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Abstract
The sequent calculus is often criticized for requiring proofs to contain large amounts of low-
level syntactic details that can obscure the essence of a given proof. Because each inference
rule introduces only a single connective, sequent proofs can separate closely related steps—such
as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature
of sequent proofs forces proof steps that are syntactically non-interfering and permutable to
nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of
canonicity: proofs that should be considered essentially the same may not have a common
syntactic form. To fix this problem, many researchers have proposed replacing the sequent
calculus with proof structures that are more parallel or geometric. Proof-nets, matings, and
atomic flows are examples of such revolutionary formalisms. We propose, instead, an evolutionary
approach to recover canonicity within the sequent calculus, which we illustrate for classical first-
order logic. The essential element of our approach is the use of a multi-focused sequent calculus
as the means of abstracting away the details from classical cut-free sequent proofs. We show
that, among the multi-focused proofs, the maximally multi-focused proofs that make the foci as
parallel as possible are canonical. Moreover, such proofs are isomorphic to expansion proofs—a
well known, minimalistic, and parallel generalization of Herbrand disjunctions—for classical first-
order logic. This technique is a systematic way to recover the desired essence of any sequent
proof without abandoning the sequent calculus.
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1 Introduction

The sequent calculus, initially described by Gentzen for classical and intuitionistic first-order
logic [10], has become a standard proof formalism for a wide variety of logics. One of the
chief reasons for its ubiquity is that it defines provability in a logic parsimoniously and
modularly, with every logical connective defined by introduction rules, and with the logical
properties defined by structural rules. Sequent rules can thus be seen as the atoms of logical
inference. Different logics can be described simply by choosing different atoms. For instance,
linear logic [11] differs from classical logic by removing the structural rules of weakening and
contraction, and letting the multiplicative and the additive variants of introduction rules
introduce different connectives. The proof-theoretic properties of the logics can then be
derived by analyzing these atoms of inference. For example, the cut-elimination theorem
directly shows that the logic is consistent.
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2 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Yet, despite its success as a framework for establishing proof-theoretic properties, the
sequent proofs themselves seem to obscure the “essence” of a proof. One quickly feels that
sequent proofs are syntactic monsters: they record the exact sequence of inferences and
detours even when it is not really relevant to the essential high level features of the proof.

The usual approach over the years to dealing with this syntactic morass of the sequent
calculus—and some other proof systems with similar issues—is one of revolution. Instead of
the sequent calculus, new proof formalisms are proposed that are supposedly free of syntactic
bureaucracy. Usually, such formalisms are more parallel or geometric than sequent proofs.
We list here several examples—not an exhaustive list—of such revolutionary proof systems.

1. The mating method [2] and the connection method [5] represent proofs as a graph structure
among the literals in (an expansion of) a formula.

2. Expansion trees [27] record only the instantiations of quantifiers using a tree structure.
3. Proof-nets [11] eschew inference rules for more geometric representations of proofs in

terms of axiom linkages.
4. Atomic flows [13] track only the flow of atoms in a proof and can expose the dynamics of

cut-elimination.
5. Even Gentzen’s natural deduction calculus [10] is arguably a principally different repre-

sentation of proofs.

These revolutionary approaches continue by providing a means of de-sequentializing
sequent proofs into the new formalism, and then arguing that two sequent proofs are
essentially the same if they de-sequentialize to the same form. While compelling, it is worth
noting that such approaches are not without problems. At a basic level, showing when
a proposed structure is correct—that it actually represents a “proof”—generally requires
checking global criteria such as connectedness, acyclicity, or well-scoping. Such formalisms
generally lack local correctness criteria, wherein a partial (unfinished) proof object can be
ensured to have only correct finished forms. By contrast, every instance of a rule in a (partial)
sequent proof can easily be checked to be an instance of a proper rule schema.

A second and bigger issue with such revolutionary formalisms is that none of them is
as general as the sequent calculus. Proof-nets, to pick an example, are only well defined
for the unit-free multiplicative linear logic (MLL) [11]. Even adding the multiplicative units
is tricky [22] and for larger fragments such as MALL with units the problem of finding a
proof-net formalism remains open.

In this paper, we consider instead an evolutionary approach to extracting the essence of
sequent proofs without discarding the sequent calculus. We simply add abstractions to the
sequent calculus as follows.

1. Analysis of the permutation properties of sequent rules shows that some rules are invertible,
and hence require no choice, while others are non-invertible and the proofs must record
the choices made for them. These two classes of rules can be used to organize sequent
proofs in such a way that the inference atoms coalesce into larger inference molecules
– several small inference steps combine into synthetic steps or actions. The essential
information in a proof is then moved to the action boundaries. Focusing [1] is the general
technique for this kind of synthesis for cut-free sequent calculi, and it can be described as
a simple local modification of the usual sequent rules that preserves completeness. We
then simply remove unfocused proofs.

2. The standard focusing technique can be extended to allow multi-focusing, where multiple
actions can be done in parallel, simultaneously. The exact order of the inferences
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constituting two simultaneous actions can then be elided from sequent proofs. Proofs
with the same parallel action structure are identified, which we call action equivalence.

3. Finally, if we insist on as much parallelism as possible, i.e., on maximal multi-focusing,
then such proofs are action-canonical. That is, two equivalent maximal multi-focused
proofs can be shown to be action equivalent. Thus, for each multi-focused proof, its
equivalent maximal form is action canonical.

