
Electronic Notes in Theoretical Computer Science 3 (1996)
URL: http://www.elsevier.nl/locate/entcs/volume3.html 15 pages

Encoding Transition Systems in Sequent
Calculus: Preliminary Report

Raymond McDowell

Computer and Information Science Department, University of Pennsylvania
Philadelphia, PA 19104-6389 USA

Dale Miller

Computer and Information Science Department, University of Pennsylvania
Philadelphia, PA 19104-6389 USA

Catuscia Palamidessi

Dipartimento di Informatica e Scienze dell’Informazione
Via Dodecaneso, 35, 16146 Genova ITALY

Abstract

Linear logic has been used to specify the operational semantics of various process
calculi. In this paper we explore how meta-level judgments, such as simulation and
bisimulation, can be established using such encodings. In general, linear logic is too
weak to derive such judgments and we focus on an extension to linear logic using
definitions. We explore this extension in the context of transition systems.

1 Proof theory preliminaries

In a recent note [5], Girard extended linear logic with a notion of definitions.
If certain restrictions are placed on the structure of definitions then defined
concepts have left and right introduction rules that enjoy a cut-elimination
theorem. Some examples of using such a definition mechanism have been given
for equality reasoning [5,9], forms of program completion in logic programming
[6,10], and in the GCLA language project [1].

Given that linear logic has been successful in specifying various transition
systems used in concurrency theory [3,7], it is natural to ask what such a
definition facility adds to specifications written in linear logic. In this paper,
we show that if the specification of a transition system is made into a definition
(instead of just a theory), then it is possible to go beyond operational semantics
and also prove judgments such as simulation and bisimulation.

We shall assume that the reader is familiar with the two-sided sequent
calculus presentation of linear logic [4]. For the purposes of this paper, we

c©1996 Elsevier Science B. V.

McDowell, Miller & Palamidessi

need only the connectives 1,>,⊗, &,−◦, ∀,∃. Our meta-logic is provided with
simple types: the type of logical formulas, for example, is o (following [2]).
Definitions will be written in the following style:

∀x̄1[p1(t̄1) ◦− H1] · · · ∀x̄n[pn(t̄n) ◦− Hn] (n ≥ 0)

Here, we assume that the formulas H1, . . . , Hn do not contain exponentials (in
our case, this is immediate since we have not admitted either ! or ?), all free
variables of Hi are free in some term of the list of terms t̄i, and all variables
free in some t̄i are contained in the list of variables x̄i (i = 1, . . . , n). We do
not assume that the predicates p1, . . . , pn are distinct. For i = 1, . . . , n, the
expression ∀x̄i[pi(t̄i) ◦− Hi] is a clause of the definition and Hi is the body and
pi(t̄i) is the head of that clause.

Definitions can be used to give both left and right introduction rules for
atomic formulas. If suitable restrictions are made on these definitions (such as
the above mentioned one that no modals appear in the body of definitions),
then cut-elimination can be proved for the resulting logic extended with these
defined non-logical constants (for a proof, see [9]). The right and left intro-
duction rules for definitions can be given as follows (here, A is atomic, ∆ is a
multiset of formulas, and B is a formula).

∆ −→ θHi

∆ −→ A
BC, where θ is a substitution such that A is θpi(t̄i)

{θ∆, θHi −→ θC | θ is the mgu for A and pi(t̄i)}
∆, A −→ C

DR

Specifying a set of sequents as the premise in the left introduction rule should
be understood to mean that each sequent in the set is a premise of the rule.
Here we name the right introduction rule for definitions as backchaining (BC),
since it has that name in the logic programming literature, and we name the
left introduction rule for definitions as definitional reflection (DR), following
Schroeder-Heister [9]. Notice the different “quantificational” interpretation
of these two rules when reading them bottom-up: BC replaces A with the
body of some clause in the definition whose head matches with A, while DR
replaces A with the body of all the clauses whose heads unify with A. These
different quantificational aspects play an important role in our uses of DR and
BC below.

If D is a definition, we write D ` ∆ −→ C to mean that ∆ −→ C is
provable using the inference rules of linear logic plus BC for clauses in D, and
D ` ∆ −→ C to mean that ∆ −→ C is provable using the inference rules of
linear logic plus BC and DR for clauses in D. The first notion can be reduced
to provability in linear logic directly: If D is the definition displayed above
and if D̂ is the formula

∀x̄1[H1 −◦ p1(t̄1)] & . . . & ∀x̄n[Hn −◦ pn(t̄n)]

then D ` ∆ −→ C if and only if !D̂, ∆ −→ C has a proof in the usual sequent
calculus for linear logic. The notion of D ` ∆ −→ C cannot be so reduced

2

McDowell, Miller & Palamidessi

to provability in linear logic. In this case, D is treated as a definition and we
consider the proof system of linear logic to be extended to include left and
right rules (DR and BC) for the defined predicates in D. We write D ` B
and D ` B as abbreviations for D `−→ B and D `−→ B, respectively.

