∃∀-strategy for N .

The following two examples assume that the first-order model used to
determine games is the Herbrand universe over a signature containing the

8

Miller and Saurin

constants z and s(·) (used to encode non-negative integers).

Example 5.1 We code the natural numbers z, s(z), s(s(z)), . . . using zero and
successor. Let A be the finite set {n1, . . . , nk} of natural numbers. The ex-

pression x
·
= n1 + · · ·+ x

·
= nk with one free variable encodes the extension of

this set and is denoted as A(x). Notice that n ∈ A if and only if the expression
A(n) has a winning ∃∀-strategy. In that case, the positive translation of this
expression is provable: (n = n1) ⊕ · · · ⊕ (n = nk). Furthermore, n is not in
A if and only if the expression A(n) has a winning ∀∃-strategy. In that case,
the negative translation is provable: ¬(n = n1) & · · · & ¬(n = nk). If A(x)
and B(x) are two expressions encoding the two finite sets of natural numbers
A and B, then the expressions A(x) + B(x) and A(x) × B(x) encode in the
same way the intersection and union, respectively, of the sets A and B.

Example 5.2 Let A(x) and B(x) be two expressions encoding the extension
of two finite sets of natural numbers A and B. The expression Qx.(A(x) ×
lB(x)) will be denoted by A ⊆ B. Let P be the set {z, s(s(z))} and let Q be
the set {z, s(z), s(s(z))}. It is easy to check that the simple expression labeled
P ⊆ Q, namely,

Qx.([(x
·
= z) + (x

·
= s(s(z)))] × l[(x

·
= z) + (x

·
= s(z)) + (x

·
= s(s(z)))])

has a winning ∀∃-strategy, and the following (equivalent) formulas (its nega-
tive translation) are provable:

∀x.([¬(x = z) & ¬(x = s(s(z)))] ..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ [(x = z) ⊕ (x = s(z)) ⊕ (x = s(s(z)))])

∀x.([(x = z) ⊕ (x = s(s(z)))] −◦ [(x = z) ⊕ (x = s(z)) ⊕ (x = s(s(z)))]).

Similarly, the simple expression labeled Q ⊆ P , namely,

Qx.([(x
·
= z) + (x

·
= s(z)) + (x

·
= s(s(z)))] × l[(x

·
= z) + (x

·
= s(s(z)))])

has a winning ∃∀-strategy, and its positive translation is also provable:

∃x.([(x = z) ⊕ (x = s(z)) ⊕ (x = s(s(z)))] ⊗ [¬(x = z) & ¬(x = s(s(z)))]).

Notice that the use of names to denote expressions in the examples above
are mathematic-level conveniences. We are avoiding here an explicit formal
treatment of definitions in this context, although the approach of, say, [17]
should apply here as well.

Figure 2 presents a straightforward translation [F]n of MALL-formula F
into neutral expressions. This translation is a kind of converse to the transla-
tion given in Figure 1 and is used in the following Proposition.

This proposition extends the result of Proposition 3.1 to the case of simple
expressions without quantification and atoms.

Proposition 5.3 Let N be a simple expression involving no quantification
nor atoms. If there is a winning ∀∃-strategy for N then ` [N]−. If there is a

9

Miller and Saurin

[F]n = [F]n− if F is negative.
[F]n = [F]n+ if F is positive.

• [F]n− = l[F]n+ for F positive.

• [>]n− = 00

• [⊥]n− =
�

• [A ..
..
........
..
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ B]n− = [A]n− × [B]n−

• [A & B]n− = [A]n− + [B]n−

• [∀x.A]n− = Qx.[A]n−

• [¬p(t1, . . . , tn)]n− =
·
p(t1, . . . , tn)

• [F]n+ = l[F]n− for F negative.

• [0]n+ = 00

• [1]n+ =
�

• [A ⊗ B]n+ = [A]n+ × [B]n+

• [A ⊕ B]n+ = [A]n+ + [B]n+

• [∃x.A]n+ = Qx.[A]n+

• [p(t1, . . . , tn)]n+ =
·
p(t1, . . . , tn)

Fig. 2. Translation from MALL formula to a neutral expression.

winning ∃∀-strategy for N then ` [N]+. More precisely, one can build a proof
from a winning strategy. Conversely, let F be a MALL formula built using
only units and binary connectives such that [F]n is a simple expression. If
` F and F is positive (resp. negative) then [F]n has a winning ∃∀-strategy
(resp. ∀∃-strategy).

