
20 August 2006 1/33

Representing and reasoning with operational semantics

Dale Miller

INRIA-Futurs and LIX/École polytechnique

Parsifal Project

20 August 2006 2/33

Setting the stage: mathematics vs computing

On Thursday, B. Buchberger said:

For automated reasoning, mathematics is the main goal.

This talk will miss this main goal for a much more modest and seemingly

unrelated goal, namely:

To use automated reasoning to prove theorems about

computational systems.

Typical theorems in the target of this goal:

1. processes P and Q are bisimilar;

2. the applet J does not access memory locations M ;

3. miniML has determinate evaluation and the type preservation property; and

4. bisimulation for a process calculus is a congruence.

20 August 2006 3/33

Setting the stage: theory vs tools

There exists a number of mature theorem proving systems. There is a great deal

of interest in using and improving these tools: better user interaction, more

libraries, more decision procedures, improved interoperability, etc.

In the area of operational semantics, there is a similar focus on tools. For

example, the PoplMark Challenge focuses energies on solving various challenge

problems with existing systems.

Our focus here is

logical foundations and theory,

aimed at providing a new architecture for tools

to reason about the meaning of computational systems.

20 August 2006 4/33

Traditional structure of theorem provers

for reasoning about computation

(1) Implement mathematics

• Choose among constructive mathematics, classical logic, set theory, etc.

• Provide abstractions such as sets and/or functions.

(2) Reduce computation to mathematics

• via denotational semantics and/or

• via inductively defined data types for data and inference systems.

What could be wrong with this approach? Isn’t mathematics the universal

language?

Various “intensional aspects” of computational specifications — bindings, names,

resource accounting, etc — are challenges to this approach to reasoning about

computation.

20 August 2006 5/33

Challenge area 1: Higher-order abstract syntax

“Use the meta-level binder to encode object-level binder.”

A natural counterpart to the usual practice of using meta-level application to

encode object-level application.

• Huet & Lang, 1978: the Mentor system, second-order matching

• Miller & Nadathur, 1986: λProlog, full higher-order unification

• Pfenning & Elliot, 1988: coined the term HOAS

What flavor is your meta-logic? Is the following a theorem?

∀wi. λx.x 6= λx.w

In logic programming/proof search: Yes, since variable capture is not possible.

This is a question about syntax.

In functional programming: Depends on whether or not the domain is a

singleton or not. This seems to be more than about syntax.

20 August 2006 6/33

Challenge area 2: Linear logic

Linear logic has increased greatly the expressive strengths of proof search from its

classical (Horn clauses) and intuitionistic (hereditary Harrop formulas) setting.

All of linear logic can be seen as logic programming and focused proofs provide

the operational semantics.

Linear logic has been used to encode concurrency, functional programming with

side-effects, security protocols, Petri nets, etc.

Used as a logical framework for specifying sequent calculus (instead of natural

deduction).

Linear logic can, of course, be encoded in theorem proving. But since “linear

logic is the logic behind (computational) logic”, there seems to be better avenues

one should be taking.

I will mostly avoid speaking about linear logic in the rest of this talk.

20 August 2006 7/33

Static and Dynamic Semantics

We shall focus on reasoning about the semantics of specification and

programming languages.

Programming language semantics is often divided into two parts:

• Dynamic semantics: evaluation, communications, side-effects, etc.

– Small-step semantics: e.g., labeled transition, SOS,

– Big-step semantics: e.g., natural semantics

• Static semantic: Typing

20 August 2006 8/33

Semantics as inference rules

CCS and π-calculus transition system:

P
a

−→ P ′

P + Q
a

−→ P ′

P
x̄y
−→ P ′

(y)P
x̄(w)
−→ P ′{w/y}

y 6= x

w /∈ fn((y)P ′)

Functional programming evaluation:

M ⇓ λx.R N ⇓ U R[N/x] ⇓ V

(M N) ⇓ V

Simple typing of terms: used in functional (SML) and logic (λProlog)

programming.
Γ, x: τ ⊢ t: σ

Γ ⊢ λx.t: τ → σ
x /∈ fn(Γ)

20 August 2006 9/33

Operational semantics of computation systems

Can these be seen as expressions in logic? Does proof theory, an approach to

inference, have a role to play here?

