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Proving a sequent in sequent-based systems often involves many choices. For
example, at every node of a tree-derivation one could: apply an introduction rule
over a non-atomic formula; apply a structural rule; introduce a lemma; apply
initial rules, etc. Hence, there is a need for discipline in structuring such choices
and taming proof-search. One such discipline is focusing [1].

Focused proof systems combines two devices: polarization and focused rule
application. In classical/intuitionistic first order systems, polarized formulas are
built using atomic formulas and polarized versions of logical connectives and
constants. The positive and negative versions of connectives and constants have
identical truth conditions but have different inference rules inside the polarized
proof systems. For example, left introduction rules for positive connectives are
invertible while left introduction rules for negative connectives are not necessarily
invertible. The polarity of a non-atomic formula is determined by its top-level
connective. Since every polarized formula is classified as positive or negative, a
polarity to atomic formulas must also be provided. As it turns out, this assignment
of polarity to atomic formulas can be arbitrary [1].

When focusing on a formula, the focus is transferred to the active formulas in
the premises (focused rule applications). This process goes on in all branches of
the derivation, until: an initial rule/introduction rule on constants is applied (and
the derivation ends at that branch); either the polarity of the focused formula
changes or the side (left/right) of the focus flips (but not both). In this case,
focus is released and the formula is eagerly decomposed into its negative-left,
positive-right and/or atomic subformulas, that are stored in the context. Reading
derivations from the root upwards, this forces a sequent derivation to be organized
into focused phases, each of them corresponding to an application of a synthetic
inference rule [2], where the focused formula is rewritten into (some of) its
subformulas.

There is a class of formulas corresponding to particularly interesting synthetic
rules: the bipolars. Bipolars are negative formulas in which polarity can change
at most once among its subformulas. This means that left-focusing on a bipolar
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A gives rise to (possibly many) synthetic inference rules having simple shape,
with leaves involving only atomic subformulas of A. We call a synthetic inference
rule corresponding to the bipolar A a bipole for A.

In this talk, we will present a careful study of bipoles, giving a fresh view to
an old problem: how to incorporate inference rules encoding axioms into proof
systems for classical and intuitionistic logics.

We start by considering LKF and LJF [6,7] as the basic focused proof systems
for classical and intuitionistic logics, respectively. In such systems, leafs of focused
phases can be composed of either: (i) a conclusion-sequent of the application
of introduction rule on constants; (ii) a (focused) conclusion-sequent of the
application of the initial rule; (iii) an (unfocused) sequent after the storage of the
remaining formulas. As an example, consider the following first order formula,
that relates the subset and membership predicates in set theory:

A = ∀yz.(∀x.x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z.

Assuming that the predicate ⊆ is given negative polarity, in the focused phase
given by (left) focusing on A

Γ, x ∈ y ⇑ · ` · ⇑ x ∈ z,∆
Γ ⇑ x ∈ y ` x ∈ z ⇑∆

storel, storer

Γ ⇑ · ` ∀x.x ∈ y ⊃ x ∈ z ⇑∆ ∀r,⊃r

Γ ` ∀x.x ∈ y ⊃ x ∈ z ⇓ ∆ releaser Γ ⇓ y ⊆ z ` ∆ initl

Γ ⇓ (∀x.x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z ` ∆
⊃l

Γ ⇓ ∀yz.(∀x.x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z ` ∆ ∀l

the right leaf has shape (ii) while the left one is of the form (iii). The formula
between the ⇓ and ` is the focus of that sequent.

Observe that it must be the case that y ⊆ z ∈ ∆ (since y ⊆ z is atomic,
negative and under focus), while x ∈ y, x ∈ z end-up being stored into contexts.
This is not by chance: restricted to bipoles, leaves of the shape (ii) forces atoms
to belong to the context, while leaves of the shape (iii) adds atoms to the context.
This implies that principal and active formulas in bipoles for A (if any) are atomic
formulas. That is: bipoles can be seen, in a sense, as introduction rules for atoms.
For example, the bipolar above corresponds to the (unpolarized) synthetic rule

x ∈ y, Γ ` x ∈ z,∆
Γ ` y ⊆ z,∆

.

which introduces y ⊆ z from x ∈ y and x ∈ z, where x is an eigenvariable.
Using such synthetic inference rules is one method for systematically gen-

erating proof systems for axiomatic extensions of classical/intuitionistic logics:
focusing on a bipolar axiom yields a bipole.

A key step in transforming a formula into synthetic inference rules involves
attaching a polarity to atomic formulas and to some logical connectives. Since
there are different choices for assigning polarities, it is possible to produce
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different synthetic inference rules for the same formula. Indeed, if in our running
example the predicate ⊆ is given positive polarity, the corresponding (unpolarized)
synthetic rule is

x ∈ y, Γ ` x ∈ z,∆ y ⊆ z, Γ ` ∆
Γ ` ∆

.

with x an eigenvariable.
We show that this flexibility allows for the generalization of different ap-

proaches for transforming axioms into sequent rules present in the literature, such
as the works in [11,12,4,5]. In particular, bipolars correspond to (the first-order
version of) the N2 class presented in [3], which subsumes the class of geometric
axioms studied in [11,10].

We finish the talk by showing how to emulate precisely rules for modalities
in labeled modal systems as synthetic connectives [9,8]. Such tight emulation
means that proof search/proof checking on the focused version of the translated
formulas models exactly proof search/proof checking in the correspondent labeled
system. As a result, we are able to show that we can use focused proofs to
precisely emulate modal proofs whenever Kripke frames are characterized by
bipolar properties.
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