Proof. Given a winning strategy (of any kind: ∀∃-win or ∃∀-win) we build by
induction a proof for either ` [N]− or ` [N]+ depending on the sort of strategy
we have. Notice that in winning strategies all the branches have same parity.
We thus reason on the length of the largest branch in the strategy, which we
refer to as the size of the strategy.

Base case: strategy σ has size 0. We are trying to build a proof for ` [N]−

given that σ is a ∀∃-win. Thus N is such that N 67→∗ lM nor N 67→∗ {},
that is any maximal internal derivation from N ends up with a multiset of
expressions that contains some non-switched expressions and which cannot be
rewritten (by maximality). These multisets are made of possibly one switched
expression (but not more because N is simple) and of at least one 00: they
are the only kind of multiset that cannot be rewritten and that are not legal
positions: {(lM), 00, . . . , 00}.

Since ` [N]− is a negative sequent, it is possible to generate part of a
proof tree by applying negative logical rules in any order up to a point where
no negative rule can be applied (with the additional constraint that the >
rule is applied only when all the negative formulas have been decomposed).
Such a tree is actually a proof. Indeed if any branch of the tree leads to a
non justified sequent, that means that either a sequent made of exactly one
positive formula or an empty sequent is reached. In any other situation, the
branch would be extendable. These two situations contradict the fact that no
internal derivation from N can lead to a legal position: it is straightforward
to see that any branch of the proof tree from ` [N]− to one of the two kinds of
sequents just mentioned can be transformed into an internal derivation from

10

Miller and Saurin

N to a legal position. Thus the negative tree is a proof.

Base case: strategy σ has size 1. We are now building a proof for ` [N]+

given that σ is a ∃∀-win. Thus σ starts with a move: N ρ M . There are two
cases: either M is 00 and N 7→∗ {} or M is any expression and N 7→∗ lM : in
this case, the move is extended by a ∀∃-win σ′ of length 0 for M . In both cases
we pick any internal derivation justifying the move and use it to inductively
build a proof for ` [N]+. In the second case we will additionally refer to the
base case for size 0 in order to have a proof of ` [M]−.

We reason by induction on the length of the considered internal derivation
maintaining the following invariant: if the derivation starts with N1, . . . , Nk

then the sequents ` [N1]
+, . . . ,` [Nk]

+ are all provable. The invariant is
true for empty derivations: by hypothesis, we have either an empty multiset,
and the assertion is trivial, or the multiset consists in a singleton lM and
the invariant requires ` [lM]+ to be provable and base case for size 0 on σ′

tells us that ` [M]− is provable. If the induction hypothesis is true for a
derivation of length n it is also true for a derivation of length n + 1. Indeed
let ρ be an internal derivation of length n+1 from multiset N1, . . . , Nk that is
ρ : N1, . . . , Nk 7→r N ′

1, . . . , N
′
l 7→

∗ Induction hypothesis for the derivation
starting with N ′

1, . . . , N
′
l ensures that ` [N ′

1]
+, . . . ,` [N ′

l]
+ are all provable.

We now reason by considering the possible cases for rule r:

(i) r is ×. We have that N1 = N1
1 ×N2

1 and N ′
1, . . . , N

′
l = N1

1 , N2
1 , N2, . . . , Nk

and thus ` [N1
1]+,` [N2

1]+,` [N2]
+ . . . ` [Nk]

+ are all provable with proofs
Π0, . . . , Πk by induction hypothesis. We have

Π0

` [N1
1]+

Π1

` [N2
1]+

` [N1
1]+ ⊗ [N2

1]+
⊗ Π2

` [N2]
+ . . .

Πk

` [Nk]
+

(ii) r is +. We have that N1 = N1
1 +N2

1 and N ′
1, . . . , N

′
l = N i

1, N2, . . . , Nk and
thus ` [N i

1]
+,` [N2]

+ . . . ` [Nk]
+ are all provable with proofs Π1, . . . , Πk

by induction hypothesis. We have

Π1

` [N i
1]

+

` [N1
1]+ ⊕ [N2

1]+
⊕i

Π2

` [N2]
+ . . .