Can
A1 · · · An

A0
be encoded as

∀x̄[(A1 ∧ . . . ∧ An) ⊃ A0]

A0:- A1, . . . , An.

Particular problems:

• Ordered premises: particularly in functional programming with side-effects.

But ∧ is commutative.

• The status of bindings substitutions in terms must be explained.

• Side-conditions: many deal with occurrences of names and variables.

20 August 2006 10/33

HOAS approach illustrated

Instead of the rule
M ⇓ λx.R N ⇓ U R[N/x] ⇓ V

(M N) ⇓ V

where various things are still to be explained, consider, instead,

M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V

Here, R is a higher-order variable and the logic presumably has built-in

αβ-conversion.

It is trivial to translate the above inference rule as a logic program clause (using

λProlog syntax):

eval (app M N) V :- eval M (abs R), eval N U, eval (R U) V.

20 August 2006 11/33

Two slogans about bindings

(I) From Alan Perlis’s Epigrams on Programming: As Will Rogers would have

said, “There is no such thing as a free variable.”

(II) The names of binders are the same kind of fiction as white space: they are

artifacts of how we write expressions and have zero semantic content.

To specify or implement a logic for dealing with bindings, one must, of course,

deal with the complexity of names.

Church provided a specification of such a logic in 1940 with his paper on “A

Formulation of the Simple Theory of Types.” We shall work in this Paradise of

(the) Church.

20 August 2006 12/33

Example: Binding a variable in a proof

When proving a universal quantifier, one uses a “new” or “fresh” variable.

B1, . . . , Bn −→ Bv

B1, . . . , Bn −→ ∀xτ .Bx
∀R,

provided that v is a “new” variable (not free in the lower sequent). Such new

variables are called eigenvariables.

But this violates the “Perlis principle.” Instead, we write

Σ, v: τ : B1, . . . , Bn −→ Bv

Σ : B1, . . . , Bn −→ ∀xτ .Bx
∀R,

Here, we assume that the variables in the new context (signature) are bindings

over the sequent.

Eigenvariables are bound variables within a proof.

20 August 2006 13/33

Dynamics of binders during proof search

During computation, binders can be instantiated:

Σ : ∆, typeof c (int → int) −→ C

Σ : ∆, ∀α(typeof c (α → α)) −→ C
∀L

They also have mobility (they can move):

Σ, x : ∆, typeof x α −→ typeof ⌈B⌉ β

Σ : ∆ −→ ∀x(typeof x α ⊃ typeof ⌈B⌉ β)
∀R

Σ : ∆ −→ typeof ⌈λx.B⌉ (α → β)

In this case, the binder named x moves from term-level (λx) to formula-level

(∀x) to proof-level (as an eigenvariable in Σ, x).

Note: To account for the mobility of binders, only a weak form of β-conversion is

needed (together with α-conversion):

(β0) (λx.B)x = B

Higher-order pattern unification uses only this form of β-conversion.

20 August 2006 14/33

An example: call-by-name evaluation and simple typing

We want to do more than “animate” or “execute” a specification. We want to

prove properties about the specifications. We illustrate with a proof of type

preservation (subject-reduction).

∀M, N, V, U, R [eval M (abs R) ∧ eval (R N) V ⊃ eval (app M N) V]

∀R [eval (abs R) (abs R)]

∀M, N, A, B [typeof M (arr A B) ∧ typeof N A ⊃ typeof (app M N) B]

∀R, A, B [∀x[typeof x A ⊃ typeof (R x) B] ⊃ typeof (abs R) (arr A B)]

The first three clauses are Horn clauses; the fourth is not. Here, app is a constant

of type tm → (tm → tm) and abs is a constant of type (tm → tm) → tm).