2 Linear logic presentations of two process calculi

In this section, definitions will be treated just as theories, or, so to say, logic
programs. In Section 3 we will start using the inference rule of definitional
reflection.

2.1 Abstract Transition Systems

The triple T = 〈Λ, S, δ〉 is an abstract transition system (ats) if Λ is a non-
empty set of actions, S is a non-empty set of states, and δ ⊆ S × Λ × S (Λ
and S are assumed to be disjoint). We write p

a−→ q if 〈p, a, q〉 ∈ δ. If w ∈ Λ∗

then we write p
w

=⇒ q to mean that p makes a transition to q along a path
of actions given by w. More formally, this relation is defined by induction on
the length of w: thus p

ε
=⇒ p and if p

a−→ r and r
w

=⇒ q then p
aw

=⇒ q. The
ats T is finite if both Λ and S are finite; is noetherian if it contains no infinite
length paths; is determinate if for every state p and every action a, the set
{q | (p, a, q) ∈ δ} is either empty or a singleton.

Transitions as logical formulas. Our first encoding represents states as
propositional constants and actions as propositional functions of type o → o.
A transition 〈p, a, q〉 ∈ δ is encoded as the clause

p ◦− ∃W (aW ⊗ (W −◦ q)),

which could be written equivalently as the formula ∀W ((W −◦ q) −◦ (aW −◦
p)). Let ats1(δ) be the definition composed of the clauses encoding all the
transitions in δ. Finally, we represent a word a1 · · · am (m ≥ 0) from Λ∗ as
the proposition a1(. . . (am1) . . .) (the empty word is thus encoded as 1).

Proposition 2.1 Let 〈Λ, S, δ〉 be an ats. Then ats1(δ) ` q, w −→ p if and
only if p

w
=⇒ q.

This proposition can be proved by showing that a path in an ats can
faithfully match a sequence of inference rules in a proof. For example, consider
proving the sequent q, a(w′) −→ p, where p and q denote states and a denotes
an action. Up to permutations of inference rules, this proof must end with
the following inference rules:

a(w′) −→ a(w′)
q, w′ −→ r

q −→ w′ −◦ r
−◦R

q, a(w′) −→ a(w′)⊗ (w′ −◦ r)
⊗R

q, a(w′) −→ ∃W (aW ⊗ (W −◦ r))
∃R

q, a(w′) −→ p
BC

3

McDowell, Miller & Palamidessi

We have reduced proving q, a(w′) −→ p to proving q, w′ −→ r: this corre-
sponds to the state transition p

a−→ r. The empty path then corresponds to
the proof

q −→ q
q, 1 −→ q 1L

Transitions given as a table. In this second encoding we use the primitive
type σ to denote elements of S and α to denote elements of Λ. Let one: σ →
α → σ → o be a predicate of three arguments denoting the one step transition
relation and let the definition ats2(δ) contain the clause one(p, a, q) ◦− 1 for
every 〈p, a, q〉 ∈ δ. This definition is simple in the sense that it does not use
variables or (non-trivial) bodies. We also need the following definition, named
path:

∀P [multi(P, nil, P) ◦− 1].
∀A,P, Q, W [multi(P, A :: W,Q) ◦− ∃R(one(P,A, R)⊗multi(R, W,Q))].

Here, members of Λ∗ are represented as terms of type list(α) using nil : list(α)
for the empty list and :: of type α → list(α) → list(α) for the list constructor.
The following proposition should be contrasted to the proposition above; its
proof is similar.

Proposition 2.2 Let 〈Λ, S, δ〉 be an ats. Then ats2(δ), path ` multi(p, w, q)
if and only if p

w
=⇒ q.

2.2 CCS

We use types σ and α here for CCS [8] expressions and for actions, respec-
tively. The combinators for CCS that we consider here (ignoring renaming and
hiding for convenience) are prefixing (of type α → σ → σ), plus and parallel
composition (both of type σ → σ → σ), recursion given by the µ operator (of
type (σ → σ) → σ), and 0, the inactive process. The expression µxP will be
used to abbreviate µ(λx.P). Also, the over-bar constructor is of type α → α.
Compare the following definitions with the usual CCS transition system given
in Figure 1.

∀A,P [one(A.P, A, P) ◦− 1].
∀A,P, Q, R [one(P |R,A, Q |R) ◦− one(P, A, Q)].
∀A,P, Q, R [one(R | P, A, R |Q) ◦− one(P, A, Q)].
∀A,P, Q, R [one(P + R,A, Q) ◦− one(P, A, Q)].
∀A,P, Q, R [one(P + R,A, Q) ◦− one(R, A, Q)].
∀A,P, Q [one(µP, A, Q) ◦− one(P (µP), A,Q)].

∀P,Q, R, S [one(P |Q, τ, R | S) ◦− ∃A,B(comp(A,B)⊗
one(P,A, R)⊗ one(Q,B, S))].