Πk

` [Nk]
+

(iii) r is
�
. We have that N1 =

�
and N ′

1, . . . , N
′
l = N2, . . . , Nk so that

` [N2]
+ . . . ` [Nk]

+ are all provable with proofs Π2, . . . , Πk by induction
hypothesis. We finally have

` 1
1

Π2

` [N2]
+ . . .

Πk

` [Nk]
+

Induction case. Two cases need to be considered: σ has even size n + 1 (it
is a ∀∃-win) or σ has odd size n + 1 (it is a ∃∀-win).

(i) σ is of odd size. This case is similar to the base case for strategies of size

11

Miller and Saurin

1 when σ starts with a move N ρ M and yields σ′ as an ∀∃-win for M .
Using the induction hypothesis on σ′ we obtain a proof

Π
` [M]−

and by picking some internal derivation ρ : N 7→∗
ρ lM we build an open

positive derivation rooted in ` [N]+:

` [lM]+

...
` [N]+

that we can close with Π since [lM]+ = [M]−.

(ii) σ is of even size. Once more, the proof is close to the base case. Consid-
ering a negative tree built thanks to the same process as the one described
previously, the same three cases might occur: either the branch is closed,
that is the corresponding internal derivation does not lead to a legal po-
sition (00s appear in the multiset and on the proof-theoretical side a >
rule is used), or we get to a sequent made of a positive formula F (there
is a move N ρ M with [M]+ = F , the induction hypothesis allows us
to proceed), or we get to an empty sequent (but this case is impossible
for parity reasons on the length of the strategy which is required to be
winning).

We give only a sketch of the proof for the second part of the proposition
which essentially relies on the completeness of focused proofs [3]. We addi-
tionally require that the rule for > is used when no other rule can be applied.
We use such a proof to build a winning strategy for [F]n. Each positive layer
of the proof results in a first move of a ∃∀-strategy (the detail of this positive
part of the proof can be mapped to an internal derivation justifying the move).
Each negative layer of the proof results in a ∀-branching in the strategy. More
precisely an additive slice of a negative layer results in a move of a ∀∃-strategy
(or an absence of move, see below). It is easy to check that all these moves
are justified by internal derivations and that the ∀∃-branching is complete.
Concerning the parity condition, it is due to the fact that the proof can end
with either a 1 rule or a > rule. In the first case, the corresponding position in
the game is an empty position ({} also denoted by 00) immediately following
an ∃∀-move that is a position from which no move is possible. In the second
case the last multiset of a maximal internal derivation corresponding to this
branch of the proof contains a 00 so that it cannot justify a move (it cannot
be of the form lΓ). 2

This corollary follows immediately from the preceding Proposition.

Corollary 5.4 Let N be a simple expression involving no quantification nor
atoms. Either ` [N]− or ` ¬[N]− is provable.

12

Miller and Saurin

f(B ∧ C) = f(B) + f(C) h(B ∧ C) = lf(B ∧ C)

f(B ∨ C) = lh(B ∨ C) h(B ∨ C) = h(B) + h(C)

f(>) = 00 h(>) = lf(>)

f(⊥) = lh(⊥) h(⊥) = 00

f(∀x.B) = Qx.f(B) h(∀x.B) = lf(∀x.B)

f(∃x.B) = lh(∃x.B) h(∃x.B) = Qx.h(B)

f(¬(p(t1, . . . , tn))) =
·
p(t1, . . . , tn) h(¬A) = lf(A)

f(A) = lh(A) h(p(t1, . . . , tn)) =
·
p(t1, . . . , tn)

Fig. 3. Translating classical formulas into additive neutral expressions. The syn-
tactic variable A ranges over atomic formula.

6 Additive games and truth

As described in, say [13], Hintikka presented a game to determine the truth
of a formula in classical first-order logic. In that game, two players P and O,
play with the same formula: if that formula is a conjunction, then player P
would choose one of the conjuncts; if is a universal quantifier, then player P
would pick an instance; if the formulas is a disjunction, then player O picks
a disjunct; and if the formula is an existential quantifier, play O picks an
instance.

In our setting, such a game is purely additive: that is, the neutral ex-
pressions determining the game contain no occurrences of × and

�
. Figure 3

defines two mappings, f(·) and h(·), that take classical formulas in negation
normal form (formulas where negations have only atomic scope) into additive
neutral expressions.

