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Abstract. It is well known how to use an intuitionistic meta-logic to
specify natural deduction systems. It is also possible to use linear logic
as a meta-logic for the specification of a variety of sequent calculus proof
systems. Here, we show that if we adopt different focusing annotations
for such linear logic specifications, a range of other proof systems can
also be specified. In particular, we show that natural deduction (normal
and non-normal), sequent proofs (with and without cut), tableaux, and
proof systems using general elimination and general introduction rules
can all be derived from essentially the same linear logic specification by
altering focusing annotations. By using elementary linear logic equiva-
lences and the completeness of focused proofs, we are able to derive new
and modular proofs of the soundness and completeness of these various
proofs systems for intuitionistic and classical logics.

1 Introduction

Logics and type systems have been exploited in recent years as frameworks for
the specification of deduction in a number of logics. The most common such
meta-logics and logical frameworks have been based on intuitionistic logic (see,
for example, [FM88]) or dependent types (see [HHP93,Pfe89]). Such intuitionistic
logics can be used to directly encode natural deduction style proof systems.

In a series of papers [Mil96,Pim01,MP02,MP04,PM05], Miller & Pimentel
used classical linear logic as a meta-logic to specify and reason about a variety
of sequent calculus proof systems. Since the encodings of such logical systems
are natural and direct, the meta-theory of linear logic can be used to draw
conclusions about the object-level proof systems. More specifically, in [MP02], a
decision procedure was presented for determining if one encoded proof system is
derivable from another. In the same paper, necessary conditions were presented
(together with a decision procedure) for assuring that an encoded proof system
satisfies cut-elimination. This last result used linear logic’s dualities to formalize
the fact that if the left and right introduction rules are suitable duals of each
other then non-atomic cuts can be eliminated.

In this paper, we again use linear logic as a meta-logic but make critical
use of the completeness of focused proofs for linear logic. Roughly speaking,
focused proofs in linear logic divide sequent calculus proofs into two different
phases: the negative phase involves rules that are invertible while the positive

phase involves the focused non-invertible rules. In linear logic, it is clear to



which phase each linear logic connective appears but it is completely arbitrary
how atomic formulas can be assigned to these different phases. For example, all
atomic formulas can be assigned a negative polarity or a positive polarity or, in
fact, any mixture of these. The completeness of focused proofs then states that if
a formula B is provable in linear logic and we fix on any polarity assignment to
atomic formulas, then B will have a focused proof. (Soundness also holds.) Thus,
while polarity assignment does not affect provability, it can result in strikingly
different proofs. The earlier works of Miller & Pimentel assumed that all atoms
were given negative polarity: this resulted in an encoding of object-level sequent
calculus. As we shall show here, if we vary that polarity assignment, we can
get other object-level proof systems represented. Thus, while provability is not
affected, different, meta-level, focused proofs are built and these encode different
object-level proof systems.

Our main contribution in this paper is illustrating how a range of proof sys-
tems can be seen as different focusing disciplines on the same or (meta-logically)
equivalent sets of linear logic specifications. Soundness and relative complete-
ness are generally trivial consequences of linear logic identities. In particular, we
present examples based on sequent calculus and natural deduction [Gen69], Gen-
eralized Elimination Rules [vP01], Free Deduction [Par92], the tableaux system
KE [DM94], and Smullyan’s Analytic Cut [Smu68]. The adequacy of a given spec-
ification of inference rules requires first assigning polarity to meta-level atoms
using in the specification: then adequacy is generally an immediate consequence
of the focusing theorem of linear logic.

Finally, we attempt to point out how deep the equivalence of encoded proof
systems goes by describing three levels of encoding adequacy: relative complete-

ness where the provable set of formulas is the same, full completeness of proofs

where the completed proofs are in one-to-one correspondence, and full complete-

ness of derivations where (open) derivations (such as inference rules themselves)
are also in one-to-one correspondence.

2 Preliminaries

2.1 Linear logic

We shall assume that the reader is familiar with linear logic. We review a few
basic points here. Literals are either atomic formulas or their negations. We
write ¬F to denote the negation normal form of the formula F : that is, formulas
computed by using de Morgan dualities and where negation has only atomic
scope. The connectives ⊗ and O and their units 1 and ⊥ are multiplicative; the
connectives ⊕ and & and their units 0 and ⊤ are additive connectives; ∀ and ∃
are (first-order) quantifiers; and ! and ? are the exponentials.

In general, we shall present theories in the linear meta-logic as appearing on
the right-hand side of sequents. Thus, if X is a set of closed formulas then we
say that the formula B is derived using theory X if ⊢ B,X is provable in linear
logic. We shall also write B ≡ C to denote the formula (¬B O C) & (¬C O B).
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(⇒L) ⌊A ⇒ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌊B⌋) (⇒R) ⌈A ⇒ B⌉⊥ ⊗ (⌊A⌋ O ⌈B⌉)

(∧L) ⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ ⊕ ⌊B⌋) (∧R) ⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ & ⌈B⌉)
(∨L) ⌊A ∨ B⌋⊥ ⊗ (⌊A⌋ & ⌊B⌋) (∨R) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ ⊕ ⌈B⌉)

(∀L) ⌊∀B⌋⊥ ⊗ ⌊Bx⌋ (∀R) ⌈∀B⌉⊥ ⊗ ∀x⌈Bx⌉

(∃L) ⌊∃B⌋⊥ ⊗ ∀x⌊Bx⌋ (∃R) ⌈∃B⌉⊥ ⊗ ⌈Bx⌉

(⊥L) ⌊⊥⌋⊥ (tR) ⌈t⌉⊥ ⊗⊤

Fig. 1. The theory L used to encode various proof systems for minimal, intuitionistic,
and classical logics.