Let A be a finite, non-empty set of actions (assume that τ : α is not a member
of A) and let ccs(A) be the definition composed of all those formulas displayed
above plus all formulas of the form comp(a, ā) ◦− 1 and comp(ā, a) ◦− 1 for
every a ∈ A.

4

McDowell, Miller & Palamidessi

A.P
A−→ P

P
A−→ Q

P |R A−→ Q |R
P

A−→ Q

R | P A−→ R |Q
P

A−→ R Q
Ā−→ S

P |Q τ−→ R | S

P
A−→ Q

P + R
A−→ Q

R
A−→ Q

P + R
A−→ Q

P [fix(X = P)/X]
A−→ Q

fix(X = P)
A−→ Q

Fig. 1. CCS transition rules

Proposition 2.3 Let A be a finite set of actions. Then p
a−→ q if and only if

ccs(A) ` one(p, a, q), and p
w

=⇒ q if and only if ccs(A), path ` multi(p, w, q).

CCS can be seen as an abstract transition system where Λ = A∪ Ā ∪ {τ}
and S is the set of all expressions denoting CCS expressions (of type σ). A
finite CCS process is a CCS process that does not contain µ. If S is instead
the set of all finite CCS processes, then the resulting ats is noetherian. Also
the judgment p

a−→ q is decidable when p is a finite process.

3 Simulation and bisimulations for finite behaviors

A relation R is a simulation between p and q (notation pRq, to be read as
“q simulates p”) if and only if for every transition p

a−→ p′, there exists a
transition q

a−→ q′, such that p′Rq′. The largest such relation is written v;
that is, p v q if and only if there exists a simulation R such that pRq. A
relation R is a bisimulation between p and q if and only if for every transition
p

a−→ p′, there exists a transition q
a−→ q′ such that p′Rq′, and for every

transition q
a−→ q′, there exists a transition p

a−→ p′ such that q′Rp′. The
largest such relation is called the bisimulation equivalence and is denoted by
≡; that is, p ≡ q (read as “p is bisimilar to q”) if and only if there exists a
bisimulation R such that pRq.

Given a finite ats M = 〈Λ, S, δ〉, define 〈〈p〉〉 = {(a, q) | (p, a, q) ∈ δ}. Now
consider a proof of the sequent p −→ q using the definition ats1(δ). If p and
q are the same state then this sequent is initial. Otherwise, the only inference
rules that can be applied to prove such a sequent are either BC or DR. It is
easy to show that occurrences of DR can be permuted down over BC and the
right introduction rules for ∃ and ⊗. So we can assume that the last inference
rule used to prove this sequent is DR, and thus the proof has the form

∃W (a1W ⊗ (W −◦ p1)) −→ q . . . ∃W (amW ⊗ (W −◦ pm)) −→ q
p −→ q DR,

where m ≥ 0 and 〈〈p〉〉 = {(a1, p1), . . . , (am, pm)}. Because of the presence of
enough permutations, each of the premises here can be proved by left intro-
duction rules for ∃ and ⊗, yielding the premises

a1w1, w1 −◦ p1 −→ q . . . amwm, wm −◦ pm −→ q,

where w1, . . . , wm are variables. At this point, these sequents can only be

5

McDowell, Miller & Palamidessi

proved by using BC. For example,

aiwi, wi −◦ pi −→ ∃W (ajW ⊗ (W −◦ qj)),

where 〈aj, qj〉 ∈ 〈〈q〉〉. This proof will be successful only if i = j and ∃W is
instantiated with wi (using the ∃ right introduction rule). Thus, the above
sequents would then become

a1w1, w1−◦p1 −→ a1w1⊗(w1−◦q1) . . . amwm, wm−◦pm −→ amwm⊗(wm−◦qm).

Finally, using the right introduction rules for ⊗ and −◦ and the left introduc-
tion rule for −◦, these sequents reduce to

p1 −→ q1 . . . pm −→ qm.

Since these proof steps are forced, these several inference rules can be arranged
into the following derived rule of inference

p1 −→ q1 . . . pm −→ qm

p −→ q SIM1

provided that m ≥ 0, {(a1, p1), . . . , (am, pm)} = 〈〈p〉〉, and

{(a1, q1), . . . , (am, qm)} ⊆ 〈〈q〉〉.

Let SIM1
` p −→ q denote the proposition that the sequent p −→ q can be

proved using only the SIM1 inference rule (again, for the noetherian case;
for the non-noetherian case, see Section 4). We have now provided the proof
outline of the following proposition.

Proposition 3.1 Let 〈Λ, S, δ〉 be a finite, noetherian ats and let p, q ∈ S.
Then ats1(δ) ` p −→ q if and only if SIM1

` p −→ q.

Notice that in the SIM1 proof system, we do not need instances of the
initial sequent rule: a proof of p −→ p using only the SIM1 rule is always
possible for a noetherian ats. This observation is similar to the one that holds
of most proof systems: the initial rule is needed to prove A −→ A only when
A is atomic; that is, when A has a non-logical symbol as its head symbol.
When using ats1(δ), states become logical constants, in a sense, and, hence,
we do not need any instance of the initial rule. We can now establish our first
proof theoretic connection to simulation.