Lemma 6.1 Let M be a model and E be a closed first-order formula. The
expression f(E) has an ∀∃-win iff h(E) has an ∃∀-win, and the expression
f(E) has an ∃∀-win iff h(E) has an ∀∃-win.

Proof. Proof is by induction on the structure of f(E). Notice that the dif-
ference between f(E) and h(E) is that one is the l of the other. 2

The following proposition shows that the additive fragment of our games
corresponds to Hintikka’s game theoretic approach to defining truth.

Proposition 6.2 Let M be a model and let f(E) = N , where E is a closed
first-order formula. The formula E is true in M if and only if there is a
∀∃-win for N .

Proof. We prove by induction on the structure of E that if f(E) = N then

13

Miller and Saurin

E is true in M iff N has an ∀∃-win and E is false in M iff N has an ∃∀-win.

Case: E is >. Thus, f(>) = 00 which has a ∀∃-win.

Case: E is ⊥. Thus, f(⊥) = l00 which has a ∃∀-win.

Case: E is the atom A and f(A) = l
·
p(t1, . . . , tn). Thus, A is true in the

model if and only if l
·
p(t1, . . . , tn) has an ∀∃-win. Otherwise, A is false in the

model if and only if l
·
p(t1, . . . , tn) has an ∃∀-win.

Case: E is a negative atom ¬A and f(¬A) =
·
p(t1, . . . , tn). Thus, ¬A is

true in the model if and only if A is false in the model if and only if
·
p(t1, . . . , tn)

has an ∀∃-win. Otherwise, ¬A is false in the model if and only if A is true in

the model if and only if
·
p(t1, . . . , tn) has an ∃∀-win.

Case: E is E1 ∧E2 and f(E1 ∧E2) = f(E1) + f(E2). Now, E is true if E1

and E2 are true. By induction, this holds if and only if both f(E1) and f(E2)
have ∀∃-wins but this is if and only if f(E1) + f(E2) has a ∀∃-win. Now, E
is false iff either E1 or E2 is false iff either f(E1) or f(E2) have ∃∀-win iff
f(E1) + f(E2) has a ∃∀-win.

Case: E is E1∨E2 and f(E1∨E2) = l(h(E1)+h(E2)). E is true if and only
if either E1 or E2 is true if and only if either f(E1) or f(E2) has an ∀∃-win if
and only if either h(E1) or h(E2) has an ∃∀-win if and only if h(E1) + h(E2)
has an ∃∀-win if and only if l(h(E1) + h(E2)) has an ∀∃-win.

Case: E is ∀x.E ′ and f(E) = Qx.f(E ′). The formula E is true if and only
if E ′[c̄/x] is true for all c ∈ |M| if and only if f(E ′[c̄/x]) has an ∀∃-win for all
c ∈ M if and only if Qx.f(E ′) has an ∀∃-win.

Case: E is ∃x.E ′ and f(E) = lQx.h(E ′). The formula E is true if and
only if E ′[c̄/x] is true for some c ∈ M if and only if f(E ′[c̄/x]) has an ∀∃-win
for some c ∈ |M| if and only if h(E ′[c̄/x]) has an ∃∀-win for some c ∈ M if
and only if Qx.h(E ′) has an ∃∀-win if and only if lQx.h(E ′) has an ∀∃-win.2

7 Extensions

We plan to consider a number of different ways to extend neutral expressions
so that we can leave the restrictive setting of MALL. For example, we plan to
consider adding a modal operator to neutral expressions in order to recover
the modal operators ! and ?. Extending this framework to study higher-order
(predicate) quantification also appears most natural.

Here, we illustrate two other extensions we plan to consider: namely, the
extension to the non-simple case and an extension that allows recursion.

7.1 Motivations for the generalization to arbitrary expressions

An important goal for a project that proposes to describe a game semantics
for proof search is to show how fundamental results for games can be used to
provide new proofs for fundamental results in proof theory. While we leave a
full development of this topic for future work, we note that one would expect

14

Miller and Saurin

the following kinds of results to hold in game theory.

• For any N , it is natural to expect that N ×lN has a ∀∃-win, in which case,
all occurrences of the initial sequent − [N]−, [N]+ are admissible.