(Id1) ⌊B⌋⊥ ⊗ ⌈B⌉⊥ (Id2) ⌊B⌋ ⊗ ⌈B⌉ (WR) ⌈C⌉⊥ ⊗⊥
(StrL) ⌊B⌋⊥ ⊗ ?⌊B⌋ (StrR) ⌈B⌉⊥ ⊗ ?⌈B⌉

Fig. 2. Specification of the identity rules (cut and initial) and of the structural rules
(weakening and contraction).

2.2 Encoding object-logic formulas, sequents, and inference rules

We use linear logic as a meta-logic to encode object logics, in a similar fashion
as done in [Mil96,Pim01]. We shall assume that our meta-logic is a multi-sorted
version of linear logic: in particular, the type o denotes meta-level formulas,
the type form denotes object-level formulas, and the type i denotes object-level
terms. Object-level formulas are encoded in the usual way: in particular, the
object-level quantifiers ∀, ∃ are given the type (i → form) → form and the
expressions ∀(λx.B) and ∃(λx.B) are written, respectively, as ∀x.B and ∃x.B.
To deal with quantified object-level formulas, our meta-logic will quantify over
variables of types i → · · · → i → form (for 0 or more occurrences of i).

Encoding object-level sequents as meta-logic sequents is done by introducing
two meta-level predicates of type form → o, written as ⌊·⌋ and ⌈·⌉, and then
writing the two-sided, object-level sequent B1, . . . , Bn ⊢ C1, . . . , Cm as the one-
sided, meta-level sequent ⊢ ⌊B1⌋, . . . , ⌊Bn⌋, ⌈C1⌉, . . . , ⌈Cm⌉. Thus formulas on
the left of the object-level sequent are marked using ⌊·⌋ and formulas on the right
of the object-level sequent are marked using ⌈·⌉. We shall assume that object-
level sequents are pairs of either sets or multisets and that meta-level sequents
are multisets of formulas. For convenience, if Γ is a (multi)set of formulas, ⌊Γ ⌋
(resp. ⌈Γ ⌉) denotes the multiset of atoms {⌊F ⌋ | F ∈ Γ} (resp. {⌈F ⌉ | F ∈ Γ}).

Inference rules generally attribute to a logical connective two dual “senses”: in
sequent calculus, these correspond to the left-introduction and right-introduction
rules while in natural deduction, these correspond to the introduction and elim-
ination rules. Consider the linear logic formulas in Figure 1. When we display
formulas in this manner, we intend that the named formula is actually the result
of applying ? to existential closure of the formula. Thus, the formula named ∧L

is actually ?∃A∃B[⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ ⊕ ⌊B⌋)]. The formulas in Figure 1 help to
provide the meaning of connectives in a rather abstract and succinct fashion. For
example, the conjunction connective appears in two formulas: once in the scope
of ⌊·⌋ and once in the scope of ⌈·⌉. Notice that there is no explicit reference to
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side formulas or any side conditions for any of these rules. We shall provide a
much more in-depth analysis of the formulas in Figure 1 in the following sections.

The formulas in Figure 2 play a central role in this paper. The Id1 and Id2

formulas can prove the duality of the ⌊·⌋ and ⌈·⌉ predicates: in particular, one
can prove in linear logic that

⊢ ∀B(⌈B⌉ ≡ ⌊B⌋⊥) & ∀B(⌊B⌋ ≡ ⌈B⌉⊥), Id1, Id2

Similarly, the formulas StrL and StrR allow us to prove the equivalences ⌊B⌋ ≡
?⌊B⌋ and ⌈B⌉ ≡ ?⌈B⌉. The last two equivalences allows the weakening and
contraction of formulas at both the meta-level and object-level. For instance, in
the encoding of minimal logics, where structural rules are only allowed in the
left-hand-side, one should include only the StrL formula; while in the encoding
of classical logics, where structural rules are allowed in both sides of a sequent,
one should include both StrL and StrR formulas. Moreover, since the presence of
these two formulas allows contracting and weakening of ⌊·⌋ and ⌈·⌉ atoms, one
can show that the specification L∪{StrL, StrR} is equivalent to the specification
obtained from it but where the “additive rules” ∧L,∧R,∨L,∨R are replaced by
the existential closure of their multiplicative versions, namely

⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉) ⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ O ⌊B⌋)
⌊A ∨ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ O ⌊B⌋).

The formula WR encodes the weakening right rule and is used to encode intu-
itionistic logics, where weakening, but not contraction, is allowed on formulas on
the right-hand-side of a sequent.