Proposition 3.2 Let 〈Λ, S, δ〉 be a finite, noetherian ats and let p, q ∈ S.
Then ats1(δ) ` p −→ q if and only if q simulates p.

Proof Given Proposition 3.1, we need only show that SIM1
` p −→ q if and

only if q simulates p. First, assume that the sequent p −→ q has a proof that
contains only the SIM1 inference rule. Let R be the set of all pairs 〈r, s〉 such
that the sequent r −→ s has an occurrence in that proof. It is an easy matter
to verify that R is a simulation.

Conversely, assume that q simulates p. Thus there is a simulation R such
that pRq. We construct a proof tree which has the property that, for every

6

McDowell, Miller & Palamidessi

sequent r −→ s in the proof, rRs. We begin with a single node labeled
with the sequent p −→ q. We then repeat the following as long as there
is a sequent r −→ s in the tree that is not the conclusion of an inference
rule. By construction, rRs, so R contains pairs 〈r1, s1〉, . . . , 〈rm, sm〉, where
{(a1, r1), . . . , (am, rm)} = 〈〈r〉〉 and {(a1, s1), . . . , (am, sm)} ⊆ 〈〈s〉〉 for some
actions a1, . . . , am (m ≥ 0). Now the sequent r −→ s can be placed at the
conclusion of a SIM1 rule, whose premises are r1 −→ s1, . . . , rm −→ sm. This
process terminates since the given ats is noetherian and has a bound on the
length of its paths.

A consequence of this theorem is that logical equivalence of two processes,
namely (p −◦ q) & (q −◦ p), which is the finest equivalence relation definable
using logic, is “two-way simulation”. Logical equivalence, however, is courser
than bisimulation, as the following example shows.

Example 3.3 Consider the transition system with one label a, states {p1, p2,
p3, p4, q1, q2, q3}, and transitions p1

a−→ p2, p2
a−→ p3, p1

a−→ p4, q1
a−→ q2,

q2
a−→ q3. The relations

{〈p1, q1〉, 〈p2, q2〉, 〈p3, q3〉, 〈p4, q2〉} and {〈q1, p1〉, 〈q2, p2〉, 〈q3, p3〉}

witness the fact that q1 simulates p1 and p1 simulates q1, respectively. It is
easy to check, however, that there is no bisimulation that contains the pair
〈p1, q1〉.

Using the encoding ats1(δ), simulation can be identified with the logical
connective −◦. As a consequence of this example, bisimulation cannot in
general be a logical connective: that is, it cannot be a predicate (of type
o → o → o) with left and right introduction rules that enjoy cut-elimination.
However, if we consider an ats that is also determinate then p v q and q v p
imply p ≡ q, so logical equivalence and bisimulation coincide.

Proposition 3.4 Let 〈Λ, S, δ〉 be a finite, noetherian, and determinate ats
and let p, q ∈ S. Then ats1(δ) ` (p−◦ q)& (q−◦ p) if and only if p is bisimilar
to q.

If we switch representations of transitions systems to use the definition
ats2(δ), then it is possible to characterize simulation and bisimulation as pred-
icates sim and bisim given by the following definition, named sims.

∀P,Q [sim(P,Q) ◦− ∀A∀P ′. one(P,A, P ′)−◦
∃Q′. one(Q,A, Q′)⊗ sim(P ′, Q′)]

∀P,Q [bisim(P, Q) ◦− [∀A∀P ′. one(P, A, P ′)−◦
∃Q′. one(Q,A, Q′)⊗ bisim(P ′, Q′)] &

[∀A∀Q′. one(Q,A, Q′)−◦
∃P ′. one(P,A, P ′)⊗ bisim(Q′, P ′)]].

We introduce an inference rule similar to the SIM1 given above, namely

−→ sim(p1, q1) . . . −→ sim(pm, qm)

−→ sim(p, q)
SIM2

7

McDowell, Miller & Palamidessi

provided that m ≥ 0,

{(a1, p1), . . . , (am, pm)} = 〈〈p〉〉, and {(a1, q1), . . . , (am, qm)} ⊆ 〈〈q〉〉.

We also present an inference rule BISIM2 for bisimulation:

−→ bisim(p1, q1) −→ bisim(q1, p1) . . . −→ bisim(pm, qm) −→ bisim(qm, pm)

−→ bisim(p, q)

where m ≥ 0,

{(a1, p1), . . . , (am, pm)} = 〈〈p〉〉, and {(a1, q1), . . . , (am, qm)} = 〈〈q〉〉.

Let SIM2
` ∆ −→ C (respectively, BISIM2

` ∆ −→ C) denote the proposition
that the sequent ∆ −→ C can be proved using only the SIM2 (respectively,
BISIM2) inference rule.

