
A Logic for Reasoning with Higher-Order Abstract Syntax

Raymond McDowell and Dale Miller
Computer and Information Science Department

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

mcdowell@saul.cis.upenn.edu, dale@saul.cis.upenn.edu

Abstract

Logical frameworks based on intuitionistic or linear log-
ics with higher-type quantification have been successfully
used to give high-level, modular, and formal specifications
of many important judgments in the area of programming
languages and inference systems. Given such specifica-
tions, it is natural to consider proving properties about the
specified systems in the framework: for example, given the
specification of evaluation for a functional programming
language, prove that the language is deterministic or that
the subject-reduction theorem holds. One challenge in de-
veloping a framework for such reasoning is that higher-
order abstract syntax (HOAS), an elegant and declarative
treatment of object-level abstraction and substitution, is dif-
ficult to treat in proofs involving induction. In this paper,
we present a meta-logic that can be used to reason about
judgments coded using HOAS; this meta-logic is an exten-
sion of a simple intuitionistic logic that admits higher-order
quantification over simply typed �-terms (key ingredients
for HOAS) as well as induction and a notion of definition.
The latter concept of a definition is a proof-theoretic device
that allows certain theories to be treated as “closed” or as
defining fixed points. The resulting meta-logic can specify
various logical frameworks and a large range of judgments
regarding programming languages and inference systems.
We illustrate this point through examples, including the ad-
missibility of cut for a simple logic and subject reduction,
determinacy of evaluation, and the equivalence of SOS and
natural semantics presentations of evaluation for a simple
functional programming language.

1. Introduction

Meta-logics and type systems have been used to specify
the semantics of a wide range of logics and computation sys-
tems [2, 4, 11, 34]. This is done by making judgments, such
as “the term M denotes a program,” “the programM evalu-

ates to the value V ”, and “the program M has type T ”, into
predicates that can be proved or types for which inhabitants
(proofs) are needed. Since these specification languages
often contain quantification at higher-order types and term
structures involving �-terms, succinct and elegant specifi-
cations can be written using higher-order abstract syntax, a
high-level and declarative treatment of object-level bound
variables and object-level substitution [28, 33]. In other ap-
proaches to syntactic representation where bound variables
are managed directly using either names or deBruijn-style
numbering, these details must be carefully addressed and
dealt with at most levels of a specification.

Recently, logical specification languages have been used
to not only describe how to perform computations but
also describe properties about the encoded computations
[3, 19, 21, 38]. By proving these properties in a formal
framework, we can benefit from automated proof assistance
and gain greater confidence in our results. However, this
work has been done in languages that do not support higher-
order abstract syntax and so has not been able to benefit
from this representation technique. As a result, theorems
about substitution and bound variables can dominate the
task [38]. But meta-theoretic reasoning about systems rep-
resented in higher-order abstract syntax has been difficult
since the languages and logics that support this notion of
syntax do not provide facilities for the fundamental opera-
tions of case analysis and induction. Moreover, higher-order
abstract syntax leads to types and recursive definitions that
do not give rise to monotone inductive operators, making
inductive principles difficult to find.

These apparent difficulties can be overcome, and in this
paper we present a meta-logic in which we can naturally
reason about specifications in higher-order abstract syntax.
This meta-logic is a higher-order intuitionistic logic with
partial inductive definitions and natural number induction.
Induction on natural numbers allows us to derive other in-
duction principles via the construction of an appropriate
measure. A partial inductive definition [14] is a proof-
theoretic formalization that allows certain theories to be

treated as “closed” or as defining fixed points. This allows
us to perform case analyses on the defined judgments. We
use this definition mechanism to specify a small,object-level
logic which in turn is used to specify the computation sys-
tems under consideration. In this way, we can talk directly
about the structure of object-logic sequents and their prov-
ability. This technique of representing a logic within a logic
is not new (see, for example, [12, 31] for some early refer-
ences) and corresponds to the structure of common informal
reasoning.

In the next section we present our meta-logic and moti-
vate its design through an informal proof of subject reduction
for the untyped �-calculus. We proceed in Section 3 to use
this meta-logic to define an object-logic and describe some
of its meta-theory. Section 4 contains a specification in the
object-logic of the dynamic and static semantics for a sim-
ple functional programming language. We also list a variety
of theorems about the language that we have proved in our
meta-logic. Finally, Section 5 discusses some other research
with similar goals to our own, and Section 6 summarizes our
accomplishments and plans for continuing the work.

2. Designing the meta-logic

In this paper we use an intuitionistic logic for our meta-
logic; in particular, we start with an intuitionistic version of
a subset of Church’s Simple Theory of Types [5] (assuming
��-conversion for the equality of terms). Formulas will
have the type o, the logical constants for true and false are
> and?, for conjunction and implication are ^ and� , and
universal and existential quantification at type � are 8� and
9� . In this paper, � will not contain o and will be either of
primitive type or of order 1.

We use the following facts about cut-free intuitionistic
provability of sequents involving just these connectives [29].
Let P be a finite set of formulas and let B;B1, B2 be
formulas. The sequent P �! B1 ^ B2 is provable if and
only if the sequents P �! B1 and P �! B2 are provable,
and the sequent P �! B1 � B2 is provable if and only if
the sequent P; B1 �! B2 is provable. Furthermore, if P
does not contain any positive occurrences of an existential
quantifier, then the sequent P �! 8�x:B is provable if
and only if the sequent P �! B[y=x] is provable, where
y is some (eigen)variable that does not free occur in P or
in 8�x:B; the sequent P �! 9�x:B is provable if and
only if the sequent P �! B[t=x] is provable for some term
t of type � . Finally, if A is an atomic formula, then the
sequent P �! A is provable if and only if it is possible to
backchain on a formula inP: backchaining can be described
as the process of repeatedly applying left-introduction rules
to a given formula in P and its positive subformulas until
the atom A is exposed. In the particular case of formulas of
the form 8x̄(G1 ^ � � � ^ Gn � A0) (n � 0), backchaining

involves finding a substitution� for the variables x̄ such that
A0� equals A and the sequents P �! Gi� are provable for
all i = 1; : : : ; n. We write P ` B whenever the sequent
P �! B has a cut-free proof.