In this paper, we apply this method to classical first-order logic. We show not only that the
evolutionary approach gives us canonical sequent proofs at the level of the action abstraction
but also that these proofs induce the same notion of identity as expansion proofs [27], an
existing parallel (revolutionary) approach for classical first-order (and higher-order) logic.
This result is surprising because it is known that expansion trees can be more compact than
sequent proofs by an exponential factor [4].

In section 2, we give some background on the sequent calculus and multi-focusing.
Section 3 provides the definition of expansion trees and their interconversion with sequent
proofs. Section 4 presents the main technical result that maximal multi-focused proofs are
isomorphic to expansion proofs. We begin with a quick summary of related work.

1.1 Related Work
1.1.1 Denotational Semantics of Classical Proofs
It is well known that cut-elimination using Gentzen’s cut-reduction rules is non-confluent
for LK proofs [12, 3, 17]. It is generally believed that classical logic lacks a denotational
semantics for proofs akin to Cartesian-closed categories (CCC) for intuitionistic logic or
?-autonomous categories for linear logic. For example, if one tries to enrich the usual CCC
semantics for intuitionistic logic with an involutive negation, then the CCC degenerates into
a poset that equates all proofs of a formula (Joyal’s paradox) [23].

This problem has been attacked from both the syntactic and the semantic ends. Of the
syntactic approaches, one can recover confluence (up to a small equivalence relation) as well
as strong normalization by fixing particular cut-reduction strategies [8]. If one refrains from
fixing a reduction strategy one may still obtain a strongly normalizing though non-confluent
system by using sufficiently strong local reductions [31, 32]. Another approach is to carry out
cut-elimination in a more abstract formalism, similar to a proof-net, on the level of quantifiers
(see [14] and [25]). The reduction in such a setting is typically not confluent and strong
normalization is open [25] or known not to hold [14]. Confluence (up to the equivalence
relation of having the same expansion tree) as well as normalization can be recovered for a
class of proofs [19] by considering a maximal abstract reduction based on tree grammars [18]
which contains all concrete reductions. Extension of these results to all proofs is open.

From the semantic end, briefly, there are two principal approaches. The first approach
rejects the involutive negation, which results in negation having a computational content
that can be reified in the λµ calculus with a semantics in terms of control categories (see [15]
for a survey). The second approach rejects the Cartesian structure for conjunctions, which
requires a variant of proof-nets called flow graphs for the proofs and a semantics in terms of
enriched Boolean categories [21, 30].

1.1.2 Cut-Free Formalisms
This paper deals with the question of recovering the essence of cut-free sequent proofs. There
are a number of alternative approaches to this question. For example, the notion of proof-nets
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4 A Systematic Approach to Canonicity in the Classical Sequent Calculus

while well-behaved on MLL does not scale nicely to larger logics. Girard sketched a design of
proof-nets for classical logic [12] that was subsequently fully formalized by Robinson [29], but
these nets differentiate between some sequent proofs that are related by rule permutations
because of the non-canonicity of weakening nodes. Similar problems also exist for the B/N-net
formalisms [22] based on flow graphs, or the combinatorial proofs of Hughes [20]. It is possible
to recover the canonicity lost with Robinson’s proof-nets by removing weakening (with the
use of MIX) and rigidly controlling contraction [26]. This results in expansion nets, which
are related to expansion trees [27], but are limited to the propositional fragment.

Expansion trees, because they generalize Herbrand disjunctions, are applicable to first-
order and even higher-order logics. They achieve this generality by recording only the
quantifier instances in a tree structure, and therefore have an expensive correctness criterion
involving checking that the deep formula for an expansion tree is a tautology. The mating
method [2] or the connection method [5] represents these tautological checks using graph
structures, but the correctness criteria for such structures are no less expensive to check than
deciding whether the deep formula is a tautology.

To our knowledge, there has been only a single attempt to produce canonical proof
structures directly in the sequent calculus, in this case for >-free propositional MALL [7].
This attempt also used multi-focusing as its abstraction mechanism, and it is actually the
first place where the concept of maximally multi-focused proofs appears in the literature. It
is important to note that the notion of a maximal multi-focused proof strictly generalizes
existing canonical forms in other contexts. For example, for intuitionistic logic, if one uses
the focused sequent calculus LJF [24] with just the two negative connectives of implication
and universal quantification and with negative atomic formulas, then maximal multi-focused
proofs are the same as singly focused proofs. Moreover, they correspond to the familiar
β-normal η-long forms of the typed λ-calculus [9].

2 Background: Sequent Calculus, Focusing, and Canonicity

We use the usual syntax for (first-order) formulas (A,B, . . . ) and connectives drawn from
{∧,>,∨,⊥,¬,∀,∃}. Atomic formulas (a, b, . . . ) are of the form p(t1, . . . , tn) where p repre-
sents a predicate symbol and t1, . . . , tn are first-order terms (n ≥ 0). Formulas are assumed
to be identical up to α-equivalence and in negation-normal form (i.e., only atomic formulas
can be ¬-prefixed). We use literal to refer to either an atomic formula or a negated atomic
formula. We write (A)⊥ to stand for the De Morgan dual of A, and [t/x]A for the capture-
avoiding substitution of term t for x in A. We also write ∃~x.A for ∃x1. . . .∃xn. A, ∀~x.A for
∀x1. . . .∀xn. A, and [~t/~x] for [t1/x1] · · · [tn/xn] if ~x = x1, . . . , xn and ~t = t1, . . . , tn.

