
23 June 2008 1/32

An overview of a proof theoretical approach to

reasoning about computation

Dale Miller

INRIA-Saclay & LIX/École Polytechnique

Parsifal Project

LFMTP’08, Pittsburgh, 23 June 2008

References can be found in the short article in the conference proceedings.

This talk provides an overview to some of the work by David Baelde, Andrew
Gacek, Ray McDowell, Gopalan Nadathur, Alwen Tiu, and myself. Miller was
funded by the IST-2005-015905 MOBIUS and the INRIA “Equipes
Associées”Slimmer.

23 June 2008 2/32

Outline

• Background and motivation

• Computing and reasoning with bindings

• Definitions and ∇-quantification

• A couple examples

• Designing a theorem prover

23 June 2008 3/32

Proof theory as an alternative to model theory

Gödel’s Completeness Theorem [1929]
A formula is a theorem if and only if it is valid.

The first deep connection between syntactically presented proofs (witness for
theoremhood) and model theoretic validity.

In many circles, it is largely unquestioned that the proper way to attribute
meaning to logic specifications is via model theory or categorical theory.

• In the past 80 years, enough semantic muscle has been developed to justify
almost anything. If seems that both syntax and semantic can be ad hoc.

• Model theory is based on the “infinite” while proof theory is based on the
“finite”. Eg: is a binding encoded as a function or an expression?

Proof theory can be regarded as organizing the principles behind syntax.

Of course, the important things (like the set of theorems) always have more than
one description.

23 June 2008 4/32

How abstract is your syntax?

Approaches to encoding syntax have slowly grown more abstract over the years.

Strings: Formulas are strings: “well-formed formulas (wff)”. Church and Gödel
did meta-logic with strings (!).

Parse trees: Removing white space, parenthesis, infix/prefix operators yields
first-order term structures. The recursive structure of syntax is better
represented.

Bindings are treated too concretely. Of the numerous approaches to making
bindings more abstract, I’ll focus on probably the oldest approach.

λ-trees: Syntax is forced to be treated via α-conversion and weak forms of
β-reduction (eg, typed β-conversion or β0). Unification is used to decompose
syntax. Support from the meta-level for changing contexts.

23 June 2008 5/32

Proof-search versus proof-normalization

We use proof-search specifications (logic programs) instead of
proof-normalization specifications (functional programs).

• SOS rules, typing rules, etc, are relational specifications that are immediately
and naturally realized as logic programming clauses.

• The proof search embraces λ-tree syntax directly.

Functional Prog Logic Prog

f.o. variables datatypes datatypes

abstraction higher-order prog Over relations: higher-order prog

(α → β) → α∗ → β∗ (α → β → o) → α∗ → β∗ → o

— Over datatypes: λ-tree syntax

(term → term) → term

Higher-order abstract syntax (hoas) uses “meta-level binders” for “object-level
binder.” Since this term is ambiguous, we use λ-tree syntax for the proof search
approach to hoas.

23 June 2008 6/32

The traditional approach to reasoning about computation

Step 1: Implement mathematics

• Choose among constructive mathematics, classical logic, set theory, etc.

• Provide abstractions such as sets and/or functions.

Step 2: Reduce computation to mathematics

• via denotational semantics and/or

• via inductive definitions for datatypes and inference rules.

What could be wrong with this approach? Isn’t mathematics universal?

Various “intensional aspects” of computational specifications — bindings, names,
resource accounting, etc, seem poorly supported in mathematical systems.

Eg, contrast modeling memory via linear logic or via encodings of sets of pairs or
as arrays.

23 June 2008 7/32

Drop mathematics as the intermediate

Church [1940] provided a framework for mixing logic and λ-abstraction.

• Using only axioms 1-6 yields a logic too weak for mathematics but strong
enough to capture λ-tree. Eg, λProlog is based on an intuitionistic subset of
these axioms.

• Subsequent axioms provided for extensionality, infinity, and choice functions.
Such an extension provides a framework for mathematics.

Example: Is the following a theorem?

∀wi. λx.x 6= λx.w

In proof search: Yes, since variable capture is not possible. This is a question
about syntax.

In proof normalization: No, since the domain might a singleton. This seems to
be about more than syntax.

Here, types denote syntactic types (categories such as π-calculus expressions,
names, actions, etc) and not the more general notion of “semantic” types.

23 June 2008 8/32

Three slogans about bindings

Two from Alan Perlis’s Epigrams on Programming and one from me.