Proposition 3.5 Let 〈Λ, S, δ〉 be a finite, noetherian ats and let p, q ∈ S.
Then

• ats2(δ), sims ` sim(p, q) if and only if SIM2
` sim(p, q), and

• ats2(δ), sims ` bisim(p, q) if and only if BISIM2
` bisim(p, q).

Proof We outline the proof of the first case; the second can be done simi-
larly. Consider a proof of the sequent −→ sim(p, q). This is provable only by
a BC rule using sims, and thus the sequents

−→ ∀A∀P ′. one(p,A, P ′)−◦ ∃Q′. one(q, A,Q′)⊗ sim(P ′, Q′)

and
one(p,A, P ′) −→ ∃Q′. one(q, A, Q′)⊗ sim(P ′, Q′)

must be provable. If this latter sequent is provable, there is a proof of it ending
with DR, and thus the sequents

−→ ∃Q′. one(q, a1, Q
′)⊗ sim(p1, Q

′) . . . −→ ∃Q′. one(q, am, Q′)⊗ sim(pm, Q′)

must be provable, where 〈〈p〉〉 = {(a1, p1), . . . , (am, pm)}. Each of these se-
quents is provable only if each of the ∃Q′ is instantiated with qi where (ai, qi) ∈
〈〈q〉〉, for i = 1, . . . ,m. Thus, these sequents are provable only if the sequents

−→ sim(p1, q1) . . . −→ sim(pm, qm)

are provable.

Now the following can be proved using Proposition 3.5 in a manner anal-
ogous to the proof of Proposition 3.2 using Proposition 3.1.

Proposition 3.6 Let 〈Λ, S, δ〉 be a finite, noetherian ats, and let p and q be
members of S. Then

• ats2(δ), sims ` sim(p, q) if and only if p v q, and

• ats2(δ), sims ` bisim(p, q) if and only if p ≡ q.

8

McDowell, Miller & Palamidessi

The following proposition can be proved similarly to the preceding propo-
sition, although it is a bit more involved, owing to the fact that the definition
of one-step transitions in CCS is given by recursion. Notice that CCS over a
finite set of actions and restricted to finite processes is not a finite ats.

Proposition 3.7 The following equivalences hold for finite processes p and q
of CCS.

• ccs(A), sims ` sim(p, q) if and only if p v q.

• ccs(A), sims ` bisim(p, q) if and only if p ≡ q.

4 Non-finite behavior cases

In the previous section we have expressed simulation and bisimulation in logic
using recursive definitions of the form

∀P1 . . . ∀Pn[r(P1, . . . , Pn) ◦− Φ], (1)

where the formula Φ contained the predicate r and free occurrences of the
variables P1, . . . , Pn. To this clause we associate a function φ from n-ary
relations to n-ary relations defined as: φ(R) is the set of all tuples of terms
〈t1, . . . , tn〉 such that there is a set {〈t11, . . . , tn1 〉, . . . , 〈t1m, . . . , tnm〉} ⊆ R (m ≥ 0)
and

ats2(δ) ` r(t11, . . . , t
n
1) & . . . & r(t1m, . . . , tnm) −→ Φ[t1/P1, . . . , t

n/Pn].

To see that definitional reflection on (1) is sound for all the relations which
are fixed points of φ, assume that for any relation r there is only one such
definition (in case there are more, we group them in one definition which has as
body the disjunction of the bodies). Then observe that the use of definitional
reflection corresponds to reversing the implication in the definition, that is, to
assuming the formula ∀P1 . . . ∀Pn[r(P1, . . . , Pn)−◦ Φ].

Let Φs and Φb be the bodies of the definitions given in sims for sim and
bisim, respectively, and consider the corresponding functions φs and φb on
binary relations associated with these formulas. We can see from their defi-
nitions that v and ≡ are the greatest fixed points of φs and φb, respectively.
Note that in proofs of −→ sim(p, q) and −→ bisim(p, q) using definitions
ats2(δ) and sims, DR is used with ats2(δ) but not with sims. Backchaining
on (1) is all that we need to prove the sequent −→ r(p1, . . . , pn) whenever
p1, . . . , pn are related in the least fixed point of the function φ.

As the following example shows, when the transition system is not noethe-
rian, the “if parts” of Proposition 3.6 may not hold.

Example 4.1 Consider a transition system with two states only, p and q, and
two transitions p

a−→ p and q
a−→ q. Then p v q holds, but sim(p, q) cannot

be proved. Note that the attempt to prove it would end up in a circularity.

In fact, both backchaining and definitional reflection on (1) are sound for all
the relations which are fixed points of φ. If ats2(δ), sims ` r(p1, . . . , pn) holds
then p1, . . . , pn must be related by every fixed point of φ, and thus by its least

9

McDowell, Miller & Palamidessi

fixed point. In a noetherian ats, φs and φb each have unique fixed points, and
this is why v and ≡ can be completely characterized in a noetherian ats by
provability (Proposition 3.6).