• For any expressions M , N , and P , if M × N and (lN) × P have ∀∃-wins,
then M × P should have a ∀∃-win. From this result, cut-elimination for
MALL should follow.

In both of these cases, narrowing ourselves to simple expressions results in
the restriction that N must not contain the switch operator in the first case and
that P (and M if we require N to be general) must not contain the switch in the
second case; that is, the formulas involved in the statements above initial and
cut would be neutral expressions from Section 3 and these expressions explain
proof search with Horn clauses only. Thus, to allow ourselves to eventually
obtain the proof theory results concerning the admissibility of cut and initial,
we must consider the richer form of games based on more general expressions.

One more reason for such an extension is the fact that for the moment,
only a weak form of multiplicative connectives is treated by the simple case: if
the formula N ×M is simple, only one among the two immediate subformula
can contain an alternation of polarity. Understanding exactly which kind of
multiplicatives we capture with the simple expressions will be of great interest.

Notice that the structure of games will certainly be more complex for non-
simple expressions than for simple expressions: one illustration of this fact is
that games will no longer be determinate, even for the quantifier-free case.
For example, the non-simple neutral expression l

�
× l

�
translates positively

to ⊥ ⊗ ⊥ and negatively to 1 ..
..
........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. 1: neither of these formulas are provable in
linear logic. Finding extensions of simple expressions for which games remain
determinate seems like an interesting project.

It is also clear that the mix inference rule [7] does not fit well with this
game semantics approach since there are formulas B such that mix can be
used to prove B and ¬B (for example, take B to be either ⊥ ⊗ ⊥ or 1 ..

..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ 1).
Adding mix would make a generalization of Proposition 5.3 impossible.

7.2 Adding fixpoints

Consider extending the language of neutral expressions with the constants
{fixn}n≥0, where the expression (fixnλPλx1 . . . λxn.M) denotes an expression
in which the bound variable P is an n-ary recursive call. If the syntactic type
of neutral expressions is exp and the syntactic type of terms is i, then the
syntactic type of fixn is (αn → αn) → αn where αn is i → . . . → i → exp
(where i occurs n times). The rule for extending 7→ for such expressions is
simply

(fixnFt1 . . . tn), Γ 7→ (F (fixnF)t1 . . . tn), Γ

where we assume that λ-conversion is automatically applied to simplify syn-
tactic expressions involving β-redexes.

15

Miller and Saurin

All examples in this section assume that the first-order model used to
determine games is the Herbrand universe over a signature containing the
constants z and s(·) (used to encode non-negative integers).

Example 7.1 The expression

(fix2 λleqλnλm[(n
·
= z) + QpQq.(n

·
= s(p) × m

·
= s(q) × leq(p, q))])

has syntactic type i → i → exp. This expression, named L, denotes a recursive
expression on two arguments. Since the expression L contains no l operators,
then L(n, m) 7→ lΓ only if Γ is empty (assuming that n and m are terms
denoting natural numbers). The expression L can be used to compute the
“less-than-or-equal-to” relations on natural numbers in the following sense.
The expression L(n, m) has an ∃∀-win if and only if L(n, m) 7→∗ lΓ if and
only if the number represented by the term n is less than or equal to the
number represented by the term m. Similarly, L(n, m) has an ∀∃-win if and
only if L(n, m) 7→∗ lΓ is not possible if and only if the number represented by
the term n is greater than the number represented by the term m.

Example 7.2 We can now define the maximum of a set of numbers. Let A be
a non-empty set of numbers and let A(n) denote the expression encoding this
set (as described in Example 5.1). Let L be the recursive expression given
in Example 7.1 for the less-than-or-equal-to relation. Let maxA(n) be the
following expression with the one free variable n:

A(n) × lQm(A(m) × lL(m, n))

Developing the moves for this (simple) expression yields the following. The
expression maxA(n) has an ∀∃-win if and only if n is not in A or it is not the
largest member of A. Similarly, maxA(n) has a ∃∀-win if and only if n is the
largest member of A.

