
A neutral approach to proof and refutation in MALL

Olivier Delande and Dale Miller
INRIA Saclay - Île-de France and LIX/École Polytechnique

Route de Saclay, 91128 PALAISEAU Cedex FRANCE
delande at lix.polytechnique.fr, dale.miller at inria.fr

Abstract

We propose a setting in which the search for a proof of
B or a refutation of B (a proof of ¬B) can be carried out
simultaneously: this is in contrast to the usual approach in
automated deduction where we need to commit to proving
either B or ¬B. Our neutral approach to proof and refuta-
tion is described as a two player game in which each player
follows the same rules. A winning strategy translates to a
proof of the formula and a winning counter-strategy trans-
lates to a refutation of the formula. The game is described
for multiplicative and additive linear logic without atomic
formulas. A game theoretic treatment of the multiplicative
connectives is intricate and our approach to it involves two
important ingredients. First, labeled graph structures are
used to represent positions in a game and, second, the game
playing must deal with the failure of a given player and with
an appropriate resumption of play. This latter ingredient
accounts for the fact that neither player might win (that is,
neither B nor ¬B might be provable).

1. Introduction

Consider the behavior of an idealized Prolog interpreter
given a noetherian logic program ∆ and query G. We can
expect that an attempt to prove G ends with either a finite
success or a finite failure. In the first case, we have a proof
of G (from ∆) and in the second case we have a proof of ¬G
from (the completion of) ∆ [9, 7]. Attempting to capture
this simple observation appears difficult in the usual pre-
sentation of proof search since in that setting, we must first
establish what we plan to prove, namely either G or ¬G,
and then set about to prove that selection. A failure to build
a sequent calculus proof of G, for example, may leave little
information that helps to build a sequent calculus proof of
¬G. Our (idealized) Prolog interpreter, however, does one
computation from which one constructs a proof of either G
or ¬G. This example suggests that there might be a neutral
approach to understanding proof search, at least in certain

weak subsets of logic. Ideally, we would only like to orga-
nize one computation from which we can extract a proof or
a refutation, depending on how the computation terminates.

In this paper, we describe a neutral approach to proof
and refutation for MALL (multiplicative and additive linear
logic) using games in which positions are neutral graphs
that are composed of neutral expressions. This extends pre-
vious work by Miller and Saurin in [15], in which the mul-
tiplicative part of the logic was strongly restricted to avoid
interactions between multiplicative connectives of opposite
polarities. These graphs and expressions have two dual
translations into logic and they can be seen as describing
the frontiers of two derivations (a proof and a refutation)
that are being extended simultaneously. In this setting, win-
ning strategies yield proofs: depending on which player has
a winning strategy, either the positive or the negative trans-
lation into logical formulas has a proof.

Notice that our use of games here is different from the
use of games in, say, [1, 11], where games are used to cap-
ture the dynamics of cut-elimination for proofs in MALL.
Here, instead, games are used to model the construction of
cut-free proofs: the cut-rule and cut-elimination result are
used only to state invariants about how the neutral search
for proofs unfolds (see Section 2).

Our choice of MALL is made, in part, because we wish
to focus on the essential nature of multiplicative connectives
(additive connectives are easy in this setting). An important
aspect of MALL without atoms is characterized by the kind
of inference rules that are needed to describe proofs. It is
common to divide the inference rules of sequent calculus
into three groups: the structural rules (e.g., weakening and
contraction), the identity rules (initial and cut), and the in-
troduction rules. In MALL without atoms, there is no need
for structural rules nor identity rules (since cut and initial
can be eliminated): thus, proofs are described entirely us-
ing introduction rules and it is these rules that correspond
to the moves that propel our game. While MALL without
atoms may seem rather weak, the complexity of establish-
ing theoremhood for it is PSPACE-complete [12, 13].

The contributions of this paper are the following.



(1) We present a neutral approach to proof and refutation
in MALL by presenting a new game that can be seen as an
attempt to simultaneously prove and refute a formula. The
proof of our main result, Theorem 5.9, translates directly
between winning strategies and (focused) proofs.

(2) MALL is not complete in the sense that there are for-
mulas B for which neither B nor ¬B are provable: consider
⊥ ⊗ ⊥ and 1 � 1. Thus we need to consider games in
which play resumes after one player loses so we can deter-
mine whether or not the game is a win for the other player
or a loss for both.

(3) This neutral setting provides an answer to why it is
that invertibility/non-invertibility (asynchrony/synchrony)
are de Morgan duals of each other: these two qualities are
two sides of the same process. In our game, both players
follow identical rules of play. Invertibility (asynchrony) oc-
curs when a player needs to consider all possible moves
of the opponent: one is forced to consider all moves and
no choices are considered: the set of all possible moves is
part of the definition of the game arena. Non-invertibility
(synchrony) occurs when the opponent picks her respond-
ing move: here, genuine information is injected into the
game and this is expressed in proofs as a path though non-
invertible inference rules in a (focused) proof.

Due to space constraints, appendices containing details
and the longest proofs are missing from this paper. They
are available in an extended report ([5]).

2. Neutral expressions

In this neutral setting, formulas are replaced by neutral
expressions, already introduced in [15]. We restrict our-
selves to the propositional case here, but we address the
complex case of interactions between multiplicatives. There
is a neutral connective for each pair of dual connectives or
units of the logic. We also define two translations, i.e., two
functions mapping each neutral expression to the two dual
formulas it represents. Since two dual connectives may ap-
pear in a single formula, we need a way to switch to the
other translation when translating a neutral expression. We
will use the special unary operator � to this end.

Definition 2.1. Neutral expressions E and guarded neutral
expressions G are defined by the following grammar.

G ::=00 | 1 | E + E | E × E E ::= G | �G

A guarded neutral expression is therefore a neutral expres-
sion which does not begin with �. The set of the neutral
expressions is denoted by E . Notice that �(�E) is not a
subexpression of a neutral expression.

Definition 2.2. The positive and negative translations of
neutral expressions into MALL formulas are defined in Fig-
ure 1. Notice that if E is a neutral expression, then [E]+ and

[00]+ = 0 [00]− = �
[1]+ = 1 [1]− = ⊥

[E + F ]+ = [E]+ ⊕ [F ]+ [E + F ]− = [E]− & [F ]−

[E × F ]+ = [E]+ ⊗ [F ]+ [E × F ]− = [E]− � [F ]−

[�E]+ = [E]− [�E]− = [E]+

Figure 1. Translations of neutral expressions

[E]− are de Morgan duals of each other. If E is guarded,
then [E]+ is synchronous and [E]− is asynchronous.