(I) As Will Rogers would have said, “There is no such thing as a free variable.”

A variable is always declared somewhere and it’s usually a good idea to be
explicit about locating where that binding is declared.

(II) One man’s constant is another man’s variable.

It’s a matter of scope. When executing a functional program, the fact

program is a constant. When compiling and linking such a program, it is a
variable: it can be different low-level code and occupy different memory
locations.

(III) The names of binders are the same kind of fiction as white space: they are
artifacts of how we write expressions and have zero semantic content.

Bindings have semantic importance but not their names. It is the
implementations of logic and type systems that must deal with specific
devices such as names or de Bruijn indices.

23 June 2008 9/32

Example: Binding a variable in a proof

When proving a universal quantifier, one uses a “new” or “fresh” variable.

B1, . . . , Bn −→ Bv

B1, . . . , Bn −→ ∀xτ .Bx
∀R,

provided that v is a “new” variable (not free in the lower sequent). Such new
variables are called eigenvariables.

But this violates the “Perlis principle.” Instead, we write

Σ, v: τ : B1, . . . , Bn −→ Bv

Σ : B1, . . . , Bn −→ ∀xτ .Bx
∀R,

Here, we assume that the variables in the signature context are bindings over the
sequent.

Eigenvariables are bound variables within a proof.

23 June 2008 10/32

Two key ingredients for computing with bindings

• Unification modulo α, η, and enough β conversion.

• Mobility of binders. For this, (β0) (λx.B)x = B is sufficient.

In the expression (λx.B)x, occurrences in B of x refer to a local binding, while
in the second occurrence of B, the x refers to some more remote binding.

Unification modulo αβ0η is decidable given that β is so strongly restricted
(β0-reduction yields smaller terms).

Pattern unification is a restricted subset of αβ0η-unification that is also unary.

23 June 2008 11/32

Treatment of binders in sequent calculus

During computation, binders can be instantiated:

Σ : ∆, typeof c (int → int) −→ C

Σ : ∆,∀α(typeof c (α → α)) −→ C
∀L

Binders also have mobility (they can move):

Σ, x : ∆, typeof x α −→ typeof dBe β

Σ : ∆ −→ ∀x(typeof x α ⊃ typeof dBe β) ∀R
Σ : ∆ −→ typeof dλx.Be (α → β)

In this case, the binder named x moves from term-level (λx) to formula-level
(∀x) to proof-level (as an eigenvariable in Σ, x).

23 June 2008 12/32

An example: call-by-name evaluation and simple typing

We want to do more than “animate” or “execute” a specification. We want to
prove properties about the specifications. We illustrate with a proof of type
preservation (subject-reduction).

∀M, N, V, U,R [eval M (abs R) ∧ eval (R N) V ⊃ eval (app M N) V]

∀R [eval (abs R) (abs R)]

∀M, N, A,B [typeof M (arr A B) ∧ typeof N A ⊃ typeof (app M N) B]

∀R, A,B [∀x[typeof x A ⊃ typeof (R x) B] ⊃ typeof (abs R) (arr A B)]

The first three clauses are Horn clauses; the fourth is not. Here, app is a constant
of type tm → (tm → tm) and abs is a constant of type (tm → tm) → tm).

23 June 2008 13/32

Proof of type preservation

Theorem: If P evaluates to V and P has type T then V has type T .

Proof: Prove by structural induction on a proof of eval P V : for all T , if
` typeof P T then ` typeof V T .

The proof of eval P V must end by backchaining on one of the formulas
encoding evaluation.

Case 1: Backchaining on the eval of abs: thus P and V are equal to (abs R), for
some R, and the consequent is immediate.

23 June 2008 14/32

Case2: Backchaining on the eval of app: thus P is of the form (app M N) and
for some R, there are shorter proofs of eval M (abs R) and eval (R N) V .

Since ` typeof (app M N) T , this typing judgment must have been proved using
backchaining and, hence, there is a U such that ` typeof M (arr U T) and
` typeof N U .

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T). This
formula must have been proved by backchaining on the typeof formula for abs,
and, hence, ` ∀x.[typeof x U ⊃ typeof (R x) T].

Since our logic of judgments is intuitionistic logic, we can instantiate this
quantifier with N and use cut and cut-elimination to conclude that
` typeof (R N) T . (Substitution lemma for free!)