Example 7.3 Inductive defined sets can be described as games [2]. Let D be
a set and let Φ be a (finite) set of pairs 〈X, x〉 where X is a (finite) subset of
D and x ∈ D. Let IΦ be the smallest subset of D closed under the rules in
Φ: that is, IΦ is the smallest set Y such that if 〈X, x〉 ∈ Φ and X ⊆ Y then
x ∈ Y . Let x0 ∈ D. Consider the following game to determine membership of
x0 in IΦ. After n ≥ 0 rounds of the game, the first player is required to pick
a set Xn such that 〈Xn, xn〉 ∈ Φ and the second player is required an element
xn+1 ∈ Xn. If a player cannot move, then the other player wins. If a play has
infinite length, it is a loss for the first player. It is now the case that x0 ∈ IΦ

if and only if the first player has a winning strategy. The following recursive
neutral expression describes this game for checking membership of y in IΦ.

(fix1λIλy.
∑

〈X,x〉∈Φ

(x
·
= y × l

∑

w∈X

l(I w)))

16

Miller and Saurin

Example 7.4 Consider an abstract transition system given by the triple
〈Λ, S, δ〉, where Λ is a non-empty set of actions, S is a non-empty set of
states, and δ ⊆ S × Λ × S. Assume that actions and states are made into
individual constants and that δ is a finite set. Let δ(x, y, z) be the following
expression with the three free variables x, y, and z:

∑

(p,a,q)∈δ

(x
.
= p × y

.
= a × z

.
= q).

This encoding of a ternary relation is an immediate generalization of the en-
coding of finite sets in Example 5.1. Bisimulation between two states can be
defined using the following recursive expression

(fix2 λbisimλpλq. [QaQp′.δ(p, a, p′) × lQq′(δ(q, a, q′) × lbisim(p′, q′))] +
[QaQq′.δ(q, a, q′) × lQp′(δ(p, a, p′) × lbisim(p′, q′))])

Let Bisim be the above expression (of syntactic type i → i → exp) and let p
and q be two states (members of S). The plays that start with the expression
Bisim(p, q) are exactly those used to describe bisimulation in, say, [24] and
[22, Chapter 2]. This encoding of bisimulation is also close to the encoding
using a proof theoretic notion of definitions [18].

As these examples illustrate, the proper translation of the fix combinator
should be the greatest fixed point operator ν in the negative translation and
the least fixed point operation µ in the positive translation.

[fixnλPλx1 . . . λxn.N]− = νnλPλx1 . . . λxn.[N]−

[fixnλPλx1 . . . λxn.N]+ = µnλPλx1 . . . λxn.[N]+

For example, the positive translation of L, which defines the less-than-or-
equal-to relation, is

(µ2 λleqλnλm[(n = z) ⊕ ∃p∃q.(n = s(p) ⊗ m = s(q) ⊗ leq(p, q))]).

This expression corresponds to the “Clark completion” of the Prolog program

leq(z,N).

leq(s(P),s(Q)) :- leq(P,Q).

The negative translation of the Bisim neutral expression would then be

(ν2 λbisimλpλq. [∀a∀p′.[δ(p, a, p′)]+ −◦ ∃q′([δ(q, a, q′)]+ ⊗ bisim(p′, q′))] &
[∀a∀q′.[δ(q, a, q′)]+ −◦ ∃p′([δ(p, a, p′)]+ ⊗ bisim(p′, q′))])

and this corresponds to the greatest fixed point of the “definition”

bisim(p, q)
4

= [∀a∀p′.one(p, a, p′) ⊃ ∃q′(one(q, a, q′) ∧ bisim(p′, q′))] ∧
[∀a∀q′.one(q, a, q′) ⊃ ∃p′(one(p, a, p′) ∧ bisim(p′, q′))]),

17

Miller and Saurin

which has been studied in [18,26].

Formal results analogous to those in Propositions 5.3 for the cases involving
recursion will certainly be more involved. Soundness holds: that is, if ` [N]−

(resp, ` [N]+) for simple expressions N then there is a ∀∃-win (∃∀-win).
The converse is, of course, not possible since winning strategies will certainly
require declaring infinite paths to be wins (for greatest fixed point) or losses
(for least fixed points) and recognizing such infinite wins and losses will not be
recursively enumerable in general. Of course, one can imagine strengthening
the proof system of MALL to contain induction and co-induction principles
for µ and ν formulas along the lines described in [20,26].