3. The additive case

Hintikka (see, for example, [10]) defined a simple game
to determine the truth of a formula as follows (the game can
also work for quantificational formulas). Two players, P
and O, play with a single formula. The player P tries to
falsify the formula while O tries to validate the formula. If
the formula is a conjunction (&), P must move by choos-
ing one of the conjuncts: in particular, if the formula is the
empty conjunction (�), then P can pick nothing and she
loses. If the formula is a disjunction (⊕), O must move by
choosing one of the disjuncts: in particular, if the formula
is the empty disjunction (0), then O can pick nothing and
she loses. This game is determinate in the sense that one
player always has a winning strategy. If P has a winning
strategy starting with B then B is false: conversely if O has
a winning strategy starting with B then B is true.

This same game can be used to provide a neutral ap-
proach to proof and refutation for the additive fragment of
linear logic based on just 0,⊕,�, &. This has been done in
[15] and we describe it here as an introduction to the neu-
tral approach. The formulas we consider are exactly those
of the form [E]− or [E]+ where E ranges over the additive
neutral expressions, namely

G ::=00 | E + E E ::= G | �G

Let us define a similar game based on neutral expressions.
(Complete details for this example are given in the extended
report.) First we define a rewriting relation on neutral ex-
pressions:

E1 + E2 → E1 E1 + E2 → E2

Expressions of the form 00 and �E do not rewrite. Our game
is composed of positions that are guarded neutral expres-
sions and a move in this game from E to F , denoted by
E ρ F , takes place exactly when E →∗ �F . The first rela-
tionship on neutral expressions → denotes “micro-moves”
or “internal moves” while the second relationship ρ denotes



“macro-moves” or actual steps in the game. The following
theorem is proved in the extended report.

Theorem 3.1. Let E be a guarded neutral expression.
There exists a winning strategy from E iff � [E]+ is prov-
able. There exists a winning counter-strategy from E iff
� [E]− is provable. In either case, the winning strategy or
counter-winning strategy provide the corresponding proof.

This game gives us a neutral approach to proof and refu-
tation as follows: Let B an additive linear logic formula
and let E a guarded neutral expression such that [E]+ is
B. The move tree from position E is completely neutral
and symmetric with respect to the two players: it has a win-
ning strategy if and only if B is provable and has a winning
counter-strategy if and only if ¬B is provable.

The rest of this paper addresses the much more complex
situation that occurs when we admit the multiplicatives. A
step towards accounting for multiplicatives (together with
additives) was reported in [15] where simple neutral expres-
sions were considered: such expressions allowed for some
multiplicative connectives as long as they essentially dis-
appeared during the internal (micro-step) phase. Capturing
full MALL in this setting is more involved and is addressed
next.

4. Accounting for multiplicatives

Unlike the case for games over purely additive connec-
tives, a game for multiplicatives cannot be determinate: for
example, the neutral expression �1×�1 yields the two for-
mulas, ⊥ ⊗ ⊥ and its negation 1 � 1, neither of which are
provable. Thus in the following description of games, we
need the possibility that there is a tie in play.

4.1. Two player games with ties

Name two players 0 and 1. For σ ∈ {0, 1}, we denote
by σ the number 1 − σ. An arena is a graph (P , ρ) where
P is a set of positions and ρ is a binary noetherian relation
on P that encode the possible game moves: if p ρ p′ then
p′ is a ρ-successor to p. A position with no ρ-successor is
called final. All final positions are classified as 0-wins, 1-
wins, and ties, and the non-final positions as 0-positions and
1-positions. If p is a position, a play from p is a path in the
arena starting with p. A play is finite since ρ is noetherian.
A play is won by player σ iff its last position is a σ-win, and
is a tie iff its last position is a tie.

Informally, we choose a starting position p and put a to-
ken on it. A play from p is a finite sequence of moves of
the token starting in p. If the current position of the token is
final, then the play ends and we conclude that either player
0 wins the play, player 1 wins the play, or nobody wins the
play. If it is a 0-position (resp. 1-position), then player 0

(resp. 1) chooses a ρ-successor of p, moves the token there,
and the play continues.

A σ-strategy for p is a prefixed closed set S of plays from
p containing (p) and is such that for every (p0, . . . , pn) ∈
S
• if pn is a σ-position there exists pn+1 such that pn ρ

pn+1 and (p0, . . . , pn+1) ∈ S,
• if pn is a σ-position then for every pn+1 such that pn ρ

pn+1, (p0, . . . , pn+1) ∈ S.
A winning σ-strategy for p is a σ-strategy for p such that
every play in it that ends in a final position is won by σ.

4.2. Focalization

In our neutral approach, we develop two dual derivations
simultaneously. When we apply a rule in one, we apply its
dual in the other one. However, sequent calculus for MALL
lacks the symmetry we need. Consider the following dual
derivations:

� A � B
� A ⊗ B

� C � D
� C ⊗ D

� (A ⊗ B) ⊗ (C ⊗ D)

� A⊥, B⊥, C⊥, D⊥

� A⊥, B⊥, C⊥
� D⊥)

� A⊥
� B⊥, C⊥

� D⊥)

� (A⊥
� B⊥) � (C⊥

� D⊥)

In this example, the first derivation should be seen as a strat-
egy for the player, and the second one as a strategy for the
opponent. In the first derivation, A ⊗ B and C ⊗ D are
decomposed in distinct branches, hence the syntax makes it
explicit that the order in which these decompositions occur
(i.e. in which the player chooses to make them) is irrele-
vant. In contrast, in the second derivation A⊥

� B⊥ is
clearly decomposed before C⊥

� D⊥. However, those two
rules could be trivially permuted and the opponent’s strat-
egy should reflect this fact. A focused proof system seems
more appropriate since it considers derivations modulo such
permutations.

Moreover, in the additive game previously, a move from
E ρ F exists iff E →∗ �F . While each rewriting step
E → E′ (which we will refer to as “micro-move”) cor-
responds to the application of an individual rule in the
proof system, a move E ρ F (which we will refer to
as “macro-move”) corresponds to a maximal sequence of
micro-moves. This differs from Hintikka’s games, in which
each game move corresponds to the application of an indi-
vidual rule. In Hintikka’s setting, the main connective of a
formula determines which player makes the next move. In
our neutral setting, neutral expressions are decomposed by
the same player until � is reached.