2.1. Motivation from informal reasoning

In order to motivate the extensions to the core of the
meta-logic presented above, we consider a specification of
call-by-name evaluation and simple typing for the untyped
�-calculus. To do this, we will find it useful to distinguish
between meta-level and object-level structures. For exam-
ple, at the meta-level we introduce two types, tm and ty, to
denote object-level terms and types. To represent the un-
typed�-terms we introduce the two meta-level constantsabs
of type (tm ! tm) ! tm and app of type tm ! tm ! tm
to denote object-level abstraction and application, respec-
tively. Using such a coding places �-equivalence classes of
object-level terms in one-to-one correspondence with ��-
equivalence classes in the meta-level. Object-level types
will be built up from a single primitive type using the arrow
type constructor; these are denoted at the meta-level by the
constants gnd of type ty and arr of type ty ! ty ! ty.

To specify call-by-name evaluation, we use an infix pred-
icate + of type tm ! tm ! o and the two formulas

8r:[(abs r) + (abs r)]
8m;n; v; r:[m + (abs r) ^ (r n) + v � (app m n) + v]

(Here we took the liberty of abbreviating a list of universal
quantifiers as a universal quantifier of a list of variables.
We also dropped the type subscript on quantifiers since the
context makes their type clear: here, all variables are of type
tm except for r which is of type tm ! tm.) Meta-level �-
reduction on instances of (r n) will perform the substitution
of the term n into the abstraction r.

To specify simple typing at the object-level, we use the
binary predicate typeof of meta-level type tm ! ty ! o
and the two formulas

8m;n; t; u:[typeof m (arr u t) ^ typeof n u
� typeof (app m n) t]

8r; t; u:[8x:[typeof x t � typeof (r x) u]
� typeof (abs r) (arr t u)]

Here, notice that the meta-level use of implication and uni-
versal quantification with the typing rule for abs provides
an elegant management of the typing of object-level bound
variables. Proofs that these two predicates correctly capture
the notions of call-by-name evaluation and of simple typing
can be found in various places in the literature: see, for
example, [2, 34].

Now consider the following theorem and its proof. To
simplify the presentation we omit displaying on the left of
the turnstile the above formulas encoding evaluation and
typing.

Theorem 2.1 If P evaluates to V and P has type T then V
has type T .

Proof Given our specifications above, we prove this the-
orem by proving by induction on the height of the proof of
P + V that for all T , if ` typeof P T then ` typeof V T .
Since P + V is atomic, its proof must end by backchain-
ing on one of the formulas encoding evaluation. If the
backchaining is on the eval formula for abs, then P and
V are both equal to abs R, for some R, and the conse-
quent is immediate. If P + V was proved using the eval
formula for app, then P is of the form app M N and for
some R, there are shorter proofs of M + (abs R) and
(RN) + V . Since ` typeof (app M N) T , this typing
judgment must have been proved using backchaining and,
hence, there is a U such that ` typeof M (arr U T) and
` typeof N U . Using the inductive hypothesis, we have
` typeof (abs R) (arr U T). This atomic formula must
have been proved by backchaining on the typeof formula
for abs, and, hence, ` 8x:[typeof x U � typeof (Rx) T].
Since our logic of judgments is intuitionistic logic, we
can instantiate this quantifier with N and use cut and cut-
elimination to conclude that ` typeof (RN) T . Using the
inductive hypothesis a second time yields ` typeof V T .

This proof is clear and natural, and we would like our
meta-logic to allow proofs quite similar to this in structure.
This suggests that the following features would be valuable
in the meta-logic.

1. Two distinct logics. One of the logics would correspond
to the one written with logical syntax above and would
capture judgments, e.g. about typability and evaluation.
The second logic would represent a formalization of the
English text in the proof above. Atomic formulas of
that logic would be judgments in the object-logic.

2. Induction over at least natural numbers.

3. Instantiationof meta-level eigenvariables. In the proof
above, for example, the meta-level variable P was in-
stantiated in one part of the proof to abs R and in
another part of the proof to app M N . Notice that this
instantiation of eigenvariables within a proof does not
happen in a strictly intuitionistic sequent calculus.

4. Analysis of the proof of an assumed judgment. In the
proof above this was done a few times, leading, for
example, from the assumption

` typeof (abs R) (arr U T)

to the assumption

` 8x:[typeof x U � typeof (Rx) T]:

The specification of typeof allows the implication to
go in the other direction, but given the structure of
the specification of typeof , this direction can also be
justified at the meta-level.

In our meta-logic, we accommodate the first two features
by specifying an object-logic within the meta-logic and by
introducing natural numbers and induction. The last two
features are accommodated by introducing a notion of def-
inition and two sequent calculus rules for the left and right
introduction of defined concepts. We address this latter
notion first.

2.2. Definitions

Definitions will be written in the following style.

8x̄1:[p1(t̄1)
4

= H1] � � � 8x̄n:[pn(t̄n)
4

= Hn] (n � 0)

For i = 1; : : : ; n, pi is a predicate constant, every free
variable of the formulaHi is also free in at least one term in
the list t̄i of terms, and all variables free in t̄i are contained
in the list x̄i of variables. The expression 8x̄i:[pi(t̄i)

4

= Hi]
is a clause of the definition and Hi is the body and pi(t̄i)

is the head of that clause. The symbol
4

= is used simply to
indicate definitions: it is not a logical connective. We do
not assume that the predicates p1; : : : ; pn are distinct: it is
best to think of a definition as a mutual recursive definition
of predicates that are in the set fp1; : : : ; png. In this paper
we only consider definitions containing a finite number of
clauses; in other work, however, infinite definitions play an
important role [25].