2.3 Adequacy levels for encodings

When comparing deductive systems, one can easily identify several “levels of
adequacy”. For example, Girard in [Gir06, Chapter 7] proposes three levels of
adequacy based on semantical notions: the level of truth, the level of functions,
and the level of actions. Here, we also identify three levels of adequacy but from
a proof-theoretical point-of-view. The weakest level of adequacy is relative com-

pleteness which considers only provability: a formula has a proof in one system if
it has a proof in another system. A stronger level of adequacy is of full complete-

ness of proofs : the proofs of a given formula are in one-to-one correspondence
with proofs in another system. If one uses the term “derivation” for possibly
incomplete proofs (proofs that may have open premises), we can consider a even
stronger level of adequacy. We use the term full completeness of derivations, if
the derivations (such as inference rules themselves) in one system are in one-to-
one correspondence with those in another system. When we state equivalences
between proof systems (usually between object-level proof systems and their
meta-level encoding), we will often comment on which level the theorem should
be placed.
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2.4 A focusing proof system for linear logic

In [And92], Andreoli proved the completeness of the focused proof system for
linear logic given in Figure 3. Focusing proof systems involve applying inference
rules in alternating polarities or phases. In particular, formulas are negative if
their top-level connective is either O,⊥, &,⊤, ?, or ∀; formulas are positive if their
top-level connective is ⊕, 0,⊗, 1, !, or ∃. This polarity assignment is rather natural
in the sense that all right introduction rules for negative formulas are invertible
while such introduction rules for positive formulas are not necessarily invertible.
The only formulas that are not given polarities by the above assignment are the
literals. In the negative phase, represented by the judgment, ⊢ Θ : Γ ⇑ L, rules
are applied only to negative formulas appearing in L, while positive formulas are
moved to one of the multisets, Θ or Γ , to the left of the ⇑, by using the [R ⇑] or
[?] rules. When L is empty the positive phase begins by using one of the decide
rules, [D1] or [D2], and selecting one formula to focus on, represented by the
judgment ⊢ Θ : Γ ⇓ F . Rules are then applied hereditarily to subformulas of F ,
but if a negative subformula is encountered, focus is lost by using the reaction
rule [R ⇓] and another negative phase begins. Andreoli’s completeness theorem
can be interpreted as follows: If F is a provable linear logic formula, then for
any assignment of polarities to the atomic formulas of linear logic, the sequent
⊢ · : · ⇑ F is provable.

We point out two important aspects of this completeness theorem. First, the
focus proof system only works on “annotated formulas” and not regular formu-
las. Here, the annotation is a mapping of atoms to polarities. (In intuitionistic
and classical logics, one may also need to annotate conjunctions and disjunc-
tions [LM07].) Notice that the rules [I1] and [I2] explicitly refer to the polarity
assigned to literals. Second, an annotation does not affect provability but it may
affect greatly the structure of (focused) proofs that are possible. In papers such
as [LM07,MN07], differences in annotations allowed one to build only top-down
(goal-directed) proofs or only bottom-up (program-directed) proofs or combina-
tions of both. In this paper, we shall illustrate how it is possible to use different
polarity assignments (in the linear meta-logic) to derive different proof systems
(of an object-logic). In particular, sequent calculus and natural deduction can be
seen as two different annotations of the same linear logic specification of proof
rules for (object-level) connectives.

Our linear meta-logic will yield specifications of object-logic proof systems
only after we assign polarities to atoms of the form ⌊·⌋ and ⌈·⌉: then our adequacy
results will involve establishing relationships between focused meta-level proofs
and object-level proof systems.

3 Sequent Calculus

We first consider how to encode sequent calculus systems for minimal, intuition-
istic, and classical logics. The following three sets of formulas

Llm = (L \ {⊥L,⇒L}) ∪ {Id1, Id2, StrL,⇒′

L} Llj = Llm ∪ {⊥L, WR}
Llk = L ∪ {Id1, Id2, StrL, StrR}
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⊢ Θ : Γ ⇑ L

⊢ Θ : Γ ⇑ L,⊥
[⊥]

⊢ Θ : Γ ⇑ L, F, G

⊢ Θ : Γ ⇑ L, F O G
[O]

⊢ Θ, F : Γ ⇑ L

⊢ Θ : Γ ⇑ L, ?F
[?]

⊢ Θ : Γ ⇑ L,⊤
[⊤]

⊢ Θ : Γ ⇑ L, F ⊢ Θ : Γ ⇑ L, G

⊢ Θ : Γ ⇑ L, F & G
[&]

⊢ Θ : Γ ⇑ L, F [c/x]

⊢ Θ : Γ ⇑ L,∀x F
[∀]

⊢ Θ :⇓ 1
[1]

⊢ Θ : Γ ⇓ F ⊢ Θ : Γ ′ ⇓ G

⊢ Θ : Γ, Γ ′ ⇓ F ⊗ G
[⊗]

⊢ Θ :⇑ F

⊢ Θ :⇓ ! F
[!]

⊢ Θ : Γ ⇓ F

⊢ Θ : Γ ⇓ F ⊕ G
[⊕l]

⊢ Θ : Γ ⇓ G

⊢ Θ : Γ ⇓ F ⊕ G
[⊕r]

⊢ Θ, F : Γ ⇓ F [t/x]

⊢ Θ : Γ ⇓ ∃x F
[∃]

⊢ Θ : A⊥

p ⇓ Ap

[I1]
⊢ Θ, A⊥

p :⇓ Ap

[I2]
⊢ Θ : Γ, S ⇑ L

⊢ Θ : Γ ⇑ L, S
[R ⇑]

⊢ Θ : Γ ⇓ P

⊢ Θ : Γ, P ⇑
[D1]

⊢ Θ, P : Γ ⇓ P

⊢ Θ, P : Γ ⇑
[D2]

⊢ Θ : Γ ⇑ N

⊢ Θ : Γ ⇓ N
[R ⇓]

Fig. 3. The focused proof system for linear logic [And92]. Here, L is a list of formulas,
Θ is a multiset of formulas, Γ is a multiset of literals and positive formulas, Ap is a
positive literal, N is a negative formula, P is not a negative literal, and S is a positive
formula or a negated atom.