� ∆ ⇑ Γ
� ∆ ⇑ ⊥, Γ

[⊥]
� ∆ ⇑ F, G, Γ
� ∆ ⇑ F � G, Γ

[�]

� ∆ ⇑ �, Γ
[�]

� ∆ ⇑ F, Γ � ∆ ⇑ G, Γ
� ∆ ⇑ F & G, Γ

[&]

�⇓ 1
[1]

� ∆1 ⇓ F, Γ1 � ∆2 ⇓ G, Γ2

� ∆1, ∆2 ⇓ F ⊗ G, Γ1, Γ2
[⊗]

� ∆ ⇓ F1, Γ
� ∆ ⇓ F1 ⊕ F2, Γ

[⊕1]
� ∆ ⇓ F2, Γ

� ∆ ⇓ F1 ⊕ F2, Γ
[⊕2]

� ∆, F ⇑ Γ
� ∆ ⇑ F, Γ

[R ⇑]
� ∆ ⇑ Γ
� ∆ ⇓ Γ

[R ⇓]
� ∆ ⇓ Γ
� ∆, Γ ⇑ [D]

Figure 2. The focused proof system F . In the
release rules, F is synchronous in [R ⇑] and Γ con-
tains only asynchronous formulas in [R ⇓]. The de-
cide rule [D] requires Γ to be non-empty.

This division of inference rules into micro- and macro-
moves strongly corresponds to what one sees in focused
proof systems. Figure 2 contains a focused proof system for
MALL, called F , that contains two different phases marked
by different sequents. The asynchronous phase is marked
by sequents of the form � ∆ ⇑ Γ, while the synchronous
phase is marked by sequents of the form � ∆ ⇓ Γ. In
both cases, ∆ and Γ are multisets of formulas (the multiset
union of these two multisets is written as Γ, ∆). This focus-
ing proof system is a simple variant of Andreoli’s Σ3 proof
system in [2]. The main differences are that our system is
restricted to MALL without atoms and that the decide rule
[D] can decide on more than one formula (i.e., D is not re-
stricted to be a singleton). This extension was introduced in
[16]. The soundness and completeness of our system here is
a trivial consequence of corresponding result for Σ3 in [2].

As we shall see, micro-moves correspond to the applica-
tion of the individual rules in Figure 2 while macro-moves
correspond to an entire synchronous or asynchronous phase.
Notice that introduction rules in the asynchronous phase are
invertible and, as such, proof search in this phase requires
no choices. On the other hand, the introduction rules in the
synchronous phase are not generally invertible and, as such,
proof search in this phase requires choices to be made, e.g.,
which disjunction to select or how to split the side formulas
of a tensor.

In our neutral game setting, every move has two dual
readings: one is asynchronous and one is synchronous.
When a move is considered from the point-of-view of the
player making the move, the interpretation is synchronous:
it is in this phase that a player must make choices in how
the game should unfold. When a move is considered from
the opponent’s point-of-view, the interpretation is asyn-
chronous: in this phase a player has no choices since she

� A, B ⇑
�⇑ A, B

[R ⇑]

�⇑ A � B
[�]

�⇓ A � B
[R ⇓]

�⇑ C⊥

�⇓ C⊥ [R ⇓]

�⇓ (A � B) ⊗ C⊥ [⊗]

� (A � B) ⊗ C⊥ ⇑ [D]
(1)

� C ⇑ A⊥

� C ⇓ A⊥ [R ⇓]
�⇑ B⊥

�⇓ B⊥ [R ⇓]

� C ⇓ A⊥ ⊗ B⊥ [⊗]

� A⊥ ⊗ B⊥, C ⇑ [D]

�⇑ A⊥ ⊗ B⊥, C
[R ⇑]

�⇑ (A⊥ ⊗ B⊥) � C
[�]

(2)

Figure 3. Two dual derivations. Here, A, B and
C are synchronous formulas.

must accommodate all possible moves of the opponent.
This correspondence to games provides an explanation of
why the asynchronous connectives of MALL are de Mor-
gan duals of the synchronous connectives.

In Andreoli’s Σ3, one formula is selected and decom-
posed in a synchronous phase, while all formulas are de-
composed in an asynchronous phase. This asymmetry does
not fit well in our neutral setting, which forces formulas to
be decomposed simultaneously in two dual derivations. We
recover some of the symmetry by allowing several foci to be
selected: some formulas (read synchronously by the player
and asynchronously by the opponent) are decomposed at
each move.

4.3. Neutral graphs

In order to account for the complexity and intensional
behavior of the multiplicative connectives of MALL, we
shall not enrich the structure of arenas and plays (for ex-
ample, we do not attempt concurrent player games, etc).
Instead, we enrich the notion of position by moving from
being just simple neutral expressions (as was used in the ad-
ditive games of Section 3) to labeled graph structures, which
we describe next.

Figure 3 shows an example of two dual derivations. It
should be noted that at any point in the simultaneous devel-
opment of those derivations, there are strong relationships
between their frontiers. Each formula present in a fron-
tier has its dual in the other frontier. Moreover this is a
one-to-one correspondence. For example at the bottom of
the derivations the frontier of (1) consists of the sequent
� (A � B) ⊗ C⊥ ⇑ and the frontier of (2) consists of
�⇑ (A⊥ ⊗ B⊥) � C. Clearly there is exactly one formula



in each frontier and they are dual. At the top of the two
derivations, the frontiers are � A, B ⇑ and �⇑ C⊥ for (1),
and � C ⇑ A⊥ and �⇑ B⊥ for (2). Here, the corresponding
pairs are A/A⊥, B/B⊥, and C⊥/C.

An even stronger statement can be made about these se-
quents on the frontier. If we admit the focused cut-rule

� ∆1, B ⇑ � ∆2 ⇑ B⊥, Γ
� ∆1, ∆2 ⇑ Γ

cut

then these frontier sequents can be combined to derive (us-
ing just this focused cut rule) the empty sequent. In the
above example, this cut-derivation would be

� A, B ⇑ �⇑ B⊥

� A ⇑ cut � C ⇑ A⊥

� C ⇑ cut �⇑ C⊥

�⇑ cut.

While we do not make explicit use of such cut-derivations
of the empty sequent in the sequel, the existence of such
derivations provide a useful invariant concerning the evolu-
tion of game playing. For example, it immediately follows
that at most one player will succeed to win and at least one
player must lose.

In [4], the authors analyse the geometry of generalized
multiplicative rules and express the duality of two gener-
alized multiplicatives through a graph structure. Follow-
ing this idea, we define a graph structure to represent links
between two frontiers as presented above. In this kind of
graph, called neutral graph, the vertices represent the se-
quents of the frontiers. There are two colors of vertices (one
for each frontier). As we have seen, there is a one-to-one
correspondence between formulas of the two frontiers. We
represent each pair of corresponding formulas by an arc be-
tween the two vertices representing the sequents in which
they appear. The arc

u v
E

labeled with a guarded neutral expression E means that the
formula [E]+ occurs in the sequent represented by u and
that the formula [E]− occurs in the sequent represented by
v. A neutral graph is bipartite: recall that we have a color
for each frontier and that we do not pair two formulas in the
same frontier. For example, two frontiers

� [E]+, [F ]+ ⇑ �⇑ [G]− | � [G]+ ⇑ [E]− �⇑ [F ]−

will be represented by the neutral graph

EF G

where the black (resp. white) vertices represent the sequents
of the left (resp. right) frontier.