One attempt to characterize the greatest fixed point of the relation trans-
former φ proof-theoretically is to introduce a notion of “finite or infinite proof”.
An ω-proof of the sequent ∆ −→ C with inference rules taken from the set L
is a tree whose root is labeled by ∆ −→ C, and such that for every node N
there is an instance of an inference rule of L whose conclusion is the label of
N , and whose premises are the labels of the children of N . We will denote by

L `ω ∆ −→ C the existence of an ω-proof in L for ∆ −→ C. For example,

SIM2
`ω ∆ −→ C is true if ∆ −→ C has an ω-proof using only SIM2. If

the set of inference rules L is determined by those in linear logic and those
arising from using some definition, say D, then we write D `ω ∆ −→ C. No-
tice that an ω-proof can have bounded or unbounded height. We now prove
two propositions using ω-proofs that generalize Propositions 3.5 and 3.6 by
dropping the noetherian condition.

Proposition 4.2 Let 〈Λ, S, δ〉 be a finite ats and let p, q ∈ S. Then

• ats2(δ), sims `ω sim(p, q) if and only if SIM2
`ω sim(p, q), and

• ats2(δ), sims `ω bisim(p, q) if and only if BISIM2
`ω bisim(p, q).

Proof We outline the proof of the first case; the second can be done sim-
ilarly. Since the converse is immediate, we only show the forward direction.
Assume that the sequent −→ sim(p, q) has an ω-proof using the definitions
ats2(δ). Since this sequent must be proved by one use of BC, two uses of ∀R,
and one use of −◦R, we have

ats2(δ) `ω one(p,A, P ′) −→ ∃q′[one(q, A, q′)⊗ sim(P ′, q′)],

where A and P ′ are variables. At this point, the proof can proceed by either
DR or ∃R. If the choice is DR, then we quickly get that the proof is essentially
an instance of SIM2 at the root, and we proceed recursively through the ω-
proof. Otherwise, a use of ∃R would give raise to a tensor, the first component
of which is one(q, A, q0) for some particular q0 ∈ S. It is not possible, however,
to prove this atom using BC since no instance of a clause in the definition
ats1(δ) has the variable A in its head. Thus, this proof could not be built in
that fashion.

Proposition 4.3 Let 〈Λ, S, δ〉 be a finite ats. Then p v q if and only if
ats2(δ), sims `ω sim(p, q), and p ≡ q if and only if ats2(δ), sims `ω bisim(p, q).

Proof We prove only the first equivalence since the second follows similarly.
First, assume that

ats2(δ), sims `ω sim(p, q).

By the preceding Proposition, SIM2
`ω sim(p, q). We now proceed as in the

proof of Proposition 3.2: Let Ξ be a proof of −→ sim(p, q) that contains just
the SIM2 inference rule and let R be the binary relation such that rRs if
r −→ s has an occurrence in Ξ. It is easy to see that R is a simulation

10

McDowell, Miller & Palamidessi

containing 〈p, q〉.
Assume next that p v q holds. We can construct a sequence of trees

{Tk}k∈ω such that for every k, the root of Tk is labeled by −→ sim(p, q), all
the leaves of Tk are labeled by sequents of the form sim(p′, q′) where p′ v q′

holds, and Tk is a subtree of Tk+1. The construction process for such trees
follows the same pattern as used in the proof of Proposition 3.2.

For these equivalences to hold, it is important that the ats is finite. If
we consider a non-finite ats, say, ccs(A) (A is finite), then the reverse direc-
tion of these equivalences does not necessarily hold, as the following example
illustrates.

Example 4.4 The CCS terms µxx and µxa.x are such that µxa.x v µxx does
not hold. However, both the judgments ccs(A) `ω one(µxx, a, µxa.x), and
ccs(A), sims `ω sim(µxa.x, µxx) hold.

In a sense, the infinite proof of one(µxx, a, µxa.x) is an “infinite failure”.
If we restrict to finite CCS processes, then such infinite failures do not occur
with respect to the one step transition steps and the only infinite proof behav-
iors will be those that positively verify the greatest fixed point properties of
simulation and bisimulation. Thus, when restricted to finite CCS processes,
the generalization of Proposition 4.3 where ats2(δ) is replaced with ccs(A)
holds.

5 Properties about defined relations

In previous sections we have shown how to encode in sequent calculus various
relations over the states of a transition system. We now explore the kinds of
properties on the relations that can be proved within the calculus or via some
characterization provided by the calculus.

Example 5.1 The property “bisimulation is preserved by the prefix operator”
holds in CCS. The corresponding encoding of this property is also provable in
the sequent calculus; that is, we have

ccs(A), sims ` ∀P∀Q[bisim(P, Q)−◦ bisim(A.P,A.Q)],

a proof of which is easy to construct. The property “bisimulation is symmetric”
holds in any transition system. The corresponding encoding of this property is
also provable in the sequent calculus; that is, we have

ats2(δ), sims ` ∀P∀Q[bisim(P,Q)−◦ bisim(Q,P)],

which is also easy to verify.