20 August 2006 15/33

Proof of type preservation

Theorem: If P evaluates to V and P has type T then V has type T .

Proof: Prove by structural induction on a proof of eval P V : for all T , if

⊢ typeof P T then ⊢ typeof V T .

The proof of eval P V must end by backchaining on one of the formulas

encoding evaluation.

Case 1: Backchaining on the eval of abs: thus P and V are equal to (abs R), for

some R, and the consequent is immediate.

20 August 2006 16/33

Case2: Backchaining on the eval of app: thus P is of the form (app M N) and

for some R, there are shorter proofs of eval M (abs R) and eval (R N) V .

Since ⊢ typeof (app M N) T , this typing judgment must have been proved using

backchaining and, hence, there is a U such that ⊢ typeof M (arr U T) and

⊢ typeof N U .

Using the inductive hypothesis, we have ⊢ typeof (abs R) (arr U T). This

formula must have been proved by backchaining on the typeof formula for abs,

and, hence, ⊢ ∀x.[typeof x U ⊃ typeof (R x) T].

Since our logic of judgments is intuitionistic logic, we can instantiate this

quantifier with N and use cut and cut-elimination to conclude that

⊢ typeof (R N) T . (Substitution lemma for free!)

Using the inductive hypothesis a second time yields ⊢ typeof V T . QED

20 August 2006 17/33

Analyzing this informal proof

We wish to have a formal setting where this proof can be performed. This

suggests that the following features would be valuable in the meta-logic.

1. Two distinct logics. The object logic captures judgments, e.g. about

typability and evaluation. The meta logic, written here in English, has

atomic formulas that are judgments about the object-logic.

2. Induction. Co-induction is needed for other theorems.

3. Instantiation of meta-level eigenvariables. The meta-level eigenvariable P

was instantiated to (abs R) and to (app M N).

4. Case analysis of the proof of an assumed judgment. We needed to invert

inference rules.

A proof theoretic approach to “definitions”, “fixed points”, and the

closed-world-assumption can be used to address the last three points above. See

work by Schroeder-Heister, Girard, and McDowell/Miller/Tiu.

One additional meta-level feature is still to be motivated.

20 August 2006 18/33

The collapse of eigenvariables

A cut-free proof search of

∀x∀y.P x y

first introduces two new eigenvariables c and d and then attempts to prove P c d.

Eigenvariables have been used to encode names in π-calculus [Miller93], nonces

in security protocols [Cervesato, et. al. 99], reference locations in imperative

programming [Chirimar95], etc.

Since

∀x∀y.P x y ⊃ ∀z.P z z

is provable, it follows that the provability of ∀x∀y.P x y implies the provability of

∀z.P z z.

That is, there is also a proof where the eigenvariables c and d are identified.

Thus, eigenvariables are unlikely to capture the proper logic behind things like

nonces, references, names, etc.

20 August 2006 19/33

A new quantifier ∇

The problem illustrated on the previous slide is that the eigenvariables c and d

should be object-level eigenvariables and not meta-level eigenvariables.

To fix this problem of scope, we introduce a new meta-level quantifier, ∇x.B x,

and a new context to sequents. Sequents will have one global signature (the

familiar Σ) and several local signatures, used to scope object-level eigenvariables.

Σ : B1, . . . , Bn −→ B0

⇓

Σ : σ1 ⊲ B1, . . . , σn ⊲ Bn −→ σ0 ⊲ B0

Σ is a set of eigenvariables, scoped over the sequent and σi is a list of variables,

locally scoped over the formula Bi.

The expression σi ⊲ Bi is called a generic judgment. Equality between judgments

is defined up to renaming of local variables.

Bindings now have more places to move.

See papers by Miller and Alwen Tiu in LICS03 and ToCL 2005.

20 August 2006 20/33

The ∇ and ∀-quantifier

The ∇-introduction rules modify the local contexts.