2.1 Sequent Calculus

We use one-sided sequents `Γ in which Γ is a multiset of formulas. Figure 1 contains the
inference rules for our sequent calculus that we call LKN. There is no cut rule, the initial rule
is restricted to atomic formulas, and all the rules except for ∃ are invertible. Since invertible
rules are associated with the negative polarity in focused proof systems, we use the N in
LKN to highlight the fact that is a variant of Gentzen’s LK calculus in which most rules are
invertible. The following rules are admissible in LKN; in these rules, A can be any formula.

`Γ, A `Γ, (A)⊥

`Γ cut `Γ, (A)⊥, A
arbinit `Γ

`Γ, A weak
`Γ
` [t/x]Γ subst



K. Chaudhuri, S. Hetzl, and D. Miller 5

`Γ,¬a, a init
`Γ, A `Γ, B
`Γ, A ∧B ∧ `Γ,> >

`Γ, A,B
`Γ, A ∨B ∨

`Γ
`Γ,⊥ ⊥

`Γ, A
`Γ, ∀x.A ∀

`Γ, [t/x]A
`Γ,∃x.A ∃

`Γ,∆
`Γ contr

Notes:
1. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.
2. In the contr rule, ∅ 6= ∆ ⊆set Γ. Here, ∆ ⊆set Γ denotes the set inclusion of the underlying

sets of the multisets ∆ and Γ.

Figure 1 Rules of LKN.

These admissible rules easily allow us to mimic any of the other standard inference rules for
this logic in LKN, including Gentzen’s original LK calculus, so completeness is immediate.
Soundness is equally trivial as every rule preserves classical validity under the interpretation
of a sequent `A1, . . . , An as the formula A1 ∨ · · · ∨An.

The reflexive-symmetric-transitive-congruence closure of the permutation steps defines
the equivalence relation ∼ over LKN proofs. One of the standard goals of proof theory is to
find canonical syntactic representatives of the permutative equivalence classes for a given
sequent calculus. We shall employ focusing to produce such representatives of LKN proofs,
following a technique introduced in [7] for >-free multiplicative-additive linear logic (MALL)
using the technical device of multi-focusing.

There is one critical difference between the approach of [7] and that of this paper: we
restrict permutation steps to cases where both of the rules being permuted have at least one
premise. In other words, >/r and init/r permutation steps are impossible for any rule r; in
particular, we disallow the following permutation step.

`Γ,∆,> >

`Γ,> contr −→
`Γ,> >

If such permutation steps were to be allowed, then the induced equivalence on LKN proofs
would equate arbitrary sub-proofs and defeat any attempt at canonicity. Observe that
preventing such permutations does not affect the classical symmetries, i.e., A continues to
be identical to ((A)⊥)⊥.

2.2 Focused Sequent Calculus
The proof-theoretic analysis of the logic programming paradigm developed in the 1980s
accounted for notions of goal-reduction and back-chaining as two alternating phases in
the construction of (cut-free) sequent proofs [28]. Andreoli [1] developed the notion of
focused sequent proofs for classical linear logic as a generalization of this earlier work in
logic programming. Subsequently, focused sequent calculus proofs have been written for
intuitionistic and classical logics [24]. Such proof systems are increasingly being seen as
general proof-theoretic tools for uncovering structures within proofs.

A focused calculus partitions formulas into positive and negative polarities based on
the permutation properties of their sequent rules. Similarly, the introduction rules in a
focused calculus appear in either one of two phases. The asynchronous or negative phase

CSL’12



6 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Invertible

`Γ, L ⇑∆
`Γ ⇑∆, L store

`Γ ⇑∆, A `Γ ⇑∆, B
`Γ ⇑∆, A ∧B ∧ `Γ ⇑∆,> >

`Γ ⇑∆, A,B
`Γ ⇑∆, A ∨B ∨

`Γ ⇑∆
`Γ ⇑∆,⊥ ⊥

`Γ ⇑∆, A
`Γ ⇑∆, ∀x.A ∀

Existential

`Γ ⇓∆, [t/x]A
`Γ ⇓∆, ∃x.A ∃

Structural

`Γ,¬a, a ⇑ · init
`Γ ⇓∆
`Γ ⇑ · decide

`Γ ⇑∆
`Γ ⇓∆ release

Notes:
1. In the store rule, L is a literal or an existential formula.
2. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.
3. In the decide rule, ∆ contains only existential formulas and ∅ 6= ∆ ⊆set Γ.
4. In the release rule, ∆ contains no existential formulas.

Figure 2 Rules of LKNF.

consists of applying1 all available invertible rules to the negative non-atomic formulas, in
an arbitrary order, until none remains. The synchronous or positive phase is then launched
per sequent by focusing on one or more positive formulas using a rule called decide. In this
phase, non-invertible rules are applied to the focused formulas and, crucially, the focus is
maintained on the positive subformulas in the premises of the applied rule. The positive
phase persists until the focused formulas all become negative; the proof then switches back
to the negative phase by a rule named release.