We are going to define transition relations on neutral
graphs that will correspond to the simultaneous devel-
opment of the derivations. In the neutral graphs intro-
duced so far, the sequent associated with a vertex v is �
[O1]+, . . . , [Om]+ ⇑ [I1]−, . . . , [In]−, where O1, . . . , Om

(resp. I1, . . . , In) are the neutral expressions labeling the
outgoing (resp. incoming) arcs of v. Since all those neu-
tral expressions are guarded, the [Oi]+ are synchronous and
the [Ii]+ are asynchronous. Such a neutral graph is called
passive, because it represents frontiers where no formula
is under focus. Consider developing one of the derivations
by applying the [D] rule. Some formulas are put under fo-
cus. Subsequent development of this derivation will consist
in decomposing those formulas. In our neutral setting, this
will be matched by a decomposition of their (asynchronous)
duals in the other derivation. Just as the [D] rule marks for-
mulas for decomposition at the beginning of a synchronous
phase, we need a way to mark arcs of neutral graphs for
decomposition of the neutral expressions labeling them. A
neutral graph will record which arcs are marked or focused.
The focused arc

u v
E

(notice the thicker line) indicates that [E]+ appears under
focus in the sequent associated with u. As a formula under
focus may be asynchronous, we allow neutral expressions
labeling focused arcs not to be guarded. A neutral graph
with focused arcs is called active because one of the fron-
tiers it represents is in the middle of a synchronous phase.

Definition 4.1. A neutral graph G is a tuple (V, A, p, ε, F ),
where V is a finite set (possibly empty) of vertices, A ⊆
V × V is a set of arcs, p : V �→ {0, 1} associates a polar-
ity to each vertex, ε : A �→ E maps each arc to a neutral
expression, and F ⊆ A. In addition, the following must
hold:
• The undirected graph based on (V, A) is a set of trees

none of which are the degenerate (one-vertex) tree.
• For every a ∈ A, if ε(a) is not guarded then a ∈ F .
• For every (u, v) ∈ A, p(u) = p(v).

Notice that the definition requires that no vertex be iso-
lated (i.e. without neighbours).

Informally, a move of player σ (for σ ∈ {0, 1}) corre-
sponds to a synchronous (resp. asynchronous) phase from
the frontier consisting of the vertices of polarity σ (resp. σ).

We say that a ∈ A is focused if a ∈ F . A vertex v with
polarity σ (i.e., p(v) = σ) is called a σ-vertex. A neutral
graph G is connected iff (V, A) is weakly connected, and
disconnected otherwise. Notice that the polarity assignment
p and the restriction above makes the graph (V, A) bipartite.

Definition 4.2. The neutral graph (V ′, A′, p′, ε′, F ′) is a
subgraph of (V, A, p, ε, F ) if V ′ ⊆ V , A′ ⊆ A, p′ = p|V ′ ,



ε′ = ε|A′ , and F ′ = F ∩ A′. If G = (V, A, p, ε, F ) is a
neutral graph and A′ ⊆ A, we denote by G|A′ the maximal
subgraph of G whose arcs all belong to A′. Formally

G|A′ = (V ′, A′, p|V ′ , ε|A′ , F ∩ A′)

where V ′ = {v ∈ V : ∃u ∈ V (u, v) ∈ A′ ∨ (v, u) ∈ A′}.

A connected component of a neutral graph is a maximal
connected subgraph.

Recall the “cut invariant” presented above. Cutting a for-
mula roughly corresponds to merging the two vertices its
corresponding arc connects in a neutral graph. The invari-
ant thus suggests that by repeating this operation the whole
neutral graph reduces to a single vertex. This should lead
us to require (V, A) to be a tree (see more about this in [4]).
However, we allow (V, A) to be disconnected, as long as
each connected component is a tree, since the failure of one
player may leave the graph disconnected: in that case, the
next move typically consists in the player who failed select-
ing a connected component on which to continue the play.

Definition 4.3. A neutral graph G is active when it has at
least one focused arc and is passive otherwise. A neutral
graph is degenerate if it has no vertices. There is exactly one
such neutral graph, denoted by δ, and it is clearly passive.

Active neutral graphs correspond to states in which a
synchronous phase is not finished yet. As such, they will ap-
pear between micro-moves, but not between macro-moves.
We need to impose restrictions on neutral graphs before
they can be introduced in a game. Since our game is not
concurrent, we must be able to clearly state whose turn it is.
We will assign a polarity to suitable neutral graphs. Infor-
mally, if G has polarity σ ∈ {0, 1}, then it is player σ’s turn
to play in G.

A source of a neutral graph is a vertex v such that there
is no arc of the form (u, v).

Definition 4.4. A passive neutral graph G is weakly po-
larized if for every connected component C of G there is a
polarity σ ∈ {0, 1} such that every source of C has polarity
σ. If G is weakly polarized and has exactly one connected
component, then G is strongly polarized at polarity σ, where
σ is the polarity assigned to the sources of G.

Notice that δ is weakly but not strongly polarized. In a
passive neutral graph G, all associated sequents are of the
form � Γ ⇑ ∆, that is, not in a synchronous phase. Those
from which a synchronous phase is about to start (via the
[D] rule) are those for which ∆ is empty, that is, those asso-
ciated with the sources of G. Requiring all the sources of a
connected component to share the same polarity σ ensures
that player σ must be the next one to play in that compo-
nent. As follows from the above explanation, when a move

results in a weakly (but not strongly) polarized passive neu-
tral graph, the next move is to select a (strongly polarized)
component (if any) to continue from.

Definition 4.5. An active neutral graph G = (V, A, p, ε, F )
is (weakly or strongly) polarized at polarity σ iff the follow-
ing hold:
• for every (u, v) ∈ F , p(u) = σ and p(v) = σ and
• the passive neutral graph G′, obtained by reversing and

unfocusing G’s focused arcs, is weakly polarized.

Let Na (resp. Np) be the set of the weakly polarized
active (resp. passive) neutral graphs. Let N = Na ∪ Np

denote the set of the weakly polarized neutral graphs. In
the following, all the neutral graphs we consider are weakly
polarized.

If S ⊂ N , let S∗ be the subset of S consisting of its
strongly polarized elements. Clearly N ∗

a = Na.
A notion which will be useful in proving that plays are

finite is that of the size of a neutral graph G ∈ N . We define
it to be the total number of symbols of the neutral expres-
sions labeling the arcs of G, and denote it by size(G).