Using the inductive hypothesis a second time yields ` typeof V T .
QED

Both of the theorem provers Abella (Gacek 2008) and Taci (Baelde, Snow, Viel
2008) can interactively build this proof.

23 June 2008 15/32

The collapse of eigenvariables

Eigenvariables are not sufficient alone as a proof-level binding.

This is despite their various uses as abstractions in computational specifications:
eigenvariables have been used to encode names in π-calculus [Miller 1993],
reference locations in imperative programming [Chirimar 1995], nonces in
security protocols [Cervesato, et. al. 1999], etc.

A cut-free proof of
∀x∀y.P x y

uses two different eigenvariables c and d and contains a proof of P c d. Since

∀x∀y.P x y ⊃ ∀z.P z z

is provable, it follows that
∀z.P z z

is provable: in particular, the same proof works after identifying c and d.

Thus, eigenvariables are unlikely to capture the proper logic behind things like
nonces, references, names, etc, particularly if inequality is important.

23 June 2008 16/32

Logical specifications as definition

The closed world assumption assumption has been given a proof theory account
using either definitions or fixed points.

We shall ignore most aspects of a proof theory of definitions except to say

• The definition clause ∀x1 · · · ∀xn[p(x1, . . . , xn) 4= Body] means that any
occurrence of the atomic formula p(t1, . . . , tn) is a sequent can be replaced by
Body[x1/t1, . . . , nn/tn].

• Equality has the following introduction rules:

∆ −→ t = t
δθ −→ Cθ

∆, s = t −→ C
if θ = mgu(s, t)

A failure of s and t to unify is a success in the proof

∆, s = t −→ C
if s and t are not unifiable

23 June 2008 17/32

A new quantifier ∇

This problem illustrates a confusion about where eigenvariables are bound: at
the object-level or meta-level (inside or outside the provability predicate).

To fix this problem of scope, we introduce a new meta-level quantifier, ∇x.B x,
and a new context to sequents. Sequents will have one global signature (the
familiar Σ) and several local signatures.

Σ : B1, . . . , Bn −→ B0

⇓
Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0

Σ is a set of eigenvariables, scoped over the sequent and σi is a list of variables,
locally scoped over the formula Bi.

The expression σi . Bi is a generic judgment.

Binder mobility is now more expressive given this new proof-level abstraction.

23 June 2008 18/32

The ∇ and ∀-quantifier

The ∇-introduction rules modify the local contexts.

Σ : (σ, yγ) . B[y/x],Γ −→ C
Σ : σ . ∇xγ .B, Γ −→ C ∇L

Σ : Γ −→ (σ, yγ) . B[y/x]
Σ : Γ −→ σ . ∇xγ .B

∇R

Since these rules are the same on the left and the right, this quantifier is self-dual.

Both the global and local signatures are abstractions over their respective scopes.

The universal quantifier rules are changed to account for the local context.
(Rules for ∃ are simple duals of these.)

Σ, σ ` t : γ Σ : σ . B[t/x], Γ −→ C
Σ : σ . ∀γx.B, Γ −→ C ∀L Σ, h : Γ −→ σ . B[(h σ)/x]

Σ : Γ −→ σ . ∀x.B
∀R

The familiar raising technique from higher-order unification is used to manage
scoping of variables: if σ is x1, . . . , xn then (h σ) is (h x1 · · · xn), where h is a
higher-order variable of the proper type.

23 June 2008 19/32

Changes to the equality rules

Equality has the following introduction rules:

∆ −→ σ . t = t
∆θ −→ Cθ

∆, σ . s = t −→ C
if θ = mgu(λσ.s, λσ.t)

∆, σ . s = t −→ C
if λσ.s and λσ.t are not unifiable

If σ is the list x1, . . . , xn then λσ.t is an abbreviation for λx1 . . . λxn.t.

Usually one aims for these unification problems to be within the pattern
unification fragment. The more general setting can be accommodated in the
theory.

23 June 2008 20/32

Some results involving ∇

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⇒ Cx) ≡ ∇xBx ⇒ ∇xCx

∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⇒ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥

Theorem. Given a fixed stratified definition, a sequent has a proof if and only
if it has a cut-free proof.

Theorem. Given a noetherian definition, the following formula is provable.

∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem. If we restrict to Horn definitions (no implication and negation in
the body of the definitions) then

1. ∀ and ∇ are interchangeable in definitions,

2. ` ∇x.B x ⊃ ∀x.B x for noetherian definitions.