Σ : (σ, yγ) ⊲ B[y/x], Γ −→ C

Σ : σ ⊲ ∇xγ .B, Γ −→ C
∇L

Σ : Γ −→ (σ, yγ) ⊲ B[y/x]

Σ : Γ −→ σ ⊲ ∇xγ .B
∇R

Since these rules are the same on the left and the right, this quantifier is self-dual.

Both the global and local signatures are abstractions over their respective scopes.

The universal quantifier rules are changed to account for the local context.

(Rules for ∃ are simple duals of these.)

Σ, σ ⊢ t : γ Σ : σ ⊲ B[t/x], Γ −→ C

Σ : σ ⊲ ∀γx.B, Γ −→ C
∀L

Σ, h : Γ −→ σ ⊲ B[(h σ)/x]

Σ : Γ −→ σ ⊲ ∀x.B
∀R

The familiar raising technique from higher-order unification is used to manage

scoping of variables: if σ is x1, . . . , xn then (h σ) is (h x1 · · · xn), where h is a

higher-order variable of the proper type.

Unification and matching in definitions is extended to these context by

identifying local signature with λ-binders.

20 August 2006 21/33

Some results involving ∇

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧ ∇xCx

∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⇒ Cx) ≡ ∇xBx ⇒ ∇xCx

∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⇒ ∀y∇xBxy ∇x.⊤ ≡ ⊤, ∇x.⊥ ≡ ⊥

Theorem. Given a fixed stratified definition, a sequent has a proof if and only

if it has a cut-free proof.

Theorem. Given a noetherian definition, the following formula is provable.

∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem. If we restrict to Horn definitions (no implication and negation in

the body of the definitions) then

1. ∀ and ∇ are interchangeable in definitions,

2. ⊢ ∇x.B x ⊃ ∀x.B x for noetherian definitions.

20 August 2006 22/33

Example: reasoning with an object-logic

The formula ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉] follows from the assumptions

∀x∀y[q x x y] ∀x∀y[q x y x] ∀x∀y[q y x x]

only if terms t2 and t3 are equal.

We would like to prove a meta-level formula like

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

20 August 2006 23/33

Example: reasoning with an encoded object-logic (cont)

The following definition encodes a part of object-level provability.

pv (∀̂G)
△

= ∇x.pv (Gx) pv A
△

= ∃D.prog D ∧ inst D A

pv (G & G′)
△

= pv G ∧ pv G′

inst (q X Y Z) (q X Y Z)
△

= ⊤ prog (∀̂x ∀̂ y q x x y)
△

= ⊤

inst (∀̂D) A
△

= ∃t. inst (D t) A prog (∀̂x ∀̂ y q x y x)
△

= ⊤

X = X
△

= ⊤ prog (∀̂x ∀̂ y q y x x)
△

= ⊤

Ξ1 Ξ2 Ξ3

x, y, z : u, v ⊲ pv (q 〈u, x〉 〈v, y〉 〈v, z〉) −→ y = z

x, y, z : pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) −→ y = z

Ξ1 : λuλv.〈u, x〉 = λuλv.〈v, y〉. Unification failure, so sequent is proved.

Ξ2 : λuλv.〈u, x〉 = λuλv.〈v, z〉. Unification failure, so sequent is proved.

Ξ3 : λuλv.〈v, y〉 = λuλv.〈v, z〉. Unifier [y 7→ z] yields new trivial sequent

x, z :−→ z = z.

20 August 2006 24/33

Example: encoding π calculus

π-calculus is a formal model for concurrency. The main entities are processes and

names. The syntax is the following:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

We pick the π-calculus because it is an interesting case where the conventional

approach to encoding require complicated uses of side conditions involving

names.

Encoding the transition system for the π-calculus into HOAS has been know for

a number of years and is pretty straightforward. For example:

restriction (x)P is encoded using a constant of type (n → p) → p.

input x(y).P is encoded using a constant of type n → (n → p) → p.

20 August 2006 25/33

Encoding π-calculus transitions

Processes can make transitions via various actions. There are three constructors

for actions: τ : a for silent actions, ↓: n → n → a for input actions, and

↑: n → n → a for output actions.