However, as the following examples illustrate, there are plenty of true
properties of ≡ and v that cannot be proved within the logic. One reason for
this lack is, intuitively, we can prove properties of sim and bisim only if they
are true for every fixed point of φs and φb, but in the non-noetherian case,
there is in general more than one fixed point.

11

McDowell, Miller & Palamidessi

Example 5.2 The property “bisimulation equivalence implies the largest sim-
ulation” (or more formally: ≡ is a subset of v) is true in any transition
system. This property can be expressed by the formula ∀P∀Q[bisim(P,Q) −◦
sim(P,Q)] but, in general, if δ is a non-noetherian transition relation, this
formula cannot be proved using the definitions ats2(δ) and sims. For example,
if we take the transition system 〈{a}, {p}, {〈p, a, p〉}〉 it is immediate to see
that {〈p, p〉} is a bisimulation (the greatest fixed point of φb, namely bisimu-
lation equivalence) and ∅ is a simulation (the least fixed point of φs). Hence,
this formula cannot be proved for this transition system.

Example 5.3 The property “bisimulation equivalence is reflexive” holds in
any transition system. The formula ∀P [bisim(P, P)] cannot be proved using
the definitions ats2(δ) and sims. Consider for instance the same transition
system as in Example 5.2: the empty set ∅ is a bisimulation (the least fixed
point of φb), and it is, of course, not reflexive.

Example 5.4 The property “bisimulation equivalence is preserved by the +
operator” is true in CCS. This property can be expressed as the formula
∀P∀Q∀R[bisim(P, Q)−◦bisim(P +R, Q+R))]. This sequent cannot be proved
using ccs(A) and sims. In fact, take P = a.0, Q = a.0 + a.0 and R = µxa.x.
The least fixed point of φb contains the pair 〈a.0, a.0 + a.0〉 but not the pair
〈a.0 + µxa.x, a.0 + a.0 + µxa.x〉.

The notion of “infinite proof”, introduced in the previous section, can be
helpful to prove properties on the defined relations at the meta (mathematical)
level. For instance, the properties of Examples 5.2 and 5.3 can both be proved
by using the characterization of ≡ and v provided at the end of the previous
section. It is easy to see, in fact, that ccs(A), sims `ω bisim(P, P). Concerning
the implication bisim(P,Q) −◦ sim(P, Q), observe that any infinite proof for
−→ bisim(P,Q) contains an infinite proof of −→ sim(P, Q).

The characterization of simulation or bisimulation using ω-proofs is not
so helpful because the existence of an infinite proof for a given sequent is co-
semidecidable but (in general) not semidecidable. A better approach would
be to use co-induction: it is well known that, for finitely-branching transition
systems, φs and φb are downward-continuous. Thus their greatest fixed point
can be characterized as

⋂
k φk

s(S×S) and
⋂

k φk
b (S×S) respectively. We could

then encode v and ≡ by using stratified versions of sim and bisim: Figure 2
contains just such a definition, which will be named ssims.

In order to encode co-induction, we can use inductions on natural numbers.
We incorporate induction by introducing natural numbers using z for zero and
s for successor and using the predicate nat. We introduce now the following
“introduction” rules for this new predicate.

−→ nat z
∆ −→ nat x

∆ −→ nat (sx)

∆1 −→ Qz Qy −→ Q(sy) ∆2, Qx −→ P

∆1, ∆2, nat x −→ P

Here, x, P , and Q are schematic variables of these inference rule, and y is a
variable not free in Q. The first two rules can be seen as right-introduction
rules for nat while the third rule, encoding induction over natural numbers, can

12

McDowell, Miller & Palamidessi

sim(P,Q) ◦− ∀K (nat K −◦ ssim(K, P, Q)).
ssim(z, P,Q) ◦− 1

ssim((sK), P, Q) ◦− [∀A∀P ′. one(P, A, P ′)−◦
∃Q′. one(Q,A, Q′)⊗ ssim(K, P ′, Q′)].

bisim(P,Q) ◦− ∀K (nat K −◦ sbisim(K,P,Q)).
sbisim(z, P,Q) ◦− 1.

sbisim((sK), P, Q) ◦− [∀A∀P ′. one(P, A, P ′)−◦
∃Q′. one(Q,A, Q′)⊗ sbisim(K,P ′, Q′)] &

[∀A∀Q′. one(Q,A, Q′)−◦
∃P ′. one(P,A, P ′)⊗ sbisim(K,Q′, P ′)].

Fig. 2. Stratified simulation and bisimulation definitions. Free variables are assumed
to be universally quantified.

be seen as a left-introduction rule. In the left-introduction rule, Q ranges over
formulas with one variable extracted (say, using λ-abstraction) and represents
the property that is proved by induction: the third premise of that inference
rule witnesses the fact that, in general, Q will express a property stronger
than P . Notice that with this formulation of induction, cut-free proofs will
not have the subformula property.