4.4. Rewriting neutral graphs

This section describes the transitions on neutral graphs
that are the basis of the game. We first introduce six of
them, the aforementioned “micro-moves”, that should be in-
terpreted as the simultaneous applications of two dual single
rules of the proof system. Table 1 lists them along with their
interpretations. We subsequently build another transition,
which packs a maximal sequence of micro-moves together
and should be read as the simultaneous development of two
dual phases. Failures may arise in some of these transitions;
in that case the transition is labeled with two boolean flags
f0 and f1, where fi is � if and only if player i has encoun-
tered a failure. A player who has failed cannot win the play
any more but may try to prevent her opponent from winning
by making her fail as well (in which case the play ends in a
tie).

In the first of the micro-moves of Table 1, G is pas-
sive and G′ is active: with this transition, we are selecting
what neutral expressions should be decomposed. The syn-
chronous reading of this step corresponds to the multifo-
cus inference while the asynchronous reading corresponds
to selecting which formulas to use for invertible decompo-
sition. The second transition is the converse: once we have
reached the end of a phase (marked by the � operator), the
designated formulas are released (unfocused). Here, G is
active and G′ loses one of its foci. The next two transitions
result from dealing either with an additive or a multiplica-
tive neutral expression labeling a focused arc. The last two
transitions deal with the additive and multiplicative units: it
is with these units that failures can arise in game playing.



Transition Sync reading Async reading

G
D→ G′ [D] none

G
R→ G′ [R ⇓] [R ⇑]

G
+→ G′ [⊕] [&]

G
×→ G′ [⊗] [�]

G
00,f0,f1−→ G′ none [�]

G
1,f0,f1−→ G′ [1] [⊥]

Table 1. Neutral moves and their two readings

In the following description of the micro-moves we use
figures to illustrate the formal definitions. Each micro-move
rewrites a strongly polarized neutral graph G. σ- (resp. σ-)
vertices are represented in black (resp. white), where σ is
the polarity of G. We also refer to player σ (resp. σ) as the
black (resp. white) player.

Decision: Let G = (V, A, p, ε, ∅) ∈ N ∗
p and let v1, . . . , vn

be the sources of G. For each vi, let Ai be a non empty
subset of {(vi, w) : (vi, w) ∈ A}. If we then let G′ =
(V, A, p, ε,∪n

i=1Ai), we have the labeled transition G
D→

G′.

vi

D→
vi

(this figure only shows one source vi.) Let us give an in-

formal description of this transition G
D→ G′. Recall the

decision rule ([D] in Figure 2). It is applied to a sequent of
the form � Γ ⇑. In G, these sequents exactly correspond
to the sources, and the transition corresponds exactly to ap-
plying [D] to each one of them. G ∈ N ∗

p ensures that all
sources are σ-vertices, where σ is the polarity of G; this
micro-move shall therefore be made by player σ.

To describe the next five labeled transitions, let G =
(V, A, p, ε, F ) ∈ Na and a = (v, w) ∈ F .

Reaction: If ε(a) is of the form �E, then one can remove
the leading �, reverse the arc, and unfocus it. Formally, let

G′ = (V, (A \ {a}) ∪ {a}, p, ε|A\{a} ∪ {(a, E)}, F \ {a})

where a = (w, v) is the opposite arc to a. Then we have the

transition G
R→ G′.

v w
�E R→

v w
E

In both interpretations, a formula of the wrong polarity is
reclassified.

Additives: If ε(a) is of the form E1 + E2, then one can
replace this expression with one of the operands. Formally,

let G′ = (V, A, p, ε′, F ) where ε′ is the same as ε except that
ε′(a) = Ei for some i ∈ {1, 2}. We then have the labeled

transition G
+→ G′.

v w
E1 + E2

+→
v w

Ei

This treatment of + is essentially the same as in the additive
game presented before.

If ε(a) =00 (the 0-ary additive), then one can remove w
and all its adjacent arcs. Formally, let G′ = G|A∩(V \{w})2
and let f0 and f1 be the boolean values defined as follows:
fp(v) = � and fp(w) = ⊥. Then we have the labeled tran-

sition G
00,f0,f1−→ G′.

v w
00 00,f0,f1−→

v

(in the second graph, any isolated vertex shall be removed.)
This last transition is particular: on the white player’s side
we simply remove a sequent of the form � Γ ⇑ �, ∆, in
other words we apply [�]; on the black player’s side we are
confronted with an unprovable sequent of the form � Γ ⇓
0, ∆. Consequently the black player fails (fp(v) = �).

Multiplicatives: If ε(a) is of the form E1×E2, then one can
split v into two vertices and a into two arcs, labeling each
one with an operand. Formally, define two new vertices v1

and v2 and for every b = (t, u) ∈ A \ {a}, define an arc b′

as follows: if t = v and u = v, then b′ = b; if t = v, then
b′ = (vi, u) for some i ∈ {1, 2}; and if u = v, then b′ =
(t, vi) for some i ∈ {1, 2}. Now let G′ = (V ′, A′, p′, ε′, F ′)
where
• V ′ = (V \ {v}) � {v1, v2},
• A′ = {(v1, w), (v2, w)} ∪ {b′ : b ∈ A \ {a}},
• p′ = p|V \{v} ∪ {(v1, p(v)), (v2, p(v))},
• ε′(v1, w) = E1 and ε′(v2, w) = E2, and for every b ∈

A \ {a}, ε′(b′) = ε(b),
• F ′ = {(v1, w), (v2, w)} ∪ {b′ : b ∈ F \ {a}}.

We then have the labeled transition G
×→ G′.

v w
E1 × E2

×→
v2

v1

w
E2

E1

On the black player’s side, the splitting corresponds to that
of the [⊗] rule. On the white player’s side the invertible [�]
rule is applied.

If ε(a) = 1 (the 0-ary multiplicative), then one can re-
move a. Formally, let G′ = G|A\{a} where f0 and f1 are
boolean values defined as follows: fp(v) = � iff v is a ver-
tex of G′, fp(w) = ⊥ iff w is a vertex of G′. Then we have



the labeled transition G
1,f0,f1−→ G′ = G|A\{a}.

v w
1 1,f0,f1−→

v w

(in the second graph, any isolated vertex shall be removed.)
In this transition both players may fail. On the black
player’s side the transition corresponds to applying [1]. The
sequent associated to v should thus be �⇓ 1, therefore the
player fails (fp(v) = �) if 1 is not the only formula of the
sequent. On the white player’s side [⊥] is applied, and if w
is only connected to v then its associated sequent becomes
�⇑ which is unprovable, and the player fails (fp(w) = �).