⊢ K :⇓ ⌊A ⇒ B⌋⊥
[I2]

⊢ K : ⌈A⌉ ⇑

⊢ K :⇓ !⌈A⌉
[!, R ⇑]

⊢ K : ⌊B⌋, ⌈C⌉ ⇑

⊢ K : ⌈C⌉ ⇓ ⌊B⌋
[R ⇓, R ⇑]

⊢ K : ⌈C⌉ ⇓ !⌈A⌉ ⊗ ⌊B⌋
[⊗]

⊢ K : ⌈C⌉ ⇓ F
[2 × ∃,⊗]

⊢ K : ⌈C⌉ ⇑ ·
[D2]

Fig. 4. Here, the formula A ⇒ B ∈ Γ and K denotes the set Llm, ⌊Γ ⌋.

where ⇒′

L is the formula ?∃A∃B[⌊A ⇒ B⌋⊥ ⊗ (!⌈A⌉⊗ ⌊B⌋)], are used to encode
the LM, LJ and LK sequent calculus proof systems for minimal, intuitionistic,
and classical logic (not displayed here to save space). These sets differ in the
structural rules for ⌈·⌉, in the presence or absence of the formula ⊥L and in
the formula encoding the left introduction for implication: in the LM encoding,
no structural rule is allowed in the right-hand-side formula; in the LJ encoding,
the right-hand formula can be weakened; and in the LK encoding, contraction
is also allowed (using the exponential ?). The ⊥L formula only appears in the
encodings of LJ and LK. In the theories for LM and LJ, the formula encoding
the left introduction rule for implication contains a !. We will comment more
about this difference later in this section.

If we fix the polarity of all meta-level atoms to be negative, then focused
proofs using Llm, Llj , and Llk yield encodings of the object-level proofs in LM,
LJ, and LK. To illustrate why focusing is relevant, consider the encoding of the
left introduction rule for ⇒: selecting this rule at the object-level corresponds
to focusing on the formula F = ∃A∃B[⌊A ⇒ B⌋⊥ ⊗ (!⌈A⌉ ⊗ ⌊B⌋)] (which is
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a member of Llm). The focused derivation in Figure 4 is then forced once F

is selected for the focus: for example, the left-hand-side subproof must be an
application of initial – nothing else will work with the focusing discipline. Notice
that this meta-level derivation directly encodes the usual left introduction rule
for ⇒: the object-level sequents Γ, B ⊢ C and Γ ⊢ A yields Γ, A ⇒ B ⊢ C.

Proposition 1. Let Γ ∪∆∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then

1) Γ ⊢lm C iff ⊢ Llm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢lj C iff ⊢ Llj , ⌊Γ ⌋ : ⌈C⌉ ⇑
3) Γ ⊢lk ∆ iff ⊢ Llk, ⌊Γ ⌋, ⌈∆⌉ :⇑

This proposition is proved in [MP02,Pim01]. As stated, this proposition is a
relative completeness result. It is easy to see that, for LM, LJ, and LK, we can
obtain full completeness of proofs result: that is, focusing proofs using Llm, Llj ,
or Llk correspond directly to object-level sequent calculus proofs in LM, LJ, or
LK, respectively. As is apparent from the example above concerning the left-
introduction rule for ⇒, we can actually get a full completeness of derivations

result: inference rules in the object-level sequents are in one-to-one correspon-
dence with focused derivations in the meta-logic. To achieve this level of ade-
quacy, the ! in the encoding of the implication left-introduction rule is important
for minimal and intuitionistic logics.

If one removes the formula Id2 from the sets Llm, Llj , and Llk, obtaining the

sets Lf
lm, Lf

lj , and Lf
lk, respectively, one can restrict the proofs encoded to cut

free (object-level) proofs, represented by the judgments ⊢f
lm for minimal logic,

⊢f
lj for intuitionistic logic, and ⊢f

lk for classical logic.

Proposition 2. Let Γ ∪∆∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then

1) Γ ⊢f
lm C iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢f
lj C iff ⊢ Lf

lj , ⌊Γ ⌋ : ⌈C⌉ ⇑

3) Γ ⊢f
lk ∆ iff ⊢ Lf

lk, ⌊Γ ⌋, ⌈∆⌉ :⇑

As above, similar results of full completeness of both proofs and derivations can
be proved.

4 Natural Deduction

The system depicted in Figure 5 is a intuitionistic variant of the classical system
in [SB98], presenting natural deduction using a sequent-style notation: sequents
of the form Γ ⊢nd C ↑, encoded as a meta-level sequent ⊢ Σ, ⌊Γ ⌋ : ⌈C⌉ (for some
multiset of formulas Σ), are obtained from the conclusion by a derivation (from
bottom-up) where C is not the major premise of an elimination rule; and sequents
of the form Γ ⊢nd C ↓, encoded as a sequent ⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥, are obtained from
the set of hypotheses by a derivation (from top-down) where C is extracted from
the major premise of an elimination rule. These two types of derivations meet
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either with a match rule M or with a switch rule S. These two types of sequents
are used to distinguish general natural deduction proofs from the normal form
proofs, where the switch rule is not allowed. More precisely, normal proofs here
coincide with the normal proofs as in [Pra65] only in the ∀,∧ and ⇒ fragment.
We use the judgment ⊢nd to denote the existence of a natural deduction proof
and the judgment ⊢n

nd to denote the existence of a normal natural deduction
proof.