Formally, we will use a sequent calculus that closely resembles the LKF system as given
in [24], with some important differences. First, LKF allows only a single focus formula while
our calculus will allow multiple foci. (It is a simple matter to add multi-focusing to LKF.) A
second and bigger difference is that the LKF proof system contains a positive and negative
version of both conjunction and disjunction, while we will use only the negative versions of
these connectives. This choice is motivated by our desire to model the Herbrand disjunctions
underlying expansion proofs, where the propositional content is elided. The last difference is
that the positive phase in LKF can contain instances of the initial and ∃-introduction rules,
but for our goal of obtaining a variant of Herbrand’s theorem we will need a clean separation
of quantification rules and propositional rules. The critical issue is that in LKF there is only
a single proof of `¬p(a),∃x. p(x) ⇑ ·, while there are infinitely many expansion proofs of
¬p(a) ∨ ∃x. p(x) that simply differ in their numbers of instances of the existential quantifier.
One way to limit the focusing strength of LKF to obtain these other proofs is to replace all
the occurrences of positive literals L with a delayed literal (L ∧ >), which is equivalent but
of negative polarity.

In Figure 2 we present our focused sequent calculus LKNF. It can be seen as the multi-
focused variant of LKF with only negative propositional connectives and implicitly delayed
positive literals. Since the positive phase of LKNF only involves the existential quantifier,
we rename the “positive phase” of LKF as the “existential phase”. The two phases of LKNF

1 In this paper we use “apply” to stand for a reading of an inference rule from conclusion to premises.
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proofs are depicted using two different sequent forms: negative sequents of the form `Γ ⇑∆
and positive sequents of the form `Γ ⇓∆. In either form, Γ is a multiset of literals or
existential formulas, and ∆ is a multiset of arbitrary formulas. In the positive sequent
`Γ ⇓∆, we say that the formulas in ∆ are its foci and we require ∆ to be non-empty. We
write `Γ m∆ to stand for either sequent form.

The inference rules of LKNF are divided into three classes. The invertible rules all apply
to negative sequents and contain no essential non-determinism. The existential rule is
non-invertible: the witness terms must be recorded in the proof. The final class of structural
rules includes: the init rule for initial sequents; the decide rule where a number of existential
formulas are copied, possibly more than once, to the foci of a new positive phase; and the
release rule to leave the positive phase when none of the foci is an existential formula.

LKNF is sound and complete with respect to LKN; to make this statement precise, we
inject LKNF proofs to LKN proofs.

I Definition 1. For any LKNF proof π, we write [π] to stand for that LKN proof that:
replaces all sequents of the form `Γ m∆ with `Γ,∆;
removes all instances of the rules store and release; and
renames decide to contr in π.

I Theorem 2 (LKNF vs. LKN).
1. If π is an LKNF proof of `Γ m∆, then [π] is an LKN proof of `Γ,∆ (soundness).
2. If `∆ is provable in LKN, then ` · ⇑∆ is provable in LKNF (completeness).

Proof. Soundness is immediate by inspection. Completeness follows by observing that the
LKF calculus of [24], which is complete for LK (and hence also for LKN), is simply a singly
focused fragment of LKNF if all its connectives are negatively biased and delays are inserted
as needed around literals. J

We can also define an equivalence over LKNF proofs in terms of rule permutations. The
permutations in the focused setting are subtle; certain permutations such as decide/store are
simply impossible. We therefore exploit the injection of definition 1 to bootstrap the LKNF
equivalence using the LKN equivalence.

I Definition 3. Two LKNF proofs π1 and π2 of the same sequent are equivalent, written
π1 ∼ π2, iff [π1] ∼ [π2].

2.3 Canonicity

The main benefit of focusing is that the introduction rules of the unfocused calculus (LKN)
coalesce into larger synthetic rules that represent actions. Every action begins at the bottom
with an instance of decide, and the action ends with premises of the form `Γ ⇑ ·. The
underlying LKN rules inside a single action can be freely permuted with each other, and it
is not important to record their particular sequence. In other words, two equivalent LKNF
proofs should be considered “the same” if they use the decide rules in the same way; we call
such proofs action equivalent.

I Definition 4. Two LKNF proofs π1 and π2 of the same sequent are action equivalent,
written π1 ∼= π2, iff they are equivalent (definition 3) and are tree-isomorphic for the instances
of the decide rules.

CSL’12



8 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Action equivalence gives us the “essence” of cut-free focused sequent proofs. Since two
action equivalent proofs have the same decide rules, one can reason about such proofs by
induction on the decision depth—i.e., the depth of the decide rules—in the LKNF proof. If
from a proof we simply elide all but the decide rules, and record the existential witnesses
along with these instances of decide, we can then obtain a canonical synthetic representation
of the proof directly in the sequent calculus. (It is indeed possible to build a sequent calculus
that uses solely synthetic sequent rules [6].)

Two equivalent LKNF derivations need not be action equivalent as they may perform the
decide steps in a different order or with different foci. However, each equivalence class of
LKNF proofs does have a canonical form where the foci of each decide rule are selected to be
as numerous as possible.

I Definition 5 (Maximality). Given an LKNF proof π that ends in an instance of decide, we
write foci (π) for the foci in the premise of that instance of decide. We say that the instance
is maximal iff for every π′ ∼ π, it is the case that foci (π′) ⊆multiset foci (π). An LKNF proof
is maximal iff every instance of decide in it is maximal.

The two main properties of maximal proofs are that equivalent maximal proofs are action
equivalent, and that for every proof there is an equivalent maximal proof. This pair of results
guarantees that the maximal proofs are canonical (action equivalent) representatives of their
∼-equivalence classes. Similar theorems have appeared in [7, 6].

I Theorem 6 (Canonicity).
1. Every LKNF proof has an equivalent maximal proof.
2. Two equivalent maximal LKNF proofs are action equivalent.