For the cut rule to be eliminable from our meta-logic
(Theorem 2.2), it is necessary to place further restrictions on
the form of definitions [36]. Schroeder-Heister shows that
it is sufficient to prohibit the use of implication in clause
bodies [36], and we adopt this solution here. It is possible
to loosen this restriction by either restricting occurrences of
the modal operators ! and ? in a linear logic setting [13]
or stratifying the defined predicates [23], but we shall not
require such flexibility in this paper.

The right-introduction rule for defined atoms is

Γ �! H�
Γ �! p ū

defR;
where p ū = (p t̄)� for
some clause 8x̄:[p t̄

4

= H]

where � is a substitution of terms for variables and Γ is
a multiset of formulas. This rule corresponds to the logic
programming notion of backchaining if we think of

4

= in
definitions as reverse implication.

The left-introduction rule for defined concepts uses com-
plete sets of unifiers (CSU) [18]:�

H�;Γ� �! B� j
� 2 CSU (p ū; p t̄) for
some clause 8x̄:[p t̄

4

= H]

�

p ū;Γ �! B
def L

where � is a substitution of terms for variables, Γ is a multiset
of formulas, B is a formula, and the variables x̄ are chosen
to be distinct from the variables free in the lower sequent of
the rule. Specifying a set of sequents as the premise means
that each sequent in the set is a premise of the rule.

Notice that the number of premises of the def L rule may
be either infinite or finite (including zero). If the formula
p ū does not unify with the head of any definitional clause,
then the number of premises will be zero and p ū, which is
unprovable, is treated as false by this rule. If the formula
p ū does unify with the head of a definitional clause, CSUs
may be infinite, as is the case with unifications involving
simply typed�-terms and variables of functional type (a.k.a.
higher-order unification). Clearly an inference rule with
an infinite number of premises is impossible to automate
directly. There are many important situations where CSUs
are not only finite but are also singleton (containing a most
general unifier) whenever terms are unifiable. One such
case is, of course, the first-order case. Another case is
when the application of functional variables are restricted to
distinct bound variables in the sense of higher-order pattern
unification [26]. In this paper, all unification problems will
fall into this latter case and, hence, we can count on the
definition left-introduction rule to have a finite (and small)
number of premises.

This left-introductionrule is similar to definitional reflec-
tion [36] (not to be confused with another notion of reflection
often considered between a meta-logic and object-logic) and
to an inference rule used by Girard in his note on fixed points
[13]. This particular presentation of the rule is due to Eriks-
son [9]. Notice that in the defL rule, the free variables of
the conclusion can be instantiated in the premises (see item
3 in the list of desired meta-logic features).

2.3. Natural number induction

We incorporate inductionby introducingnatural numbers
using z : nt for zero and s : nt ! nt for successor and using
the predicate nat : nt ! o. The rules for this new predicate
are

Γ �! nat z
natR

Γ �! nat I
Γ �! nat (s I)

natR

�! B z B j �! B (s j) B I;Γ �! C

nat I;Γ �! C
natL

Here, I, B, andC are schematic variables of these inference
rules, and j is a variable not free inB. The first two rules can
be seen as right-introduction rules for nat while the third
rule, encoding induction over natural numbers, can be seen
as a left-introduction rule. In the left-introduction rule, B
ranges over formulas with one variable extracted (say, using
�-abstraction) and represents the property that is proved by
induction; the third premise of that inference rule witnesses

the fact that, in general, B will express a property stronger
than C.

2.4. FO�∆IN

The extension of intuitionistic logic that results from
adding the rules for definitions and natural numbers we call
FO�∆IN, an acronym for “first-order logic for � with defi-
nitions and natural numbers”. Assuming that a definition is
given and fixed, we have the following results.

Theorem 2.2 (Cut-Elimination for FO�∆IN) If a sequent
is derivable in FO�∆IN, then it is derivable without using
the cut rule.

Proof The proofs of Schroeder-Heister in [36] regarding
cut-elimination for definitions do not appear to extend to our
setting where induction is included. A complete proof of
this theorem appears in [22, 23] and is modeled on proofs
by Tait and Martin-Löf that use the technical notions of
normalizability and computability.

The following corollary is an immediate consequence of
this cut-elimination theorem.

Corollary 2.3 (Consistency of FO�∆IN) There is no deri-
vation in FO�∆IN of the sequent �! ?.

Although cut-elimination holds for this logic, we do not
have the subformula property since the invariant formula
B used in the natL rule is not necessarily a subformula of
the conclusion of that inference rule. In fact, the following
inference rule is derivable from the induction rule.

�! B B;Γ �! C

nat I;Γ �! C

This inference rule resembles the cut rule except that it re-
quires a nat assumption. Although we fail to have the sub-
formula property, the cut-elimination theorem still provides
a strong basis for reasoning about proofs in FO�∆IN. Also
this formulation of the induction principle is natural and
close to the one used in actual mathematical practice: that
is, invariants must be, at times, clever inventions that are not
simply rearrangements of subformulas. Any automation of
FO�∆IN will almost certainly need to be interactive, at least
for retrieving instantiations for the invariant B.

As our first example of a theorem in our meta-logic, we
derive a complete induction principle.

Theorem 2.4 (Complete induction) For any formula C :
o and predicate B : nt ! o, the formula

8j:[nat j � 8k:[nat k � k < j � B k] � B j]
� 8i:[(B i � C) � (nat i � C)]

is provable in FO�∆IN, where < is defined by the clauses

z < (s J)
4

= nat J (s I) < (s J)
4

= I < J

(In the definition of<, we have not shown the quantification
of the variables I and J around the clauses. Throughout this
paper we will implicitly assume the universal closure of all
definitional clauses.)

We now take the meta-logicFO�∆IN as our logical frame-
work. One can imagine adding stronger induction princi-
ples, such as transfinite induction, but we will not, in fact,
need such a principle for a great many of the theorems that
we wish to prove in the area of programming languages
and deductive systems. Many forms of induction, such as
structural induction and induction on the height of object-
level proofs (as used in the proof of Theorem 2.1 above)
are simple derived rules of FO�∆IN and do not need to be
considered as extensions to this logic.