Proposition 4.6. D→ has the following properties:

1. if G
D→ G′, then G′ ∈ Na and has the same polarity as

G;
2. if G ∈ N ∗

p , then there is G′ ∈ Na such that G
D→ G′.

Proof. Let us show the first property. Since there is at least
one source in G, G′ has at least one focused arc and is ac-
tive. Let σ be the polarity of G. All the sources of G are
σ-vertices. In G′ all focused arcs are of the form (v, w)
where v is a source and is therefore a σ-vertex. Let G′′ be
the passive neutral graph obtained by reversing and unfo-
cusing the focused arcs of G′. Since every source of G′ is
the origin of at least one focused arc, all the sources of G′′

are ends of focused arcs of G′ and are therefore σ-vertices.
Hence G′′ is weakly polarized and G′ has polarity σ.

The second property is immediate: since there are no
isolated vertices in a neutral graph, every source of G has at
least one outgoing arc to focus on.

We are going to define how to build sequences of micro-
moves, which correspond to phases in focused proof search;

those sequences are therefore built as follows: a)
D→ is used

once to initiate the sequence (thus making the neutral graph
active), b) all the other micro-moves are applied until the
neutral graph becomes passive again. The following defi-
nition introduces a transition representing a generic micro-
move occurring in part b).

Definition 4.7. The relation G
f0,f1−→ G′, where G ∈ Na,

G′ ∈ N , and f0, f1 are boolean values, is defined to hold

in the following cases: for every G ∈ Na, if G
R→ G′,

G
+→ G′ or G

×→ G′, then G
⊥,⊥−→ G′; and if G

1,f0,f1−→ G′

or G
00,f0,f1−→ G′, then G

f0,f1−→ G′.

Proposition 4.8. The relation
,−→ is finitely branching. It

also satisfies the following properties.

1. if G
f0,f1−→ G′, then

(a) size(G) > size(G′);

(b) if G′ is degenerate or disconnected, then G is discon-
nected or f0 ∨ f1 = �;

(c) if G′ is active, then it has the same polarity as G;

2. if G ∈ Na, then there are G′, f0 and f1 such that G
f0,f1−→

G′;

Proof. The relation
,−→ is finitely branching because each

of
R→,

+→,
×→,

00, ,−→, and
1, ,−→ is, as can be seen from their

definitions.
Let us show property (1). (a) can be easily seen in each

one of the 5 cases. Let us show (b). Assume that G is not
disconnected and that G′ is degenerate or disconnected. The

only possible cases are G
00,f0,f1−→ G′ or G

1,f0,f1−→ G′. In the

case G
00,f0,f1−→ G′ we have f0∨f1 = �. In the case G

1,f0,f1−→
G′, the only situation in which f0 ∨ f1 = ⊥ is when, in G,
v is only connected to w while w is connected to at least
another vertex. This case cannot occur since it would make
G′ neither degenerate nor disconnected. (c) follows from
the observation that each relation preserves the polarities
of the origins and ends of the focused arcs. Property (2)
is easily observed. If G ∈ Na, then it has a focused arc.
Depending on the form of the neutral expression labeling it,
one of the 5 cases applies.

We may now pack part b) in a single transition:

Definition 4.9. The relation G
f0,f1−→† G′, where G ∈ N ,

G′ ∈ Np, and f0, f1 are boolean values, is the smallest

relation such that for every G ∈ Np, G
⊥,⊥−→† G and such

that for every G ∈ Na, if G
f0,f1−→ G′ f0

′,f1
′

−→ † G′′, then

G
f0∨f0

′,f1∨f1
′

−→ † G′′.

This relation is simply characterized. Let G ∈ N , G′ ∈
Np, and f0, f1 booleans. G

f0,f1−→† G′ iff there are n ∈ N,

G0 = G, G1, . . . , Gn = G′ ∈ N and booleans f
(i)
0 , f

(i)
1

for 1 ≤ i ≤ n such that G0
f
(1)
0 ,f

(1)
1−→ . . .

f
(n)
0 ,f

(n)
1−→ Gn and

∀σ ∈ {0, 1}, fσ =
∨

1≤i≤n f
(i)
σ . Notice that f0 and f1

indicate a failure at some point in the sequence.
A consequence is that size(G) ≥ size(G′), and the in-

equality is strict if n > 0 (e.g. if G ∈ Na).

Composing
D→ and

,−→† yields a transition which repre-
sents a phase in the proof system:

Definition 4.10. The relation G
f0,f1� G′, where G ∈ N ∗

p ,
G′ ∈ Np, and f0, f1 are boolean values, is defined to hold

if G
D→ G0

f0,f1−→† G′ for some G0 ∈ Na.

Proposition 4.11. The relation
,� is finitely branching. It

also satisfies the following properties.

1. if G
f0,f1� G′

(a) size(G) > size(G′);



(b) if G′ is degenerate or disconnected, then f0 ∨ f1 =
�;

2. if G ∈ N ∗
p , then there are G′, f0 and f1 such that G

f0,f1�
G′.

Proof. Consider
,−→†. The

,−→-sequences starting from
some G ∈ N have lengths bounded by size(G). Since

,−→ is finitely branching, so is
,−→†. So is

D→ (easily seen),
hence so is

,�.
Let us show property (1). Assume we have G

f0,f1� G′.

We can write G
D→ G0

f
(1)
0 ,f

(1)
0−→ . . .

f
(n)
0 ,f

(n)
0−→ Gn =

G′, with ∀σ ∈ {0, 1}, fσ =
∨

1≤i≤n f
(i)
σ . We have

size(G) = size(G0) > size(G′), which proves (a). Let
us show (b). For H ∈ N , consider the property P (H) =
“H is degenerate or disconnected”. G ∈ N ∗

p , hence P (G)
is false, and then so is P (G0). Suppose that P (G′) is true.
Let k = min{1 ≤ i ≤ n : P (Gi)}. By Proposition 4.8

f
(k)
0 ∨ f

(k)
1 = �, hence f0 ∨ f1 = �. Property (2) follows

from similar results in Propositions 4.6 and 4.8.

4.5. Positions and moves

We can now define the positions and moves of the game.
We must also specify, for each position, whether it is a 0-
position, a 1-position, a 0-win, a 1-win or a tie.

Definition 4.12. A position is a tuple of the form
(G, f0, f1), where G ∈ Np and f0, f1 are boolean values,
such that if G /∈ N ∗

p , then f0 ∨ f1 = �.

In other words, a game position is some G ∈ Np repre-
senting goals to be achieved by the players, along with two
boolean values recording which player(s) has(have) failed
so far. In addition, if G is degenerate or disconnected then
some player must have failed.