Proof. Because init/contr and >/contr permutations are disallowed, equivalent proofs have
the same multiset union of all the foci of their decide rules. Using the consolidated form of
contr/contr permutations, the foci of the instances of decide can be divided or combined as
needed. Therefore, there is a merge operation that, starting from the bottom of an LKNF
proof and going upwards, permutes and merges foci into the lowermost decide instances
by splitting them from higher instances. This merge operation obviously terminates (by
induction on the decision depth); moreover, the result is maximal by definition 5.

To see that two given equivalent maximal proofs are action equivalent, suppose the
contrary. Then there is a lowermost instance of decide in the two proofs that have an
incomparable multiset of foci (if they were comparable, then either one of the proofs is not
maximal or they are action equivalent). Since the proofs are equivalent, these two decide rules
themselves permute; hence, their foci can be merged as above, contradicting our assumption
that they are maximal. J

I Definition 7. Theorem 6 shows that for every LKNF proof π there is a unique action
equivalence class corresponding to the maximal proofs of π. We write max(π) for this class.

In other words, max(π) is the maximally parallel structure of decide and existential
inferences corresponding to π. A simple corollary of the completeness of LKNF and canonicity
is Herbrand’s theorem for prenex formulas.

I Corollary 8 (Herbrand’s theorem). The formula ∃~x.A, where A is quantifier-free, is valid
if and only if there is a sequence of vectors of terms ~t1, . . . ,~tn such that the disjunction
[~t1/~x]A ∨ · · · ∨ [~tn/~x]A is valid.
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Proof. One direction is trivial. Suppose ∃~x.A is valid, i.e., the LKN sequent `∃~x.A is
provable. By theorem 2 ` · ⇑ ∃~x.A is provable in LKNF, i.e., `∃~x.A ⇑ · is provable as only
store applies to the former. Because A is quantifier-free, the decide rule can only apply to
∃~x.A; thus, the equivalent maximal proof (which exists by Theorem 6) performs only (at
most) a single decide at the bottom, producing a number of focused copies of ∃~x.A. In the
positive phase, the ∃s are removed from the foci to give the required term vectors. J

3 Expansion Trees

Herbrand’s theorem [16] tells us that recording how quantifiers are instantiated is sufficient
to describe a proof of a prenex normal formula. Gentzen [10] noticed this also in (cut-free)
proofs of a prenex normal sequents via the mid-sequent. Miller [27] defined expansion trees
for full higher-order logic as a structure to record such substitution information without
restriction to prenex normal form. We will use a first-order version of this notion here.

I Definition 9. Expansion trees and a function Sh(·) (for shallow) that maps an expansion
tree to a formula are defined as follows:

1. A literal L is an expansion tree with Sh(L) = L and top node L.

2. If E1 and E2 are expansion trees and ◦ ∈ {∧,∨}, then E1 ◦ E2 is an expansion tree with
top node ◦ and Sh(E1 ◦ E2) = Sh(E1) ◦ Sh(E2).

3. If E is an expansion tree with Sh(E) = [y/x]A and y is not an eigenvariable of any node in
E, then ∀x.A+y E is an expansion tree with top node ∀x.A and Sh(∀x.A+y E) = ∀x.A.
The variable y is called an eigenvariable of its top node.

4. If {t1, . . . , tn} is a set of terms and E1, . . . , En are expansion trees with Sh(Ei) = [ti/x]A
for i = 1, . . . , n, then E′ = ∃x.A +t1 E1 . . . +tn En is an expansion tree with top node
∃x.A and Sh(E′) = ∃x.A. The terms t1, . . . , tn are known as the expansion terms of its
top node. We allow the case where n = 0.

Note that the requirement of y not being an eigenvariable of any node in E in the clause
for the universal node ensures that each eigenvariable appears only once in an expansion
tree. In the context of proofs this condition is often formulated globally and called regularity.
The reason for requiring this property of expansion trees is that the correctness criterion
is global and hence needs globally unique variable names. In contrast, the correctness of a
sequent proof is locally checkable, so the (local) eigenvariable condition is enough. We shall
consider eigenvariables within expansion trees to be bound over the entire expansion tree
and that systematic changes to eigenvariable names (α-conversion) result in equal trees.

There is a simple way to coerce a formula into an expansion tree: use the bound variable
of a universally quantified subformula as that quantifiers eigenvariable and use the empty
set of terms to expand an existentially quantified formula. Whenever we use a formula to
denote an expansion tree, we shall assume that we use this coercion.

I Example 10. The expression

∃x. (¬d(x) ∨ ∀y. d(y)) +c (¬d(c) ∨ (∀y. d(y) +u d(u))) +u (¬d(u) ∨ (∀y. d(y) +v d(v)))

CSL’12
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is an expansion tree that can alternatively be written as follows.

∃x. (¬d(x) ∨ ∀y. d(y))

¬d(c) ∨ ∀y. d(y) ¬d(u) ∨ ∀y. d(y)

¬d(c) ∀y. d(y)

d(u)

¬d(u) ∀y. d(y)

d(v)

c
eeeeeeeeeeee u

YYYYYYYYYYYY

lllllll
RRRRRRR

u

lllllll
RRRRRRR

v

So far, we have only described a basic data structure for storing quantifier instances; we still
lack a correctness criterion for deciding when such a tree is a proof. For this criterion we
need the following function Dp(·) (for deep).