We may, however, wish to have many different object-
logics to reason about. We now discuss how an object-level
logic can be accommodated inside FO�∆IN.

3. Representing an object-logic

Looking back to the informal proof of subject reduction
(Theorem 2.1), the first observation stated that we needed to
have two logics, which, in fact, means that we need to have
three “languages”: the meta-logic for reasoning and induc-
tive proofs (FO�∆IN), the object-logic of judgments, and
finally the language of untyped �-terms and types for them.
We shall now define a simple object-level language that is
capable of representing a large number of judgments re-
garding programming systems and deductive systems. This
logic, a second-order fragment of minimal logic, is encoded
using the two meta-logic types atm for atoms (atomic propo-
sitions) and prp for general propositions and the following
constants.

h i : atm! prp

1 : prp

& : prp ! prp ! prp

) : atm! prp ! prpV
� : (� ! prp) ! prpW
� : (� ! prp) ! prp

We shall use the type i to denote the ground type for terms
in our object-logic (e.g. the types tm and ty of our example
will both be mapped to i). The syntactic variable � above,
representing the object-logic quantification types, will be
restricted to range over types built from i and !. The
constant h i coerces atoms into propositions: object-level
predicates (atomic judgments) will be constants that build
meta-level terms of type atm. There are few meta-level
predicates that we need to deal with provabilityat the object-
logic. These are given below. Since object-level sequents
require lists of atomic propositions, we also introduce the

type atm lst and two constructorsnil and :: for building lists.

nil : atm lst

:: : atm! atm lst ! atm lst

prog : atm! prp ! o

seq : nt ! atm lst ! prp ! o

element : atm! atm lst ! o

The meta-level atomic formula prog A B will encode the
fact that the universal closure ofB) A is part of the object-
level theory. The predicate seq represents object-level deriv-
ability of a sequent with respect to the theory stored in the
prog clauses. The first argument is used as an induction
measure and is written as a subscript for convenience. Fi-
nally, the predicate element represents list membership. The
definitionD(seq) for seq and element is

seq(s I) L hAi
4

= 9b:[prog A b ^ seqI L b]

seqI (A0 :: L) hAi
4

= element A (A0 :: L)

seqI L 1
4

= >

seq(s I) L (B & C)
4

= seqI L B ^ seqI L C

seq(s I) L (A) B)
4

= seqI (A :: L) B

seq(s I) L (
V

� B)
4

= 8�x:[seqI L (B x)]

seq(s I) L (
W

� B)
4

= 9�x:[seqI L (B x)]

element A (A :: L)
4

= >

element A (A0 :: L)
4

= element A L

The object-level theory declared by prog will vary according
to the logic specification under consideration, as illustrated
in the next section. At the object-level, a specification is
used as a theory and not as a definition: there are no defini-
tions involved at the object-level. The clauses shown for

V
and

W
are actually schemas giving the form of the clauses

for any type � . Including instances of the schemas for all
types would result in an infinite number of clauses. For
any application, however, we will only need a finite number
of instances; for the examples in this paper we need only
consider the types i and i ! i. For convenience we will
abbreviate the formula 9i:[nat i ^ seqi L B] as L > B (or
as >B when L is nil).

We now state the following properties about this pre-
sentation of the object-logic. If B is a term of type prp,
then let B̂ be its (obvious) translation into a formula of in-
tuitionistic logic. If L is a term of type atm lst, let L̂ be
its (obvious) translation to a multiset of atomic formulas of
intuitionistic logic. The following adequacy result follows
from the cut-elimination theorem for intuitionistic logic and
the restriction to clausal second-order clauses.

Theorem 3.1 (Adequacy) Let D(prog) be the definition
f8x̄1:[prog A1 G1

4

= >]; : : : ; 8x̄n:[progAn Gn
4

= >]g

(n � 0) which represents an object-level logic specifica-
tion, and let P be the corresponding logic specification in
intuitionistic logic (i.e. the set of formulas 8x̄i:[Ĝi � Âi],
for all i 2 f1; : : : ; ng). Let D be a definition that extends
D(seq) [D(prog) with clauses that do not define nat, seq,
element, or prog. Then the sequent�! L >B is provable in
FO�∆IN with definitionD if and only if B̂ is an intuitionistic
consequence of L̂ [P.

A complete proof can be found in [22]. The following
theorem states that we can prove in the meta-logic that the
usual structural rules and the cut rule are admissible for our
object-logic.

Theorem 3.2 (Object-level cut, exchange, weakening,
contraction) The following formulas are provable in
FO�∆IN with respect to the definitionD(seq).

8a; b; l:[(a :: l) > b � l > hai � l > b]
8i; b; l; l0:[nat i � 8a:[element a l � element a l0]

� seqi l b � seq i l
0 b]

Since our object-logic is restricted to second-order, it is
sufficient to show that cuts on atomic formulas are elim-
inable, and this only requires natural number induction in
the meta-logic. If we consider higher-order object-logics,
we would need richer induction schemes in our meta-logic.
Fortunately, second-order object-logics are appropriate for
the vast majority of specifications using higher-order ab-
stract syntax.

4. Representing static and dynamic semantics

We now develop in this object-logic the specification of
judgments regarding the typing and evaluation of �-terms.
We have chosen the language of�-terms to correspond to our
example in Section 2.1 and to keep the initial presentation
brief and simple. We then show how to extend this spec-
ification to the programming language PCF. The required
meta-logic constants for �-terms are abs : (i ! i) ! i and
app : i ! i ! i, and for simple types (over one primitive
type) we need gnd : i and arr : i ! i ! i. Our object-
logic predicates representing typability, natural semantics,
and transition semantics are denoted by the meta-logic con-
stants typeof , +,;, and;�, all of type i ! i ! atm. The
object-logic specifications for these are the usual ones, writ-
ten in the L� subset of higher-order logic [26] and are those
common to specifications written in, say, �Prolog [15] and
Elf [32]. This object-level specification is represented at the
meta-level as the definition D(lambda) shown in Table 1.
(We have dropped the

4

= > body of these clauses.) This
definition can be interpreted in a logic programming fashion
to compute object-level substitutions, simple type checking,

and call-by-name evaluation in both SOS and natural se-
mantic styles. (Call-by-value is just as easily represented
and used.) We now show that this same definition can be
integrated into a framework in which properties about these
judgments can be proved.