23 June 2008 21/32

Example: reasoning with an object-logic

The formula ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉] is provable from the assumptions

∀x∀y[q x x y] ∀x∀y[q x y x] ∀x∀y[q y x x]

only if terms t2 and t3 are equal.

We should be able to prove the meta-level formula

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

23 June 2008 22/32

Example: reasoning with an encoded object-logic (cont)

The following definition encodes a part of object-level provability.

pv (∀̂G) 4= ∇x.pv (Gx) pv A
4= ∃D.prog D ∧ inst D A

pv (G & G′) 4= pv G ∧ pv G′

inst (q X Y Z) (q X Y Z) 4= > prog (∀̂x ∀̂ y q x x y) 4= >
inst (∀̂D) A

4= ∃t. inst (D t) A prog (∀̂x ∀̂ y q x y x) 4= >
prog (∀̂x ∀̂ y q y x x) 4= >

Ξ1 Ξ2 Ξ3

x, y, z : u, v . pv (q 〈u, x〉 〈v, y〉 〈v, z〉) −→ y = z

x, y, z : pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) −→ y = z

Ξ1 : λuλv.〈u, x〉 = λuλv.〈v, y〉. Unification failure, so sequent is proved.
Ξ2 : λuλv.〈u, x〉 = λuλv.〈v, z〉. Unification failure, so sequent is proved.
Ξ3 : λuλv.〈v, y〉 = λuλv.〈v, z〉. Unifier [y 7→ z] yields new trivial sequent

x, z :−→ z = z.

23 June 2008 23/32

Example: encoding π calculus

π-calculus is a formal model for concurrency. The main entities are processes and
names. The syntax is the following:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

We pick the π-calculus because it is an interesting case where the conventional
approach to encoding require complicated uses of side conditions involving
names.

Encoding the transition system for the π-calculus into HOAS has been know for
a number of years and is pretty straightforward. For example:

restriction (x)P is encoded using a constant of type (n → p) → p.

input x(y).P is encoded using a constant of type n → (n → p) → p.

23 June 2008 24/32

Encoding π-calculus transitions

Processes can make transitions via by making various actions: constructor τ : a

for silent actions and constructors ↓, ↑: n → n → a for input and output actions.

↓ xy represents the action of inputting name y on channel x, and ↑ xy represents
the action of outputting name y on channel x.

The abstraction ↑ x : n → a denotes a bound output action and ↓ x : n → a

denotes a bound input action.

The one-step transition relation is encoded using two predicates:

P
A−−→ Q A : a

P
↓x−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x−−⇀ M bound output action, ↑ x : n → a, M : n → p

23 June 2008 25/32

π-calculus: one-step transitions

Operational semantics: Rules for OUTPUT-ACT, MATCH, and RES.

x̄y.P
x̄y−−→ P

P
α−−→ P′

[x = x]P
α−−→ P′

P
α−−→ P′

(y)P
α−−→ (y)P′

y 6∈ n(α)

Encoding restriction using ∀ is problematic.

OUTPUT-ACT : x̄y.P
x̄y−−→ P

4= >
MATCH : [x = x]P

α−−→ P ′ 4= P
α−−→ P ′

RES : (x)Px
α−−→ (x)P ′x 4= ∀x.(Px

α−−→ P ′x)

Consider the process (y)[x = y]x̄z.0. It cannot make any transition, since y has
to be “new”; that is, it cannot be x. It is bisimilar to 0.

The following statement should be provable

∀x∀Q∀α.[((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥]

23 June 2008 26/32

Given the encoding of restriction using ∀, this reduces to proving the sequent

{x, z,Q′, α} : ∀y.([x = y](x̄z.0)
α−−→ Q′y) −→ ⊥

No matter what is used to instantiate the ∀y, the eigenvariable x can instantiated
to the same thing (say, w), and this case leads to the non-provable sequent

{z} : ([w = w](w̄z.0)
w̄z−−→ 0) −→ ⊥

The universal quantifier was not the correct choice. Use ∇ instead:

{x, z, Q, α} : w . ([x = w](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z,Q, α} : · . ∇y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥

∇L

{x, z,Q, α} : · . ((y)[x = y](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} :−→ · . ((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥

⊃ R

The success of defL follows the failure of unification problem λw.x = λw.w.