Definition 4.13. We define the terminal game positions and
the move relation ρ simultaneously as follows.
1. The two positions (δ,�,⊥) and (δ,⊥,�) are respec-

tively a 1-win and a 0-win;
2. the positions of the form (G,�,�) are ties;
3. a position (G, f0, f1), where G = δ, G /∈ N ∗

p , fσ = �
and fσ = ⊥, is a σ-position and its ρ-successors are
(G′, f0, f1), one for every connected component G′ of
G;

4. a position (G, f0, f1), where G ∈ N ∗
p and f0 ∧ f1 = ⊥,

is a σ-position, where σ is G’s polarity. If G
f0

′,f1
′

� G′,
then (G, f0, f1) ρ (G′, f0 ∨ f0

′, f1 ∨ f1
′).

Informally, case 1 says that if there are no goals left and
only one player has failed, then her opponent wins; case 2
says that as soon as both players fail the play ends in a tie;
case 3 says that when a player’s failure causes the neutral

graph to be disconnected, she should pick a connected com-
ponent to challenge her opponent to; and case 4 describes
a normal move, which corresponds to the simultaneous de-
velopment of two phases in the proof system.

It can be easily seen (see Proposition 4.11) that every
non-final position actually has a ρ-successor.

Proposition 4.14. The relation ρ is finitely branching and
if (G, f0, f1) ρ (G′, f ′

0, f
′
1), then

1. size(G) > size(G′);
2. if fτ = � for some τ ∈ {0, 1}, then f ′

τ = � (ρ preserves
failures).

Proof. The relation ρ is finitely branching because neutral
graphs are finite (in case 3 of definition 4.13) and

,� is
finitely branching (in case 4). Property (1) is a consequence
of the fact that every connected component of a neutral
graph contains at least one arc (in case 3), and of Propo-
sition 4.11 (in case 4). Lastly, it can be immediately seen
from its definition that ρ preserves failures.

This proposition implies that ρ is noetherian and more:
the plays starting from a given position have bounded
lengths.

5. Winning strategies as cut-free focused proofs

In this section we relate cut-free proofs (in the proof sys-
tem) to winning strategies (in the game). Our theorems state
the equivalence between provability and the existence of a
winning strategy. Their proofs effectively show how to con-
struct a winning strategy from a proof. For the converse to
hold, we would need to impose a uniformity condition on
strategies like innocence. We leave this as future work.

The operators [·]+ and [·]− are applied to multisets of
neutral expressions in the obvious way. Throughout this pa-
per, we shall not admit atomic formulas (propositional vari-
ables) into formulas: formulas will contain no non-logical
symbols. Two focused proofs of the same sequent are
equivalent iff they differ by the order in which asynchronous
rules are applied within asynchronous phases. This is in-
deed an equivalence relation.

We begin by formally defining two central notions relat-
ing concepts of the game to concepts of the proof system:
that of sequent associated to a vertex of a neutral graph, and
that of σ-provability (for σ ∈ {0, 1}).

Proposition 5.1. Let G = (V, A, p, ε, F ) ∈ N and v ∈
V . Consider the multisets of formulas F− = {[ε(u, v)]− :
(u, v) ∈ F}, F+ = {[ε(v, w)]+ : (v, w) ∈ F}, U− =
{[ε(u, v)]− : (u, v) ∈ A \ F}, and U+ = {[ε(v, w)]+ :
(v, w) ∈ A \ F}.
1. At least one of F− and F+ is empty.
2. The elements of U− are asynchronous and those of U+

are synchronous.



Proof. Let us show the first property. If G ∈ Np, then F is
empty, and so are F− and F+. Otherwise, G ∈ Na; sup-
pose by contradiction that F− and F+ are both non empty.
There exist (u, v), (v, w) ∈ F . Since G is strongly polar-
ized, p(u) = p(v). Yet (u, v) ∈ A and G is a neutral graph,
hence p(u) = p(v), which yields a contradiction.

Let us show the second property. For every a ∈ A \ F ,
ε(a) is guarded, hence [ε(a)]− is asynchronous and [ε(a)]+

is synchronous.

Definition 5.2 (Sequent associated with a vertex). Let G =
(V, A, p, ε, F ) ∈ N and v ∈ V . We associate with v a
sequent ΣG,v defined as follows:

ΣG,v =

{
� U+ ⇑ F−,U− if F+ is empty

� U+ ⇓ F+,U− otherwise

where F−, F+, U−, and U+ are defined as above.

Definition 5.3 (σ-provability). Let G ∈ N and σ ∈ {0, 1}.
G is σ-provable iff the sequents associated with its σ-
vertices are all provable. A triple (G, f0, f1) where G ∈ N
and f0, f1 are boolean values is σ-provable iff fσ = ⊥ and
G is σ-provable.

We relate game moves to derivations by proceeding
gradually from small steps (micro-moves and inference
rules) to large objects (winning strategies and proofs).

The proofs of the four following propositions are rather
long and can be found in the extended report.

Proposition 5.4. Let G ∈ Na and let σ be G’s polarity. Let

S = {(G′, f0, f1) : G
f0,f1−→ G′}. G is σ-provable iff there

exists (G′, f0, f1) ∈ S which is σ-provable.

Proposition 5.5. Let G ∈ Na and let σ be G’s polarity. Let

S = {(G′, f0, f1) : G
f0,f1−→ G′}. G is σ-provable iff every

(G′, f0, f1) ∈ S is σ-provable.

Proposition 5.6. Let G ∈ Na and let σ be G’s polarity. Let

S = {(H, f0, f1) : G
f0,f1−→† H}. G is σ-provable iff there

exists (H, f0, f1) ∈ S which is σ-provable. G is σ-provable
iff every (H, f0, f1) ∈ S is σ-provable.

Proposition 5.7. Let G ∈ N ∗
p and let σ be G’s polarity. Let

S = {(H, f0, f1) : G
f0,f1� H}. G is σ-provable iff there

exists (H, f0, f1) ∈ S which is σ-provable. G is σ-provable
iff every (H, f0, f1) ∈ S is σ-provable.

Lemma 5.8. Let q = (G, f0, f1) be a non-final σ-position.
Let S = {q′ : q ρ q′}. q is σ-provable iff there exists q′ ∈ S
which is σ-provable. q is σ-provable iff every q′ ∈ S is
σ-provable.

Proof. q is a non-final position; we may be either in case 3
or case 4 of Definition 4.13. Let us prove the result in each
case separately.