We list several formulas that can be proved in this meta-
logic.

Theorem 4.1 The following formulas are provable in
FO�∆IN from the definition that accumulates D(seq),
D(lambda) and the clause X � X

4

= > defining the pred-
icate �: i ! i ! o.

Determinacy of semantics:

8m;m1;m2:[>hm + m1i � >hm + m2i
� m1 � m2]

8m;m1;m2:[>hm; m1i � >hm; m2i
� m1 � m2]

8m; r1; r2:[>hm;� (abs r1)i � >hm;� (abs r2)i
� (abs r1) � (abs r2)]

Equivalence of semantics:

8m; r:[>hm + (abs r)i � >hm;� (abs r)i]
8m; r:[>hm;� (abs r)i � >hm + (abs r)i]

Subject reduction:

8m;n:[>hm + ni
� 8t(>htypeof m ti � >htypeof n ti)]

8m;n:[>hm; ni
� 8t(>htypeof m ti � >htypeof n ti)]

8m;n:[>hm;� ni
� 8t(>htypeof m ti � >htypeof n ti)]

Although the meta-level proofs are not difficult and gen-
erally follow closely an informal proof, we do not include
them here since they take at least a couple pages to present in
detail. The first subject reduction theorem is a formalization
of Theorem 2.1; its FO�∆IN proof is given in Appendix A.
All these theorems and the corresponding ones for PCF men-
tioned below have been constructed formally using the Pi
proof editor of Eriksson [10].

We now extend this encoding of the static and dynamic
semantics for untyped �-terms to PCF. The necessary meta-
logic constants for PCF types are

num : i bool : i arr : i!i!i

Those for PCF terms are

zero : i is zero : i ! i

true : i if : i ! i ! i ! i

false : i abs : i! (i ! i) ! i

succ : i ! i app : i ! i ! i

pred : i ! i rec : i! (i ! i) ! i

prog (typeof (abs R) (arr T U))
V
n:[(typeof n T)) htypeof (Rn) U i]

prog (typeof (app M N) T)
W
u:[htypeof M (arr u T)i & htypeof N ui]

prog ((abs R) + (abs R)) 1
prog ((app M N) + V)

W
r:[hM + (abs r)i & h(r N) + V i]

prog ((app (abs R) M); (RM)) 1
prog ((app M N); (app M 0 N)) hM ;M 0i

prog (M ;� M) 1
prog (M ;� N)

W
m0:[hM ; m0i& hm0

;
� N i]

Table 1. D(lambda): Object-logic encoding of typing and evaluation of �-terms.

prog (typeof zero num) 1
prog (typeof true bool) 1
prog (typeof false bool) 1
prog (typeof (succ M) num) htypeof M numi
prog (typeof (pred M) num) htypeof M numi
prog (typeof (is zero M) bool) htypeof M numi
prog (typeof (if M N1 N2) T) htypeof M booli & htypeof N1 T i & htypeof N2 T i
prog (typeof (abs T R) (arr T U))

V
n:[(typeof n T)) htypeof (Rn) U i]

prog (typeof (app M N) T)
W
u:[htypeof M (arr u T)i & htypeof N ui]

prog (typeof (rec T R) T)
V
n:[(typeof n T)) htypeof (Rn) T i]

prog (zero + zero) 1
prog (true + true) 1
prog (false + false) 1
prog ((succ M) + (succ V)) hM + V i
prog ((pred M) + zero) hM + zeroi
prog ((pred M) + V) hM + (succ V)i
prog ((is zero M) + true) hM + zeroi
prog ((is zero M) + false)

W
v:[hM + (succ v)i]

prog ((if M N1 N2) + V) hM + truei& hN1 + V i
prog ((if M N1 N2) + V) hM + falsei & hN2 + V i
prog ((abs T R) + (abs T R)) 1
prog ((app M N) + V)

W
r:
W
t:[hM + (abs t r)i& h(r N) + V i]

prog ((rec T R) + V) h(R (rec T R)) + V i

Table 2. D(pcf): Object-logic encoding of typing and evaluation for PCF.

Since both types and terms of PCF are represented by the
object logic type i, we have underlined the occurrences of
i that correspond to PCF types to improve the readability
of these declarations. The first argument to abs and rec
represent the PCF type tag for the variable bound by the
abstraction and recursion constructs.

The object-logic predicates representing typability and
natural semantics are denoted by the same meta-logic con-
stants as above, typeof : i !i! atm and +: i ! i ! atm,
plus the additional constant value : i ! atm. The object-
level specification is represented at the meta-level as the
definitionD(pcf) shown in Table 2. The transition seman-
tics for PCF can be represented by a similar extension of the
corresponding specification for �-terms given in Table 1.
The type tags in PCF terms allow the unicity of typing

8m; t1; t2:[>htypeof m t1i � >htypeof m t2i
� t1 � t2]

to hold in addition to formulas corresponding to those of
Theorem 4.1.

The use of object-level sequents may seem at first a
rather drastic step to take to embed the kind of hypothet-
ical judgments common with higher-order abstract syntax
into a meta-logic. Such a representation is, however, used
in various areas of programming language semantics. For
example, Mitchell, in his textbook [30], uses typing judg-
ments of the form Γ >M : � and performs induction over
their (sequent-style) derivation.