23 June 2008 27/32

Encoding simulation in the (finite) π-calculus

If the premises for the one step transition systems use ∇ instead of ∀, then
simulation for the (finite) π-calculus is simply the following:

sim P Q
4= ∀A∀P ′ [(P

A−−→ P ′) ⇒ ∃Q′.(Q A−−→ Q′) ∧ sim P ′ Q′] ∧
∀X∀P ′ [(P

↓X−−⇀ P ′) ⇒ ∃Q′.(Q ↓X−−⇀ Q′) ∧ ∀w.sim (P ′w) (Q′w)] ∧
∀X∀P ′ [(P

↑X−−⇀ P ′) ⇒ ∃Q′.(Q ↑X−−⇀ Q′) ∧∇w.sim (P ′w) (Q′w)]

Deduction with this formula will compute simulation. Bisimulation is easy to
encode (just add the symmetric cases to the above).

If the meta-logic is intuitionistic and free variables are interpreted as being ∀
quantified, then bisimulation corresponds to open bisimulation.

If the meta-logic is classic and free variables are interpreted as being ∇
quantified, then bisimulation corresponds to closed bisimulation.

23 June 2008 28/32

What about infinite systems?

The proof theory for ∇ with noetherian definitions (e.g., finite π-calculus)
appears unproblematic.

In such finite systems, one does not need either the cut rule or the initial rule.
Thus, one does not need to ask the question:

when should σ . B be equal to σ′ . B′?

∇ commutes with all logical connectives. Another question remains:

how does ∇ commute with the definition mechanism?

Both questions need to be addressed when developing induction and coinduction
principles.

These questions are addressed in different ways in the recent work by Baelde,
Gacek, Nadathur, and Tiu. Some of this will be presented later today.

23 June 2008 29/32

Putting this all together

How can we exploit ∇ and the proof theory of proof search more generally to
reason about logic specifications?

Object-logic: write your specifications using Horn clauses, hereditary Harrop
formulas, or linear logic. The proof theory of such logics is well developed (via
results about uniform proofs and focusing proofs). The main judgment of
interest here is

Does the sequent x1, . . . , xn : ∆ −→ G have a proof?

The eigenvariables x1, . . . , xn arise via uses of the ∀ quantifier: ∇ has no role.

Meta-logic: Map object-level formulas as meta-level terms and now translate
the above sequent judgment into the generic judgment x1, . . . , xn . seq ∆ G.
Here, seq translates the object-level ∀ to the meta-level ∇.

23 June 2008 30/32

A two-level architecture

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢¢

B
B
B
B
BB

£
£

£
£

££

π-calculus

Concurrent-ML

· · ·
· · ·

Idealize Algol

λ-calculus

HC HH LL . . .

X

I. Applications: focus on
operational semantics

II. Object-logics: Maybe
Girard’s LU instead

III. Meta-logic: Just one of these

Here, X is one of the logics being developed by Baelde, Gacek, and Tiu.

23 June 2008 31/32

Implemented systems

Teyjus (Nadathur et. al.; Version 2, April 2008) is an implementation of
λProlog. Useful for animating a wide range of logic specifications (as well as
doing more general purpose programming).

Bedwyr (Baelde, Gacek & Tiu; November 2006) is an OCaml implementation of
a model checker for logic involving ∇ and finite logic specifications. It can
compute open bisimulation for finite π-calculus expressions (as well as much
more).

Abella (Gacek; February 2008) is a proof editor containing induction and
coinductive principles. A range of meta-level theorems have been constructed in
this system.

Taci (Baelde, Snow & Viel; private release June 2008) is a proof editor for a
logic with ∇ and explicit least and greatest fixed point operators. It features a
tactic for doing significant automatic reasoning.

All these systems are written in OCaml.

23 June 2008 32/32

Related work and conclusion

I summarize making a few brief comments.

• Although they come from different motivations and foundational
considerations, there are lots of similarities to note with the nominal
approach of Pitts, Gabbay, and others.

• The Twelf/M2 approach to reasoning about specification has many
overlapping considerations. Relating the type-theoretic and the
proof-theoretic approaches is not, however, as easy as it should be.

• Format rules for SOS: Given that the connection between the logic and
bisimulation was so strong, can the connection be exploited further? A
generalize tfyt/txyt format rules for process calculi with name-passing has
been defined: it guarantees that that open bisimulation is a congruence
(Ziegler/Miller/Palamidessi, SOS 2005).

• The ∇-quantifier has passed a number of tests (cut-elimination, applications,
implementations). It should have a model theoretic semantic
characterization. A candidate might be Ulrich Schoepp’s LFMTP 2006 paper.