Γ, A ⊢nd A ↓
[Ax]

Γ ⊢nd F ↑ Γ ⊢nd G ↑

Γ ⊢nd F ∧ G ↑
[∧I ]

Γ ⊢nd F ∧ G ↓

Γ ⊢nd F ↓
[∧E]

Γ ⊢nd Ai ↑

Γ ⊢nd A1 ∨ A2 ↑
[∨I ]

Γ ⊢nd A ∨ B ↓ Γ, A ⊢nd C ↑ (↓) Γ, B ⊢nd C ↑ (↓)

Γ ⊢nd C ↑ (↓)
[∨E]

Γ, A ⊢nd B ↑

Γ ⊢nd A ⇒ B ↑
[⇒ I ]

Γ ⊢nd A ⇒ B ↓ Γ ⊢nd A ↑

Γ ⊢nd B ↓
[⇒ E]

Γ ⊢nd t ↑
[tI ]

Γ ⊢nd A{c/x} ↑

Γ ⊢nd ∀x A ↑
[∀I ]

Γ ⊢nd ∀x A ↓

Γ ⊢nd A{t/x} ↓
[∀E]

Γ ⊢nd A ↓

Γ ⊢nd A ↑
[M]

Γ ⊢nd A ↑

Γ ⊢nd A ↓
[S]

Γ ⊢nd ∃x A ↓ Γ, A{a/x} ⊢nd C ↑ (↓)

Γ ⊢nd C ↑ (↓)
[∃E]

Γ ⊢nd A{t/x} ↑

Γ ⊢nd ∃x A ↑
[∃I ]

Fig. 5. Rules for minimal natural deduction - NM. In [∨L], i ∈ {1, 2}.

We can account for natural deduction in minimal logic by simply changing
polarity assignment: in particular, atoms of the form ⌊·⌋ are now positive and all
atoms of the form ⌈·⌉ have negative polarity. This change in polarity causes the
formula Id2, which behaved like the cut rule in sequent calculus, to now behave
like the switch rule, as illustrated by the following derivation.

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇓ ⌊C⌋
[I1]

⊢ Σ, ⌊Γ ⌋ : ⌈C⌉ ⇑

⊢ Σ, ⌊Γ ⌋ :⇓ ⌈C⌉
[R ⇓, R ⇑]

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇓ ⌊C⌋ ⊗ ⌈C⌉
[⊗]

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇑
[D2, ∃]

As the following proposition states, to obtain an encoding of normal form proofs,
we do not include the formula Id2.

Proposition 3. Let Γ∪{C} be a set of object-level formulas and assume that all

⌈·⌉ atomic formulas are given a negative polarity and that all ⌊·⌋ atomic formulas

are given a positive polarity. Then

1) Γ ⊢nm C↑ iff ⊢ Llm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢n
nm C↑ iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌈C⌉ ⇑

3) Γ ⊢n
nm C↓ iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌊C⌋⊥ ⇑
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An equivalent full completeness of proofs statement can also be proved.
Since the polarity assignment in a focused system does not affect provability,

we obtain for free the following relative completeness result between LM and
NM.

Corollary 1. If Γ ∪ {C} be a set of object-level formulas, then

Γ ⊢lm C iff Γ ⊢nm C and Γ ⊢f
lm C iff Γ ⊢n

nm C.

Treating negation (in particular, falsity) in natural deduction presentations
of intuitionistic and classical logics is not straightforward. We show in [NM08]
that extra meta-logic formulas are needed to encode these systems. Since the
treatment of negation in natural deduction is not one about focusing in the
meta-level, we do not discuss this issue further here.

5 Natural Deduction with General Elimination Rules

Γ ⊢ge [A ∨ B] Γ, A ⊢ge C Γ, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [A ∧ B] Γ, A, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [A ⇒ B] Γ ⊢ge A Γ, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [∀x A] Γ, A{t/x} ⊢ge C

Γ ⊢ge C

Fig. 6. Four general elimination rules. The major premise is marked with brackets.

Schroeder-Heister proposed an extension of natural deduction in [SH84],
which we call “general natural deduction”, by using the general elimination
rules, depicted in Figure 6, that treats all elimination rules in the same indirect
style that is usually used for disjunction elimination rule. To encode proofs in
the general natural deduction, we assign negative polarity to ⌊·⌋ and ⌈·⌉ atoms,
and use the set of formulas Lge, obtained from Llm by removing the formulas
∨L,∧L,⇒′

L, ∀L and adding the existential closure of the following four formulas:

⌈A ⇒ B⌉ ⊗ (!⌈A⌉ ⊗ ⌊B⌋) ⌈∀B⌉ ⊗ ⌊Bx⌋
⌈A ∨ B⌉ ⊗ (⌊A⌋ & ⌊B⌋) ⌈A ∧ B⌉ ⊗ (⌊A⌋ O ⌊B⌋)

Proposition 4. Let Γ ∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then Γ ⊢ge C iff

⊢ Lge, ⌊Γ ⌋ : ⌈C⌉ ⇑.