5. Related work

There are several other approaches to dealing with higher-
order abstract syntax directly in a formalized meta-language.
Despeyroux, Felty, and Hirschowitz [7, 6] show that induc-
tion principles for a restricted form of second-order abstract
syntax can be derived in the Coq proof development system.
To keep the definitions monotone, they introduce a separate
type for variables and explicit coercions from variables to
other types. For example, their constructor for�-abstraction
would have type (var ! tm) ! tm. Since object-level vari-
able binding is still represented by meta-level �-abstraction,
the object-language still inherits �-equivalence from the
meta-language. Because the abstraction is over the type var,
they lose several key benefits of higher-order abstract syn-
tax: meta-level �-reduction cannot be used for object-level
substitution and the power of meta-level cut-elimination is
reduced significantly (both of these features were key as-
pects of the proof of Theorem 2.1). In addition, the Coq
type (var ! tm) includes functions besides those express-
ible as �-terms, so the type tm includes expressions that do
not encode terms of the object-language. They avoid these
exotic terms through the definition and use of a validation
predicate.

Despeyroux, Pfenning, and Schürmann [8] address the
problem of exotic terms by using a modal operator to dis-
tinguish the types of parametric functions (expressible as
�-terms) from the types of arbitrary functions. As a result,
their calculus allows primitive recursive functionals while
preserving the adequacy of higher-order abstract syntax en-
codings. This represents a start toward a logical framework
supporting meta-theoretic reasoning, higher-order abstract
syntax, and the judgments-as-types principle. In such a
framework a derivation would be represented as a func-
tion whose type is the derived property. Thus the ! type
constructor must be rich enough to include the mappings
from derivations to derivations such as the realizations of
case analysis and induction. Their work is orthogonal to
our work presented in this paper. We are not attempting
to support the judgments-as-types principle, so the types of
our meta-logic are only used to encode syntactic structure.
Thus we can restrict these types to include only �-terms,
ensuring the adequacy of encodings in higher-order abstract
syntax. They, on the other hand, do not address the issue of
induction principles for higher-order abstract syntax.

Schürmann [37] offers another framework supporting
higher-order abstract syntax and meta-theoretic analysis.
He constructs a meta-logic MLF to reason about deduc-
tive systems represented in the Horn fragment of LF. This
meta-logic includes a recursion rule that is used for induction
and case analysis. This approach is similar in spirit to ours
in that there are three levels: the deductive system(s) un-
der consideration, the logic in which the deductive systems
are encoded, and the logic in which meta-theoretic analysis
takes place. His meta-logic MLF, however, is designed for
a specific, fixed intermediate logic, the Horn fragment of
LF. In our case, the meta-logic is a general framework capa-
ble of representing and reasoning about a variety of logics.
In addition, the validity of Schürmann’s work depends on
cut-elimination for MLF, which is still an open question.

Still another strategy for meta-theoretic reasoning about
higher-order abstract syntax encodings is to perform each
case of a proof in the meta-logic, but verify the completeness
of the proof outside the logical framework. Rohwedder and
Pfenning [34, 35] investigate the design and implementation
of such external validity conditions.

Matthews seeks to reconcile the advantages of LF-style
encodings with the facilities for meta-theoretic analysis
found in theories of inductive definitions [20]. His ap-
proach has some similarity to our own, in that he creates a
three-level hierarchy, with each level being encoded in the
previous. As in our approach, his top level contains a def-
inition facility and induction principles for reasoning about
encodings at the next level. However, his logic at the inter-
mediate level contains only an implication connective and
no quantifiers. Thus he does not address the treatment of
object-level bound variables, a major feature of higher-order

abstract syntax and, consequently, of our work.

6. Conclusion

In this paper we have presented a single and simply moti-
vated meta-logic FO�∆IN. Within this logic we have shown
how to encode a simple second-order intuitionistic logic and
in that logic we have encoded and reasoned with typing and
evaluation judgments for a simple functional programming
language. The main contribution of this research is that
the encodings at both levels can be done using higher-order
abstract syntax, and we are able to reason naturally in our
framework about these encodings.

The meta-logic FO�∆IN has also been used to reason
about simulation and bisimulation in abstract transition sys-
tems and CCS [25]. These transition systems did not contain
binding operators, and so both the specification and reason-
ing was done in the meta-logic. We have already begun
using the techniques presented in the current paper to ex-
tend that work to the setting of applicative bisimulation [1].
It would also be interesting to use Howe’s technique [17] to
prove the congruence of bisimulation in our framework.

In FO�∆IN we can easily represent object-logics other
than the intuitionistic one used here. Encoding fragments of
second-order linear logic, along the lines of Lolli [16] and
Forum [27], can be done simply by changing the definition
of seq given in Section 3. These various intuitionistic and
linear logics are known to be able to capture a wide range of
judgments in the areas of functional, imperative, and con-
current programming languages. Our meta-logic FO�∆IN

should be able to formalize many proofs about judgments
made within those logics, and we plan to demonstrate this
in our future work.

Acknowledgments

We would like to thank Frank Pfenning for helpful feed-
back on early presentations of this work and Lars-Henrik
Eriksson for making his Pi derivation editor [10] available
to help check the formal proofs described here. The authors
have been funded in part by the grants ONR N00014-93-1-
1324, NSF CCR-92-09224, NSF CCR-94-00907, and ARO
DAAH04-95-1-0092.

A. Subject reduction

We describe here a formal proof of subject reduction, i.e.
a proof of the sequent

�! 8p:8v:[>hp + vi
� 8t:(>htypeof p ti � >htypeof v ti)]

using the encoding of typability and natural semantics in
Section 4. As we step through the proof we will correlate it
with the informal proof of Theorem 2.1. Applying the 8R,
�R, 9L, and ^L rules to the above sequent yields

nat i; seqi nil hp + vi;
>htypeof p ti �! >htypeof v ti

(Recall that >hp + vi is an abbreviation for 9i:[nat i ^
seqi nil hp + vi].)