I Definition 11. For an expansion tree E, the quantifier-free formula Dp(E), called the
deep formula of E, is defined as:

Dp(E) = E for a literal E,
Dp(E1 ◦ E2) = Dp(E1) ◦Dp(E2), for ◦ ∈ {∧,∨},
Dp(∀x.A+y E) = Dp(E), and
Dp(∃x.A+t1 E1 . . .+tn En) =

∨n
i=1 Dp(Ei). If n = 0 then Dp(∃x.A) = ⊥.

In addition to considering expansion trees (of formulas) we will also consider expansion
sequents (of sequents). If S = `A1, . . . , An is a sequent and E1, . . . , En are expansion trees
with Sh(Ei) = Ai, then `E1, . . . , En is called an expansion sequent of S if whenever Ei and
Ej share an eigenvariable then i = j. For an expansion sequent E = `E1, . . . , En, define
Dp(E) = `Dp(E1), . . . ,Dp(En) and Sh(E) = ` Sh(E1), . . . ,Sh(En). A second component of
the correctness criterion involves the following dependency relation.

I Definition 12. Let E be an expansion tree or expansion sequent and let <0
E be the binary

relation on the occurrences of the expansion terms in E defined by t <0
E s if there is an x

which is free in s and which is the eigenvariable of a node dominated by t. Then <E , the
transitive closure of <0

E , is called the dependency relation of E .

In terms of the sequent calculus, t <E s means that the inference corresponding to t must
be below the inference corresponding to s.

I Definition 13. Let A be a formula (S be a sequent). An expansion tree E of A (or
respectively an expansion sequent E of S) is called an expansion proof of A (respectively S)
if <E is acyclic and Dp(E) is a tautology.

I Example 14. Let E be the expansion tree of example 10. It has two expansion terms: c and
u. We have c <E u because the node labeled with c dominates the ∀-node with eigenvariable
u. However u ≮E c, so <E is acyclic; furthermore, Dp(E) = ¬d(c)∨d(u)∨¬d(u)∨d(v), which
is a tautology. So, E is an expansion proof of the formula Sh(E) = ∃x. (¬d(x) ∨ ∀y. d(y)).

3.1 Expansions from Proofs
We now turn to describing how to read off an expansion proof from a sequent calculus proof.
To that aim, the following merge-operation on expansion trees will be useful.

I Definition 15. Let E1 and E2 be expansion trees with Sh(E1) = Sh(E2). Then their
merge E1 ∪ E2 is defined as follows:
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1. If A is a literal then E1 ∪ E2 = E1 = E2 = A.
2. If E1 = E′1 ◦E′′1 and E2 = E′2 ◦E′′2 for ◦ ∈ {∧,∨}, then E1 ∪E2 = (E′1 ∪E′2) ◦ (E′′1 ∪E′′2 ).
3. If E1 = ∀x.B +y1 E′1 and E2 = ∀x.B +y2 E′2, then E1 ∪ E2 = ∀x.B +y1 (E′1 ∪ [y1/y2]E′2).

Alphabetic change of eigenvariable names in E′1 and E′2 might be necessary to do this
merge in general.

4. If E1 = ∃x.B +r1 E1,1 . . . +rk E1,k +s1 F1 . . . +sl Fl and E2 = ∃x.B +r1 E2,1 . . . +rk

E2,k +t1 G1 . . .+tm Gm where {s1, . . . , sl} ∩ {t1, . . . , tm} = ∅, then E1 ∪ E2 =

∃x.B +r1 (E1,1 ∪ E2,1) . . .+rk (E1,k ∪ E2,k) +s1 F1 . . .+sl Fl +t1 G1 . . .+tm Gm

The merge of expansion sequents is component-wise.

We now present an explicit mapping from LKN proofs to expansion proofs.

I Definition 16. Let π be an LKN-proof. The expansion sequent E(π) is defined by induction:
if π is the initial rule with conclusion `Γ,¬a, a, then let E(π) = Γ,¬a, a. (It is straightforward
to coerce the formulas in Γ into expansion trees.) The analogous translation is needed for
the introduction rule for >. The remaining cases for π are the following.

(a)

(π1)
`Γ, A

(π2)
`Γ, B

`Γ, A ∧B ∧ (b)

(π′)
`Γ, A
`Γ, ∀x.A ∀

(c)

(π′)
`Γ, [t/x]A
`Γ, ∃x.A ∃ (d)

(π′)
`Γ,∆
`Γ contr

For case (a), if E(π1) = E1, E1 and E(π2) = E2, E2, then E(π) = E1 ∪ E2, E1 ∧ E2. Analogous
definitions apply for the other propositional rules. For case (b), if E(π′) = E , E, then
E(π) = E ,∀x.A +y [y/x]E where y is not an eigenvariable of a node in E , E. For case (c),
if E(π′) = E , E, then E(π) = E ,∃x.A +t E. Finally, for case (d), let Γ = A1, . . . , An with
corresponding expansion trees E1, . . . En in E(π′). For i ∈ {1, . . . , n} let ki be the number of
copies of Ai in ∆ and let Ei,1, . . . , Ei,ki

be the expansion trees corresponding to them. Then
E(π) = E1

⋃k1
j=1E1,j , . . . , En

⋃kn

j=1En,j .

The above definition extends to the focused setting in a straightforward way by defining
E(π) = E([π]) for an LKNF-proof π.

I Theorem 17. If π is an LKN- or LKNF-proof, then E(π) is an expansion proof.