An equivalent full completeness of proofs statement can also be proved.
Notice that there are two differences between the formulas displayed above

and the original formulas in Llm that they replace. 1) The presence of the mul-
tiplicative version of ∧L, and 2) the replacement of literals of the form ⌊B⌋⊥ by
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⌈B⌉. Moreover, notice that without the Id2 formula the equivalence ⌊B⌋⊥ ≡ ⌈B⌉

is not satisfied and, therefore, the set of formulas in Lge is not equivalent to Lf
lm.

Therefore, we relate general natural deduction to the formulation of LM that
contains the cut rule.

Corollary 2. Let Γ ∪ {C} be a set of object-level formulas. Then Γ ⊢ge C iff

Γ ⊢lm C.

Negri and Plato in [NP01] propose a different notion of normal proofs in
general natural deduction: Derivations in general normal form have all major

premises of elimination rules as assumption. In other words, the major premises,
represented by the bracketed formula in the general elimination rules shown
in Figure 6, are discharged assumptions. In our framework, this amounts to
enforcing, by the use of polarity assignment to meta-level atoms, that the major
premises are present in the set of assumptions. We use the set Lf

lm and assign
negative polarity to all atoms of the form ⌊·⌋ and ⌈·⌉, to encode general normal
form proofs, represented by the judgment ⊢n

ge.

Proposition 5. Let Γ ∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then Γ ⊢n
ge C iff

⊢ Lf
lm, ⌊Γ ⌋ : ⌈C⌉ ⇑.

An equivalent full completeness of proofs statement can also be proved.
It is easy to see in our framework that cut-free sequent calculus proofs can

easily be obtained from general normal forms proofs, and vice-versa, since, to
encode both systems, we use exactly the same formulas, Lf

lm, and assign the
same polarity to ⌊·⌋ and ⌈·⌉ atoms.

Corollary 3. Let Γ be a set of formulas and let C be a formula. Then Γ ⊢n
ge C

iff Γ ⊢f
lm C.

6 Free Deduction

In [Par92], Parigot introduced the free deduction proof system for classical logic
that employed both the general elimination rules of the previous section and
general introduction rules1. The general introduction rules are depicted in Fig-
ure 7.

To encode free deduction proofs, we proceed similarly to the treatment
of natural deduction with general eliminations rules. In particular, we replace
in all formulas of L, except the formula ⊥L, literals of the form ⌊B⌋⊥ by
⌈B⌉ and literals of the form ⌈B⌉⊥ by ⌊B⌋, and call the resulting set union
{Id1, Id2, StrL, StrR} as Lfd. For example, the formula ∧R in L is replaced by
?∃A∃B[⌊A ∧ B⌋ ⊗ (⌈A⌉ & ⌈B⌉)] in Lfd.

1 It is interesting to note that later and independently, Negri and Plato also introduced
general introduction rules in [NP01, p. 214].
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Γ, A ∨ B ⊢fd ∆ Γ ⊢fd ∆, A

Γ ⊢fd ∆
[∨GI ]

Γ, A ⇒ B ⊢fd ∆ Γ, A ⊢fd ∆, B

Γ ⊢fd ∆
[⇒ GI ]

Γ, A ∧ B ⊢fd ∆ Γ ⊢fd ∆, A Γ ⊢fd ∆, B

Γ ⊢fd ∆
[∧GI ]

Γ,¬A ⊢fd ∆ Γ, A ⊢fd ∆

Γ ⊢fd ∆
[¬GI1]

Γ ⊢fd ∆,¬A Γ ⊢fd ∆, A

Γ ⊢fd ∆
[¬GI2]

Fig. 7. The general introduction rules.

We assign negative polarity to the atoms ⌊·⌋ and ⌈·⌉ except the atom ⌊⊥⌋, for
which we assign positive polarity because of the different treatment of negation
in free deduction.

Proposition 6. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity except the atom ⌊⊥⌋,
which is given positive polarity. Then Γ ⊢fd ∆ iff ⊢ Lfd, ⌊Γ ⌋, ⌈∆⌉ :⇑.

Full completeness for both proofs and derivations can also be proved.
Since the encoding Lfd is logically equivalent to Llk, we can show that free

deduction and LK are relative complete.

Corollary 4. Let Γ and ∆ be sets of formulas. Then Γ ⊢fd ∆ iff Γ ⊢lk ∆.

Parigot notes that if one of the premises of the general rules is “killed”, i.e.,
it is always the conclusion of an initial rule, then one can obtain either sequent
calculus or natural deduction proofs. The “killing” of a premise is accounted for
in our framework by the use of polarities to enforce the presence of a formula
in the context of the sequent. As done with the normal forms in general natural
deduction, we can use the equivalences ⌊B⌋ ≡ ⌈B⌉⊥ and ⌊B⌋⊥ ≡ ⌈B⌉ and use
either additive or multiplicative versions of the formulas in L to obtain from Lfd

the equivalent sets Llk, which encodes LK, and the set Lnk
fd obtained from Llk

by removing the formulas ⇒L,∨L,∧L and adding the existential closure of the
following three clauses:

⌈A ⇒ B⌉ ⊗
(

⌈A⌉ ⊗ ⌈B⌉⊥
)

⌈A ∧ B⌉ ⊗
(

⌈A⌉⊥ ⊕ ⌈B⌉⊥
)

⌈A ∨ B⌉ ⊗
(

⌈A⌉⊥ ⊗ ⌈B⌉⊥
)

.