As in the informal proof, we proceed with an induction
on the height of the proof of p + v, which is represented here
by i. We will use the derived rule for complete induction
(Theorem 2.4) and our invariant will be

�i:8p:8v:[seqi nil hp + vi
� 8t:(>htypeof p ti � >htypeof v ti)]

which we will denote by INV. The proof of the conclusion
from the invariant applied to i is trivial, so it only remains
to prove the induction step

nat j; 8k:[nat k � k < j � (INV k)] �! (INV j)

We use the 8R and �R rule to obtain

nat j; 8k : : : ;
seqj nil hp + vi; >htypeof p ti �! >htypeof v ti

In the informal proof we use the fact that the proof of the
atomic formulap + vmust end with a backchain. We deduce
this here by applying the defL rule to seqj nil hp + vi,
which yields

nat (s j0); 8k : : : ;
9d:[prog (p + v) d ^ seqj0

nil d];
>htypeof p ti �! >htypeof v ti

We then apply the 9L and ^L rules, and then the defL rule
to prog (p + v) d which yields the two sequents

nat (s j0); 8k : : : ;
seqj0

nil 1;
>htypeof (abs r) ti �! >htypeof (abs r) ti

nat (s j0); 8k : : : ;
seqj0

nil
W
r:[hm + (abs r)i

&h(r n) + vi];
>htypeof (app m n) ti �! >htypeof v ti

This use of the defL rule corresponds to the case analysis
of the formula used to prove p + v. As in the informal
case, the abs case (represented here by the first sequent) is
immediate. The proof of the second sequent, representing
the app case, begins with the use of the defL, 9L, and ^L,
bringing us to the sequent

nat (s3 j1); 8k : : : ;
seqj1

nil hm + (abs r)i;
seqj1

nil h(r n) + vi;
>htypeof (app m n) ti �! >htypeof v ti

(We use the term s3 j1 as an abbreviation for s (s (s j1)).)
The informal proof continues with an analysis of the proof

of typeof (app m n) t. Again we accomplish this through
two uses of the defL rule, the first to indicate that the proof
must end with a backchain, and the second to determine the
applicable backchain formulas. In this case there is only
one applicable formula, so we are left to prove the sequent

: : : ; nat (s j00);
seqj00

nil
W
u:[htypeof m (arr u t)i

&htypeof n ui] �! >htypeof v ti

Additional uses of the def L, 9L and ^L rules brings us to
the sequent

: : : ; nat (s3 j01);
seqj01

nil htypeof m (arr u t)i;

seqj01
nil htypeof n ui �! >htypeof v ti

In the informal proof we now apply the induction hy-
pothesis to the evaluation and typing judgments for m. We
accomplish this here by applying the appropriate left rules
to the induction hypothesis 8k : : :. This requires the proof
of the three sequents

nat (s3 j1) �! nat j1 nat (s3 j1) �! j1 < (s3 j1)

nat (s3 j1); 8k : : : ;
seqj1

nil h(r n) + vi;
>htypeof (abs r) (arr u t)i;

nat (s3 j01); seqj01 nil htypeof n ui �! >htypeof v ti

The first two of these represent the fact that the measure
of the evaluation proof for m is a natural number that is
smaller than the measure of the original evaluation proof for
p. These can be proved by simple inductions.

The proof of the third sequent proceeds with two appli-
cations of the defL rule, corresponding to the analysis of
the proof of typeof (abs r) (arr u t) in the informal proof.
This yields the sequent

: : : ; nat (s j000);
seqj000

nil
V
x:[(typeof x u)
) htypeof (r x) ti]

;

: : : �! >htypeof v ti

This is followed by additional applications of the defL, 8L,
9L, and ^L rules to give us

: : : ; nat (s3 j001);
seqj001

((typeof n u) :: nil)
htypeof (r n) ti; : : :�! >htypeof v ti

The informal proof proceeds with a use of the cut rule, and
here we use the derived object-level cut rule (Theorem 3.2)
with the elided assumption seqj01

nil htypeof n ui to obtain

: : : ; >htypeof (r n) ti �! >htypeof v ti

The informal proof concludes by applying the induction
hypothesis to the evaluation and typing judgments for m0.
Again we accomplish this by applying the appropriate left
rules to the induction hypothesis 8k : : :, which requires the
proof of the three sequents

nat (s3 j1) �! nat j1 nat (s3 j1) �! j1 < (s3 j1)

>htypeof v ti �! >htypeof v ti

The first two sequents can be proved by simple inductions,
and the third sequent is immediate.

References

[1] Samson Abramsky. The lazy lambda calculus. In
D. Turner, editor, Research Topics in Functional Pro-
gramming, pages 65–117. Addison Wesley, 1990.

[2] Arnon Avron,Furio Honsell, Ian A. Mason, and Robert
Pollack. Using typed lambda calculus to implement
formal systems on a machine. Journal of Automated
Reasoning, 9:309–354, 1992.

[3] David A. Basin and Robert L. Constable. Metalogical
frameworks. In G. Huet and G. D. Plotkin, editors,
Logical Environments, pages 1–29. Cambridge Uni-
versity Press, 1993.

[4] Jawahar Chirimar. Proof Theoretic Approach to Spec-
ification Languages. PhD thesis, University of Penn-
sylvania, February 1995.

[5] Alonzo Church. A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56–68, 1940.

[6] Joelle Despeyroux, Amy Felty, and Andre
Hirschowitz. Higher-order abstract syntax in Coq. In
Second International Conference on Typed Lambda
Calculi and Applications, pages 124–138, April 1995.

[7] Joelle Despeyroux and Andre Hirschowitz. Higher-
order abstract syntax with induction in Coq. In Fifth
International Conference on Logic Programming and
Automated Reasoning, pages 159–173, June 1994.

[8] Joelle Despeyroux, Frank Pfenning, and Carsten
Schürmann. Primitive recursion for higher-order ab-
stract syntax. In Third International Conference on
Typed Lambda Calculi and Applications, April 1997.