8 Future work

We need to understand better possible connections between this work and that
done by Girard in his recent work on Ludics [10] and by the work on games
for linear logic in the tradition of [1,4,14], for example. These approaches
focus more on the role of cut-elimination and interaction than the program
that we have outlined here. Of course, we are interested in an analysis of cut-
elimination but from the game theoretical approach outlined in Section 7.1:
such an analysis should lead us to consider interactions between strategies.

Extending neutral expressions to account for modals and higher-order
quantification seems like a natural task to consider next. Clearly, develop-
ing the ideas we outlined for fixed point expressions should allow us to link
together a number of computer science motivated problems (such as bisimu-
lation, model checking, etc) to specifications written in logic.

There are a number of implementation-related questions that are inter-
esting to follow. One is the basic problem of exploring arenas in order to
find either winning ∀∃-strategies or winning ∃∀-strategies. Another problem
is determining how to use logic variables and unification to determine quan-
tification instantiations when exploring the moves. Tiu has implemented a
system, Level 0/1 [25], that can automatically search for winning strategies
when recursively defined formulas are restricted to at most one alternation
of polarities: for example, this system will successfully prove or refute bisim-
ulations for noetherian transition systems as described above. This system
employs a simple generalization of the way Prolog mixes unification and proof
search and is incomplete for some two player games. We plan to re-examine
the role of unification in the more general setting.

References

[1] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In
14th Annual Symposium on Logic in Computer Science, pages 431–442. IEEE
Computer Society Press, 1999.

18

Miller and Saurin

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the
Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland,
Amsterdam, 1977.

[3] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[4] A. Blass. A game semantics for linear logic. Annals Pure Appl. Logic, 56:183–
220, 1992. Special Volume dedicated to the memory of John Myhill.

[5] L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions.
In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings
of the Second International Workshop on Extensions to Logic Programming,
volume 596 of LNAI, pages 89–134. Springer-Verlag, 1991.

[6] W. Flescher. Dialogues, strategies and intuitionistic provability. Annals of
Mathematical Logic, 28:217–254, 1985.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[8] J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, February 1992.

[9] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–
217, 1993.

[10] J.-Y. Girard. Locus solum. Mathematical Structures in Computer Science,
11(3):301–506, June 2001.

[11] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. II. Programs as definitions. Journal of Logic and Computation,
1(5):635–660, October 1991.

[12] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and Computation, 110(2):327–365, 1994.

[13] W. Hodges. Logic and games. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Winter 2004.

[14] F. Lamarche. Games semantics for full propositional linear logic. In LICS,
pages 464–473, 1995.

[15] J.-V. Loddo. Généralisation des Jeux Combinatoires et Applications aux
Langages Logiques. PhD thesis, Université Paris VII, 2002.

[16] P. Lorenzen. Ein dialogisches konstruktivitätskriterium. In Infinitistic Methods:
Proceed. Symp. Foundations of Math., pages 193–200. PWN, 1961.

[17] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and
induction. Theoretical Computer Science, 232:91–119, 2000.

[18] R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in
sequent calculus. Theoretical Computer Science, 294(3):411–437, 2003.

19

Miller and Saurin

[19] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125–
157, 1991.

[20] A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus.
In M. C. Stefano Berardi and F. Damiani, editors, Post-proceedings of TYPES
2003, number 3085 in LNCS, pages 293 – 308, January 2003.

[21] D. Pym and E. Ritter. A games semantics for reductive logic and proof-search.
In D. Ghica and G. McCusker, editors, GaLoP 2005: Games for Logic and
Programming Languages, pages 107–123, 2005.

[22] D. Sangiorgi and D. Walker. π-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[23] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,
Eighth Annual Symposium on Logic in Computer Science, pages 222–232. IEEE
Computer Society Press, IEEE, June 1993.

[24] C. Stirling. Games for bisimulation and model checking. Notes for Mathfit
Workshop on Finite Model Theory, University of Wales, Swansea, July 1996.

[25] A. Tiu. Level 0/1 Prover: A tutorial, September 2004. Available online.

[26] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

20

	Introduction
	Horn clauses and Prolog revisited
	Neutral expressions
	Neutral expressions for two players
	Games for simple expressions
	Additive games and truth
	Extensions
	Motivations for the generalization to arbitrary expressions
	Adding fixpoints

	Future work
	References