Case 3 of Definition 4.13. fσ = � and fσ = ⊥ and for
every (G′, f ′

0, f
′
1) ∈ S, f ′

σ = � and f ′
σ = ⊥. It means

that neither q nor any q′ ∈ S is σ-provable. Also, q is σ-
provable iff G is σ-provable (since fσ = ⊥), iff for every
(G′, f ′

0, f
′
1) ∈ S, G′ is σ-provable (since the G′ are the

connected components of G), iff every q′ ∈ S is σ-provable
(since the f ′

σ all equal ⊥).
Case 4 of Definition 4.13. G ∈ N ∗

p and has polar-
ity σ. We may apply Proposition 5.7 to G. Let S′ =

{(G′, f ′
0, f

′
1) : G

f ′
0,f1�

′
G′}. G is σ-provable iff there exists

(G′, f ′
0, f

′
1) ∈ S′ which is σ-provable. G is σ-provable iff

every (G′, f ′
0, f

′
1) ∈ S′ is σ-provable. Therefore

• (G, f0, f1) is σ-provable iff there exists (G′, f ′
0, f

′
1) ∈

S′ such that (G′, f0 ∨ f ′
0, f0 ∨ f ′

1) is σ-provable,
• (G, f0, f1) is σ-provable iff for every (G′, f ′

0, f
′
1) ∈ S′,

(G′, f0 ∨ f ′
0, f0 ∨ f ′

1) is σ-provable.
The result follows from the fact that S = {(G′, f0∨f ′

0, f0∨
f ′
1) : (G′, f ′

0, f
′
1) ∈ S′}.

Theorem 5.9. Let q be a position and σ ∈ {0, 1}. There is
a winning σ-strategy from q iff q is σ-provable.

Proof. We know that the lengths of the plays from q are
bounded. Let us prove the result by induction on the maxi-
mal length nq of a play from q.

If nq = 0, then q is a final position. Player σ has a
winning strategy from q iff q is a σ-win, iff q is σ-provable
(see Definition 4.13).

Suppose that nq > 0. q is not a final position. Let S =
{q′ : q ρ q′}. There are two cases: either q is a σ-position,
or it is a σ-position.

If q is a σ-position, then there is a winning σ-strategy
from q iff there is a winning σ-strategy from some q′ ∈ S,
iff, by induction hypothesis (nq′ < nq), there exists q′ ∈ S
which is σ-provable, iff, by Lemma 5.8, q is σ-provable.

If q is a σ-position, then there is a winning σ-strategy
from q iff there is a winning σ-strategy from every q′ ∈ S,
iff, by induction hypothesis (nq′ < nq), every q′ ∈ S is
σ-provable, iff, by Lemma 5.8, q is σ-provable.

6. Related and future work

There is a great deal of work that address various game-
theoretical aspects of logic. Most of the work on using
game semantics with linear logic is centered around mod-
eling cut-elimination: in particular, on viewing one player
as a processing element and the other player as the environ-
ment. Blass introduced a game semantics for linear logic
in [3]. From the point of view of modeling cut-free proof
search, the most closely related work to that described here



is Miller and Saurin’s [15]: there the use of games to pro-
vide a neutral approach to proof and refutation was applied
to additive games weakly extended with some multiplica-
tive aspects: no approach to the full multiplicative setting
was considered in that paper. Our work is strongly related,
at least in spirit, to a part of Girard’s Ludics [8]. Less closely
related is work by Pym and Ritter [17] where game seman-
tics is proposed as a way to control the search for proofs in
intuitionistic and classical logics.

We leave several topics as future work. These include
extending the logic to stronger fragments by incorporating,
for example, first-order quantification, equality, and fixed
points. Developing technical connections to Ludics, in par-
ticular works such as [6] would be of particular interest. It
would also be of interest to relate proofs and strategies more
closely, by switching to asynchronous games and innocent
strategies ([14]).

References

[1] S. Abramsky and P.-A. Melliès. Concurrent games and full
completeness. In 14th Symp. on Logic in Computer Science,
pages 431–442. IEEE Computer Society Press, 1999.

[2] J.-M. Andreoli. Logic programming with focusing proofs
in linear logic. J. of Logic and Computation, 2(3):297–347,
1992.

[3] A. Blass. A game semantics for linear logic. Annals Pure
Appl. Logic, 56:183–220, 1992. Special Volume dedicated
to the memory of John Myhill.

[4] V. Danos and L. Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28:181–203, 1989.

[5] O. Delande and D. Miller. A neutral approach to proof and
refutation in MALL: extended report. Available via the au-
thors web pages, 2008.

[6] C. Faggian and M. Hyland. Designs, disputes and strategies.
In Computer Science Logic, volume 2471 of Lecture Notes
in Computer Science, pages 713–748, 2002.

[7] J.-Y. Girard. A fixpoint theorem in linear logic. An
email posting to the mailing list linear@cs.stanford.edu,
Feb. 1992.

[8] J.-Y. Girard. Locus solum. Mathematical Structures in Com-
puter Science, 11(3):301–506, June 2001.

[9] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic ap-
proach to logic programming. II. Programs as definitions. J.
of Logic and Computation, 1(5):635–660, Oct. 1991.

[10] W. Hodges. Logic and games. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Stanford University,
2004.

[11] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for
PCF: I. models, observables and the full abstraction prob-
lem, II. dialogue games and innocent strategies, III. A fully
abstract and universal game model. Information and Com-
putation, 163:285–408, 2000.

[12] M. I. Kanovich. Simulating linear logic with 1-linear logic.
Preprint 94-02, Laboratoire de Mathématiques Discrètes,
University of Marseille, 1994.

[13] P. Lincoln. Deciding provability of linear logic formulas. In
J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Proceedings
of the workshop on Advances in linear logic, pages 197–210,
New York, NY, USA, 1995. Cambridge University Press.

[14] P.-A. Melliès. Asynchronous games 2: The true concur-
rency of innocence. Theoretical Computer Science, 358(2–
3):200–228, 2004.

[15] D. Miller and A. Saurin. A game semantics for proof search:
Preliminary results. In Proceedings of the Mathematical
Foundations of Programming Semantics (MFPS05), num-
ber 155 in Electr. Notes Theor. Comput. Sci, pages 543–563,
2006.

[16] D. Miller and A. Saurin. From proofs to focused proofs: a
modular proof of focalization in linear logic. In J. Duparc
and T. A. Henzinger, editors, CSL 2007: Computer Science
Logic, volume 4646 of LNCS, pages 405–419. Springer-
Verlag, 2007.

[17] D. Pym and E. Ritter. A games semantics for reductive
logic and proof-search. In D. Ghica and G. McCusker, edi-
tors, GaLoP 2005: Games for Logic and Programming Lan-
guages, pages 107–123, 2005.