[9] Lars-Henrik Eriksson. A finitary version of the calcu-
lus of partial inductive definitions. In L.-H. Eriksson,
L. Hallnäs, and P. Schroeder-Heister, editors, Proceed-
ings of the January 1991 Workshop on Extensions to
Logic Programming, volume 596 of LNAI, pages 89–
134. Springer-Verlag, 1992.

[10] Lars-Henrik Eriksson. Pi: an interactive derivation ed-
itor for the calculus of partial inductive definitions. In
A. Bundy, editor, Proceedings of the Twelfth Interna-
tional Conference on Automated Deduction, volume
814 of LNAI, pages 821–825. Springer-Verlag, June
1994.

[11] Amy Felty. Implementing tactics and tacticals in a
higher-order logic programming language. Journal of
Automated Reasoning, 11(1):43–81, August 1993.

[12] Amy Felty and Dale Miller. Specifying theorem
provers in a higher-order logic programming language.
In E. Lusk and R. Overbeck, editors, Ninth Interna-
tional Conference on Automated Deduction, pages 61–
80. Springer-Verlag, May 1988.

[13] Jean-Yves Girard. A fixpoint theorem in linear
logic. A message posted on the linear@cs.stanford.edu
mailing list, http://www.csl.sri.com/linear/mailing-
list-traffic/www/07/mail 3.html, February 1992.

[14] Lars Hallnäs. Partial inductive definitions. Theoretical
Computer Science, 87:115–142, 1991.

[15] John Hannan and Dale Miller. From operational se-
mantics to abstract machines. Mathematical Structures
in Computer Science, 2(4):415–459, 1992.

[16] Joshua Hodas and Dale Miller. Logic programming in
a fragment of intuitionistic linear logic. Information
and Computation, 110(2):327–365, 1994.

[17] Douglas J. Howe. Proving congruence of bisimulation
in functional programming languages. Information
and Computation, 124(2):103–112, 1996.

[18] Gérard Huet. A unification algorithm for typed �-
calculus. Theoretical Computer Science, 1:27–57,
1975.

[19] Lena Magnusson and Bengt Nordström. The ALF
proof editor and its proof engine. In H. Baren-
dregt and T. Nipkow, editors, Types for Proofs and
Programs, number 806 in LNCS, pages 213–237.
Springer-Verlag, 1994.

[20] Seán Matthews. A practical implementation of sim-
ple consequence relations using inductive definitions.
In Proceedings of the 14th Conference on Automated
Deduction. Springer-Verlag, July 1997.

[21] Sean Matthews, Alan Smaill, and David Basin. Experi-
ence with FS0 as a framework theory. In G. Huet and
G. D. Plotkin, editors, Logical Environments, pages
61–82. Cambridge University Press, 1993.

[22] Raymond McDowell. Proving meta-theorems in a log-
ical framework. Dissertation proposal, University of
Pennsylvania, November 1996.

[23] Raymond McDowell and Dale Miller. Cut-elimination
for a logic with definitions and induction. Draft
manuscript submitted to the proceedings of the
TYPES ’96 workshop, March 1997.

[24] Raymond McDowell, Dale Miller, and Catuscia
Palamidessi. Encoding transition systems in sequent
calculus: Preliminary report. In Proceedings of the
1996 Workshop on Linear Logic, volume 3 of Elec-
tronic Notes in Theoretical Computer Science. Else-
vier, 1996.

[25] Raymond McDowell, Dale Miller, and Catuscia
Palamidessi. Encoding transition systems in sequent
calculus. Draft manuscript submitted to Theoretical
Computer Science. Preliminary version appeared as
[24], April 1997.

[26] Dale Miller. A logic programming language with
lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[27] Dale Miller. Forum: A multiple-conclusion spec-
ification language. Theoretical Computer Science,
165:201–232, 1996.

[28] Dale Miller and Gopalan Nadathur. A logic pro-
gramming approach to manipulating formulas and pro-
grams. In S. Haridi, editor, IEEE Symposium on Logic
Programming, pages 379–388, September 1987.

[29] Dale Miller, Gopalan Nadathur, Frank Pfenning, and
Andre Scedrov. Uniform proofs as a foundation for
logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[30] John C. Mitchell. Foundations for Programming Lan-
guages. MIT Press, 1995.

[31] Lawrence C. Paulson. Natural deduction as higher-
order resolution. Journal of Logic Programming,
3:237–258, 1986.

[32] Frank Pfenning. Elf: a language for logic definition
and verified meta-programming. In Fourth Annual
IEEE Symposium on Logic in Computer Science, pages
313–321, June 1989.

[33] Frank Pfenning and Conal Elliot. Higher-order ab-
stract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and
Implementation, pages 199–208, June 1988.

[34] Frank Pfenning and Ekkehard Rohwedder. Implement-
ing the meta-theory of deductive systems. In D. Kapur,
editor, Proceedings of the Eleventh International Con-
ference on Automated Deduction,volume 607 of LNAI,
pages 537–551. Springer-Verlag, June 1992.

[35] Ekkehard Rohwedder and Frank Pfenning. Mode and
termination analysis for higher-order logic programs.
In Proceedings of the European Symposium on Pro-
gramming, pages 296–310, April 1996.

[36] Peter Schroeder-Heister. Rules of definitional reflec-
tion. In M. Vardi, editor, Eighth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 222–232.
IEEE Computer Society Press, June 1993.

[37] Carsten Schürmann. A computational meta logic for
the Horn fragment of LF. Master’s thesis, Carnegie
Mellon University, December 1995.

[38] Myra VanInwegen. The Machine-Assisted Proof of
Programming Language Properties. PhD thesis, Uni-
versity of Pennsylvania, May 1996.

Papers by McDowell are available via anonymous ftp
from ftp.cis.upenn.edu in pub/papers/mcdowell or via
the WWW at http://www.cis.upenn.edu/˜mcdowell. Pa-
pers by Miller are available via anonymous ftp from
ftp.cis.upenn.edu in pub/papers/miller or via the WWW at
http://www.cis.upenn.edu/˜dale.