Proof. That Dp(E(π)) is a tautology can be shown by induction on the depth of π treating
each of the cases of definition 16. Acyclicity of <E(π) follows from the side condition of the
∀-rule and the appropriate choice of variable names in definition 16. J

3.2 Sequentialization
For translating expansion trees to LKNF-proofs we will proceed in two phases: first we
translate an expansion tree to a proof in an intermediate calculus LKNFE which has the
structure of LKNF but instead of working on sequents it works on expansion sequents.
Secondly we map an LKNFE-proof π to an LKNF-proof Sh(π) which is defined by applying
Sh(·) to every expansion tree appearing in the proof. This operation will indeed yield a
valid LKNF-proof as the Sh-image of a LKNFE-rule will be a LKNF-rule. In particular, the
decide-rule of LKNFE is the following, where ∆ is a choice of some instances which are
present in Γ and Γ′ are the remaining instances.

`Γ′ ⇓∆
`Γ ⇑ · decide

CSL’12



12 A Systematic Approach to Canonicity in the Classical Sequent Calculus

Formally: Γ = E1, . . . , En where Ei = ∃x.Ai+ti,1 Ei,1 · · ·+ti,ni Ei,ni and Γ′ = E′1, . . . , E
′
n

where E′i = ∃x.Ai +ti,1 Ei,1 · · · +ti,ki Ei,ki
with 0 ≤ ki ≤ ni and ∆ = ∆1, . . . ,∆n where

∆i = {∃x.Ai +ti,j Ei,j | ki < j ≤ ni}. The rule for existentials in LKNFE is:

`Γ ⇓∆, E
`Γ ⇓∆,∃x.A+t E

The other rules are adapted in the natural way.
When writing down expansion trees for formulas which contain blocks of quantifiers

we will abbreviate using a vector notation. For example, the expansion term ∃x. ∃y.A+t

(∃y. [t/x]A+s1 E1 +s2 E2) is abbreviated as ∃(x, y). A+(t,s1) E1 +(t,s2) E2. If the length of a
vector is irrelevant, we write ~x for a vector of variables and ~t for a vector of terms.

We distinguish proofs and derivations in a calculus. While the initial sequents of a proof
are among those declared in the definition of the calculus, the initial sequents of a derivation
are arbitrary. The construction of an LKNFE-proof from an expansion proof will be done in
a phase-wise manner, the derivation containing the negative phase is defined as follows.

I Definition 18 (π−). Let `Γ ⇑∆ be a focused expansion sequent where ∆ consists of
non-existential expansion trees only. Define the LKNFE-derivation π−`Γ⇑∆ of `Γ ⇑∆ by
exhaustive application of negative rules and stores. These lead to expansion sequents
`Γ,∆1 ⇑ ·, . . . , `Γ,∆n ⇑ · and to finishing the proof in case n = 0.

We now define a derivation corresponding to the positive phase in a way that will have
the effect that sequentializations of expansion trees are always maximal. This property will
be crucial for the main theorem of this paper.

I Definition 19 (π+). Let `Σ ⇑ · be a focused expansion sequent and define the LKNFE-
derivation π+

`Σ⇑· of `Σ ⇑ · as follows. Let Σ = Γ,∆ where Γ are the non-existential
expansion trees and ∆ = {E1, . . . , En} are the existential expansion trees of Σ. Then
Ei = ∃~x.Ai +~ti,1 Ei,1 · · ·+~ti,ni Ei,ni

where Ai is a negative formula. For i ∈ {1, . . . , n} let
w.l.o.g. {1, . . . , ki} = {j | 1 ≤ j ≤ ni, all terms in ~ti,j are <Σ -minimal}. Define ∆′i as
{∃~x.Ai +~ti,1 Ei,1, . . . ,∃~x.Ai +~ti,ki Ei,ki

} and ∆′′ as {E′′1 , . . . , E′′n} where E′′i = ∃~x.Ai +~ti,ki+1

Ei,ki+1 · · ·+~ti,ni Ei,ni
and apply the decide rule as

`Γ,∆′′ ⇓∆′1, . . . ,∆′n
`Σ ⇑ · decide

Because all the expansion terms in ∆′i are <Σ-minimal, exhaustive application of existential
inferences is possible and, followed by a release, leads to a sequent `Γ,∆′′ ⇑Θ where Θ
consists of non-existential expansion trees only.

I Theorem 20 (Sequentialization). If E is an expansion proof, then ` ⇑ Sh(E) in LKNF.

Proof. First, let the LKNFE-proof πE of ` · ⇑ E be
(ψ)
`Γ ⇑∆....
` · ⇑ E

where ∆ consists of non-existential expansion trees only and ψ is obtained by alternating
instances of π− and π+ for appropriate expansion sequents. This construction can be carried
out as Dp(F) is a tautology for every expansion sequent F in ψ and it terminates as the
number of nodes of the current expansion sequent strictly decreases with each line of the
proof. Then Sh(πE) is indeed an LKNF-proof of ` · ⇑ Sh(E). J
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I Definition 21 (Sequentialization). The LKNF-proof Sh(πE) constructed in the above proof
of the sequentialization theorem will be denoted by Seq(E).

4 Equivalence

A first central observation concerning the relationship of rule permutations and expansion
trees is that the former do not change the latter.

I Theorem 22. If π1 and π2 are LKN-proofs with π1 ∼ π2 then E(π1) = E(π2).