The resulting set of formulas can be seen as an encoding of a multiple conclusion
natural deduction proof system.

7 System KE

In the previous sections, we dealt with systems that contained rules with more
premises than the corresponding rules in sequent calculus or natural deduction.
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Now, we move to the other direction and deal with systems that contain rules
with fewer premises.

In [DM94], D’Agostino and Mondadori proposed the propositional tableaux
system KE displayed in Figure 8. Here, the only rule that has more than one
premise is the cut rule. In the original system, the cut inference rule appears
with a side condition limiting cuts to be analytical cuts. Though it is possible
to encode analytic cuts in our framework, as we show in [NM08], we consider
here the more general form of cuts because it relates more directly to the other
systems already presented.

Γ, A ∨ B, B ⊢ke A, ∆

Γ, A ∨ B ⊢ke A, ∆
[∨L1]

Γ, A ∨ B, A ⊢ke B, ∆

Γ, A ∨ B ⊢ke B, ∆
[∨L2]

Γ ⊢ke A,B, A ∨ B, ∆

Γ ⊢ke A ∨ B, ∆
[∨R]

Γ, A ∧ B, A, B ⊢ke ∆

Γ, A ∧ B ⊢ke ∆
[∧L]

Γ, A ⊢ke A ∧ B, B, ∆

Γ, A ⊢ke A ∧ B, ∆
[∧R1]

Γ, B ⊢ke A ∧ B, A, ∆

Γ, B ⊢ke A ∧ B, ∆
[∧R1]

Γ, A, A ⇒ B, B ⊢ke ∆

Γ, A, A ⇒ B ⊢ke ∆
[⇒L1]

Γ, A ⇒ B ⊢ke A, B, ∆

Γ, A ⇒ B ⊢ke B, ∆
[⇒L2]

Γ,¬A ⊢ke A, ∆

Γ,¬A ⊢ke ∆
[¬L]

Γ, A ⊢ke ¬A, ∆

Γ ⊢ke ¬A, ∆
[¬R]

Γ, A ⊢ke A ⇒ B, B, ∆

Γ ⊢ke A ⇒ B, ∆
[⇒R]

Γ, A ⊢ke A, ∆
[Ax]

Γ, A ⊢ke ∆ Γ ⊢ke A, ∆

Γ ⊢ke ∆
[Cut]

Fig. 8. The rules for the classical propositional logic KE.

To encode KE, we assign negative polarity to all atoms ⌊·⌋ and ⌈·⌉ and use the
set of linear logic formulas, Lke, obtained from Lp

lk (the propositional fragment
of Llk), by removing the formulas ∧R,⇒L,∨L,∨R,⊥L and adding the existential
closure of the following eight formulas:

⌊A ⇒ B⌋⊥ ⊗ (⌊A⌋⊥ ⊗ ⌊B⌋) ⌈A ∧ B⌉⊥ ⊗ (⌊A⌋⊥ ⊗ ⌈B⌉)
⌊A ⇒ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉⊥) ⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ ⊗ ⌊B⌋⊥)
⌊A ∨ B⌋⊥ ⊗ (⌈A⌉⊥ ⊗ ⌊B⌋) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ O ⌈B⌉)
⌊A ∨ B⌋⊥ ⊗ (⌊A⌋ ⊗ ⌈B⌉⊥) ⌈⊥⌉

Proposition 7. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity. Then Γ ⊢ke ∆ iff ⊢
Lke, ⌊Γ ⌋, ⌈∆⌉ :⇑.

Full completeness of both proofs and derivations can also be proved.
The only differences between Lp

lk and Lke are the use of multiplicative con-
nectives instead of additive connectives, and that some atoms of the form ⌊·⌋
(⌈·⌉) appear in the form ⌈·⌉⊥ (⌊·⌋⊥). As before, we can show that the sets Lp

lk

and Lke are equivalent: the first difference is addressed by the presence of StrL

and StrR and the second difference is addressed by the presence of Id1 and Id2.
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Corollary 5. Let Γ and ∆ be a set of formulas. Then Γ ⊢ke ∆ iff Γ ⊢p
lk ∆,

where ⊢p
lk is the judgment representing provability in the propositional fragment

of LK.

8 Smullyan’s Analytic Cut System

To illustrate how one can capture another extreme in proof systems, we consider
Smullyan’s proof system for analytic cut (AC) [Smu68], which is depicted in
Figure 9. Here, all rules except the cut rule are axioms. As the name of the
system suggests, Smullyan also assigned a side condition to the cut rule, allowing
only analytical cuts. As in the previous section, we shall drop this restriction in
order to make connections to previous systems easier (but we can account for it:
see [NM08]).