The following inference rules can be derived from these rules for nat.

∆ −→ Qz Qy −→ Q(sy)

∆, nat n −→ Qn
∆ −→ C

∆, nat n −→ C
∆, nat n, nat n −→ C

∆, nat n −→ C

The fact that a nat-atom can be weakened and contracted on the left follows
from observation that it is possible to prove ∀n(nat n −◦ ! nat n) using our
induction principle.

We can now prove properties of maximal simulation or bisimulation equiv-
alence even if they are not valid for all fixed points of φs or φb; the only
necessary condition is that they are valid on

⋂
k φk

s(S × S) or
⋂

k φk
b (S × S) .

Of course, this encoding of v and ≡ as sim and bisim is sound only when φs

and φb are downward-continuous; in general this is true when the transition
system is finitely branching. In CCS, for instance, this condition is guaranteed
whenever all the recursion variables in µ-expressions are prefixed.

It is now possible to prove, for instance, reflexivity of bisimulation equiv-
alence, and bisimilarity of nodes involved in cyclic transitions. In particular,
we can prove all of the following formulas using natural number induction and
definitional reflection with the definitions ccs(A) and ssims.

bisim(µx a.x, µx (a.x + a.x)) ∀P bisim(P, P)
∀P bisim(P + 0, P) ∀P bisim(P + P, P)

∀P, Q (bisim(P, Q))−◦ sim(P, Q))
∀P, Q, R (bisim(P,Q)−◦ bisim(P + R, Q + R))

13

McDowell, Miller & Palamidessi

We are continuing to consider the use of induction along with definitions to
capture judgments about properties such as bisimulation.

6 Conclusion

It has been observed before and in this paper that linear logic can be used
to specify transition systems. We have shown that if linear logic is extended
with definitions, then certain properties about elements of transition systems,
namely simulation and bisimulation, can be captured naturally. Furthermore,
if induction over integers is added, then we can increase the expressiveness of
logic to establish more high-level facts about these properties, such as the fact
that bisimulation is an equivalence.

From a high-level point-of-view, we can characterize the experiments we
have reported here in two ways. From a (traditional) logic programming point
of view, a definition D is generally either a set of (positive) Horn clauses or an
extension of them that allows negated atoms in the body of clauses. In that
case, sequents in a proof of D ` A, for atomic formula A, are either of the form
−→ B or B −→. In the first case, backchaining is used to establish B and, in
the second case, definition reflection is used to build a finite refutation of B.
In this paper, we consider richer definitions so that the search for proofs must
consider sequents of the form B −→ C; with such sequents, backchaining and
definition reflection are used together. From a computational or concurrency
point-of-view, proofs using just backchaining only capture the may behavior
of a system: “there exists a computation such that . . .” is easily translated to
“there exists a proof (in the sense of `) of . . .”. The addition of the definitional
reflection inference rules allows certain forms of must behavior to be captured.

Acknowledgments.

We would like to thank Robert Stärk for several helpful discussions and
Chuck Liang for providing us with a prototype in λProlog of an interactive
theorem prover for doing many of the formal (object-logic) proofs described
in this paper. The authors have been funded in part by ONR N00014-93-1-
1324, NSF CCR-92-09224, NSF CCR-94-00907, and ARO DAAH04-95-1-0092.
Part of this work was done while Palamidessi was visiting the University of
Pennsylvania and while Miller was visiting the University of Genova. We both
wish to thank these institutions for their hospitality in hosting us.

References

[1] M. Aronsson, L.-H. Eriksson, A. Gäredal, L. Halnäs, and P. Olin. GCLA:
a definitional approach to logic programming. New Generation Computing,
4:381–404, 1990.

[2] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

14

McDowell, Miller & Palamidessi

[3] Vijay Gehlot and Carl Gunter. Normal process representatives. In Proceedings,
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 200–207,
Philadelphia, Pennsylvania, June 1990. IEEE Computer Society Press.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[5] Jean-Yves Girard. A fixpoint theorem in linear logic. A message posted on
the linear@cs.stanford.edu mailing listing, http://www.csl.sri.com/linear/
mailing-list-traffic/www/07/mail_3.html, February 1992.

[6] Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to logic
programming. ii. Programs as definitions. Journal of Logic and Computation,
pages 635–660, October 1991.

[7] Dale Miller. The π-calculus as a theory in linear logic: Preliminary results.
In E. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on
Extensions to Logic Programming, number 660 in LNCS, pages 242–265.
Springer-Verlag, 1993.

[8] Robin Milner. Communication and Concurrency. Prentice-Hall International,
1989.

[9] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,
Eighth Annual Symposium on Logic in Computer Science, pages 222–232. IEEE,
June 1993.

[10] Robert Stärk. A complete axiomatization of the three-valued completion of
logic programs. Journal of Logic and Computation, 1(6):811–834, 1991.

15