Proof. Instead of spelling out the proof for every rule permutation, here is just the ∧/∃-
case. Here, π1 contains a subproof of the form (a) below, where E(π′1) = E1, E1, E

′ and
E(π′′1 ) = E2, E2, E

′′.

(a)

(π′
1)

`Γ, A, [t/x]C
(π′′

1 )
`Γ, B, [t/x]C

`Γ, A ∧B, [t/x]C
∧

`Γ, A ∧B,∃x.C ∃ (b)

(π′
1)

`Γ, A, [t/x]C
`Γ, A, ∃x.C ∃

(π′′
1 )

`Γ, B, [t/x]C
`Γ, B, ∃x.C ∃

`Γ, A ∧B,∃x.C ∧

By definition 16, the expansion sequent of this subproof is E1∪E2, E1∧E2,∃x.C+t (E′∪E′′).
The corresponding subproof in π2 has the form (b) above and the corresponding expansion
sequent is E1 ∪ E2, E1 ∧ E2, (∃x.C +t E′) ∪ (∃x.C +t E′′) which by definition 15 is equal to
E1 ∪ E2, E1 ∧ E2,∃x.C +t (E′ ∪ E′′). J

We now turn back to the sequentialization procedure for constructing an LKNF-proof from
an expansion proof. The procedure used in Theorem 20 has been designed for producing
only maximal proofs as shown in the following lemma.

I Lemma 23. If E is an expansion proof, then Seq(E) is maximal.

Proof. Suppose Seq(E) is not maximal, then it contains a subproof π ending with a decide
inference s.t. there exists a proof π′ with π ∼ π′ and foci (π) ⊂multiset foci (π′). So there is
an existential formula ∃x.A in foci (π′) \ foci (π) to which in πE corresponds an expansion
∃x.A+tE′. As rule permutations allow to shift down the instantiation of the expansion term
t over all ∀-inferences, the term t must be <F -minimal for F being the expansion sequent
corresponding to the conclusion sequent of π in Seq(E). This is a contradiction to the choice
of ∆′′ and ∆′i made in definition 19. J

I Lemma 24. If π is a maximal LKNF-proof, then π ∼= Seq(E(π)).

Proof. We proceed by induction on the decision depth of π. If π ends with a positive phase,
it is of the form (a) below where the Ai are non-existential formulas and π′ ∼= Seq(E(π′)) by
induction hypothesis.

(a)

(π′)
`Γ′ ⇓ [~t1/~x1]A1, . . . , [~tn/~xn]An....
`Γ′ ⇓ ∃~x.A1, . . . , ∃x.An

`Γ ⇑ · decide (b)

(π1)
`Γ,∆1 ⇑ · · · ·

(πn)
`Γ,∆n ⇑ ·....

`Γ ⇑∆
`Γ ⇓∆ release

As π is maximal, the existential inferences in this phase are in 1-1 correspondence to the
<E(π)-minimal expansion terms of E(π). Therefore, by definition 19, Seq creates the shown
segment of π from E(π) up to permutations of the existential inferences inside this segment.

CSL’12



14 A Systematic Approach to Canonicity in the Classical Sequent Calculus

If π ends with a negative phase, then it is of the form (b) above where ∆ does not
contain an existential formula. If n = 0, then π consists only of this phase and we are done.
Otherwise we have πi ∼= Seq(E(πi)) for i = 1, . . . , n by induction hypothesis. For fixed ∆,
the sequents `Γ,∆1 ⇑ ·, . . . , `Γ,∆n ⇑ · are uniquely determined and there are no decide
and existential inferences in the negative phase so we obtain π ∼= Seq(E(π)). J

A maximal proof corresponding to π can be obtained via rule permutations as in the first
part of theorem 6. Reading off an expansion tree from π and then re-sequentializing this
tree gives an alternative way to compute a maximal proof as the following theorem shows.

I Theorem 25. For any LKNF proof π: Seq(E(π)) ∈ max(π).

Proof. By the first part of theorem 6 there is a π′ ∼ π with π′ ∈ max(π). Applying lemma 24
to π′ shows that π′ ∼= Seq(E(π′)) and hence Seq(E(π′)) ∈ max(π) but by theorem 22 we have
E(π′) = E(π), so we obtain Seq(E(π)) ∈ max(π). J

We can now finally obtain the equivalence of expansion trees and maximal proofs with respect
to the induced identity notion for proofs. This theorem is our main technical result about
proofs in first-order classical logic: the abstractions of LKNF proofs provided by expansion
trees and by maximal multi-focusing are the same.

I Theorem 26. Let π1, π2 be LKNF proofs. Then E(π1) = E(π2) iff max(π1) = max(π2).

Proof. For the left-to-right direction let E = E(π1) = E(π2). Theorem 25 then implies that
that Seq(E) is in both max(π1) and max(π2), so max(π1) = max(π2). The right-to-left
direction follows directly from theorem 22. J

5 Conclusion

We have illustrated that, instead of discarding the sequent calculus in search of canonical
proof systems, sequent proofs can be systematically abstracted by (maximal) multi-focusing
into canonical structures. In this paper, we have imposed a particular focusing discipline on
classical sequent proofs—negatively polarized propositional connectives and delayed literals—
and have then showed that maximal multi-focusing in the sequent calculus yields the parallel
and minimalistic notion of proofs based on expansion trees. Our framework is obviously
generative as well: there are other polarizations within classical logic and in focused proof
systems for intuitionistic and linear logics. Maximal multi-focusing yields different canonical
structures for these other polarizations.
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