Γ, A ∨ B ⊢ac A,B, ∆
[∨L]

Γ, A ⊢ac A ∨ B, ∆
[∨R1]

Γ, B ⊢ac A ∨ B,∆
[∨R2]

Γ, A ∧ B ⊢ac A,∆
[∧L1]

Γ, A ∧ B ⊢ac B, ∆
[∧L2]

Γ, A, B ⊢ac A ∧ B, ∆
[∧R]

Γ, A, A ⇒ B ⊢ac B, ∆
[⇒L]

Γ ⊢ac A, A ⇒ B, ∆
[⇒R1]

Γ, B ⊢ac A ⇒ B, ∆
[⇒R2]

Γ,¬A,A ⊢ac ∆
[¬L]

Γ ⊢ac A,¬A, ∆
[¬R]

Γ, A ⊢ac A,∆
[Ax]

Γ, A ⊢ac ∆ Γ ⊢ac A,∆

Γ ⊢ac ∆
[Cut]

Fig. 9. Smullyan’s Analytic Cut System AC for classical propositional logic, except
that the cut rule is not restricted.

We again assign negative polarity to ⌊·⌋ and ⌈·⌉ atoms and use the theory
Lac that results from collecting the formulas in {Id1, Id2, StrL, StrL} with the
formula ⌈⊥⌉ and the existential closure of the following formulas:

⌊A ∧ B⌋⊥ ⊗
(

⌈A⌉⊥ ⊕ ⌈B⌉⊥
)

⌈A ∧ B⌉⊥ ⊗
(

⌊A⌋⊥ ⊗ ⌊B⌋⊥
)

⌊A ∨ B⌋⊥ ⊗
(

⌈A⌉⊥ ⊗ ⌈B⌉⊥
)

⌈A ∨ B⌉⊥ ⊗
(

⌊A⌋⊥ ⊕ ⌊B⌋⊥
)

⌊A ⇒ B⌋⊥ ⊗
(

⌊A⌋⊥ ⊗ ⌈B⌉⊥
)

⌈A ⇒ B⌉⊥ ⊗
(

⌈A⌉⊥ ⊕ ⌊B⌋⊥
)

Proposition 8. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity. Then Γ ⊢ac ∆ iff ⊢
Lac, ⌊Γ ⌋, ⌈∆⌉ :⇑.

Equivalent results of full completeness of both proofs and derivations can be
proved.

The encoding above differs from Lp
lk as in ways similar to the differences

between Lp
lk and Lke. By using the same reasoning as with the encoding Lke, we

can show that AC is (Level 0) equivalent to the propositional fragment of LK.
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Corollary 6. Let Γ and ∆ be a set of formulas. Then Γ ⊢ac ∆ iff Γ ⊢p
lk ∆,

where ⊢p
lk is the judgment representing provability in the propositional fragment

of LK.

9 Related Work

A number of logical frameworks have been proposed to represent object-level
proof systems. Many of these frameworks, as used in [FM88,HHP93,Pfe89], are
based on intuitionistic (minimal) logic principles. In such settings, the dualities
that we employ here, for example, ⌊B⌋ ≡ ⌈B⌉⊥, are not available within the
logic and this makes reasoning about the relative completeness between object-
level proof systems harder. Also, since minimal logic sequents must have a single
conclusion, the storage of object-level formulas is generally done on the left-hand
side of meta-level sequents (see [HM94,Pfe00]) with some kind of “marker” for
the right-hand side (such as the non-logical “refutation” marker # in [Pfe00]).
The flexibility of having the four meta-level literals ⌊B⌋, ⌈B⌉, ⌊B⌋⊥, and ⌈B⌉⊥

is not generally available in such intuitionistic systems. While it is natural in
classical linear logic to consider having some atoms assigned negative and some
positive polarities, most intuitionistic systems consider only uniform assignments
of polarities to meta-level atoms (usually negative in order to support goal-
directed proof search): the ability to mix polarity assignments for different meta-
level atoms can only be achieved in more indirect fashions in such settings.

The abstract logic programming presentation of linear logic called Forum
[Mil96] has been used to specify sequent calculus proof systems in a style similar
to that used here. That presentation of linear logic was, however, also limited
in that negation was not a primitive connective and that all atomic formulas
were assumed to have negative polarity. The range of encodings contained in
this paper are not directly available using Forum.

10 Conclusions and Further Remarks

We have shown that by employing different focusing annotations or using differ-
ent sets of formulas that are (meta-logically) equivalent to L, a range of sound
and (relatively) complete object-level proof systems could be encoded. We have
illustrated this principle by showing how linear logic focusing and logical equiv-
alences can account for object-level proof systems based on sequent calculus,
natural deduction, generalized introduction and elimination rules, free deduc-
tion, the tableaux system KE, and Smullyan’s system employing only axioms
and the cut rule.

Logical frameworks aim at allowing proof systems to be specified using com-
pact and declarative specifications of inference rules. It now seems that a much
broader range of possible proof systems can be further specified by allowing flex-
ible assignment of polarity to meta-logical atoms (instead of making the usual
assignment of some fixed, global polarity assignment). A natural next step would
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be to see what insights might be carried from this setting of linear-intuitionistic-
classical logic to other, say, intermediate or sub-structural logics.

While focusing at the meta-level clearly provides a powerful normal form
of proof, we have not described how to use the techniques presented in this
paper to derive object-level focusing proof systems. Finding a means to derive
such object-level normal form proofs is an interesting challenge that we plan to
develop next.

Another interesting line of future research would be to consider differences
in the sizes of proofs in these different paradigms since these differences can be
related to the topic of comparing bottom-up and top-down deduction. Thus, it
might be possible to flexibly change polarity assignments that would result in
different and, hopefully, more compact presentations of proofs.
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