Following usual conventions: ↓ xy represents the action of inputting name y on

channel x, and ↑ xy represents the action of outputting name y on channel x.

The abstraction ↑ x : n → a denotes outputting of an abstracted variable, and

↓ x : n → a denotes inputting of an abstracted variable.

Bound output is responsible for sending a locally bound variable outside its

scope to other processes: scope extrusion.

The one-step transition relation is encoded as two different predicates:

P
A

−−→ Q A : a

P
↓x

−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x

−−⇀ M bound output action, ↑ x : n → a, M : n → p

20 August 2006 26/33

π-calculus: one-step transitions

• Operational semantics: Rules for OUTPUT-ACT, MATCH, and RES.

x̄y.P
x̄y

−−→ P

P
α

−−→ P′

[x = x]P
α

−−→ P′

P
α

−−→ P′

(y)P
α

−−→ (y)P′
y 6∈ n(α)

• Encoding restriction using ∀ is problematic.

OUTPUT-ACT : x̄y.P
x̄y

−−→ P
△

= ⊤

MATCH : [x = x]P
α

−−→ P ′ △

= P
α

−−→ P ′

RES : (x)Px
α

−−→ (x)P ′x
△

= ∀x.(Px
α

−−→ P ′x)

• Consider the process (y)[x = y]x̄z.0. It cannot make any transition, since y

has to be “new”; that is, it cannot be x. It is bisimilar to 0.

• The following statement should be provable

∀x∀Q∀α.[((y)[x = y](x̄z.0)
α

−−→ Q) ⊃ ⊥]

20 August 2006 27/33

Given the encoding of restriction using ∀, this reduces to proving the sequent

{x, z, Q′, α} : ∀y.([x = y](x̄z.0)
α

−−→ Q′y) −→ ⊥

No matter what is used to instantiate the ∀y, the eigenvariable x can instantiated

to the same thing (say, w), and this case leads to the non-provable sequent

{z} : ([w = w](w̄z.0)
w̄z
−−→ 0) −→ ⊥

The universal quantifier was not the correct choice. Scoping and newness are

captured precisely by ∇:

{x, z, Q, α} : w ⊲ ([x = w](x̄z.0)
α

−−→ Q) −→ ⊥
defL

{x, z, Q, α} : · ⊲ ∇y.([x = y](x̄z.0)
α

−−→ Q) −→ ⊥
∇L

{x, z, Q, α} : · ⊲ ((y)[x = y](x̄z.0)
α

−−→ Q) −→ ⊥
defL

{x, z, Q, α} :−→ · ⊲ ((y)[x = y](x̄z.0)
α

−−→ Q) ⊃ ⊥
⊃ R

The success of defL follows the failure of unification problem λw.x = λw.w.

20 August 2006 28/33

Encoding simulation in the (finite) π-calculus

If the premises for the one step transition systems use ∇ instead of ∀, then

simulation for the (finite) π-calculus is simply the following:

sim P Q
△

= ∀A∀P ′ [(P
A

−−→ P ′) ⇒ ∃Q′.(Q
A

−−→ Q′) ∧ sim P ′ Q′] ∧

∀X∀P ′ [(P
↓X

−−⇀ P ′) ⇒ ∃Q′.(Q
↓X

−−⇀ Q′) ∧ ∀w.sim (P ′w) (Q′w)] ∧

∀X∀P ′ [(P
↑X

−−⇀ P ′) ⇒ ∃Q′.(Q
↑X

−−⇀ Q′) ∧∇w.sim (P ′w) (Q′w)]

Deduction with this formula will compute simulation. Bisimulation is easy to

encode (just add additional cases above).

Bisimulation corresponds to open bisimulation. If the meta-logic is enhanced to

be classical, then late bisimulation is captured. The difference can be reduced to

the excluded middle ∀x∀y. x = y ∨ x 6= y.

20 August 2006 29/33

LINC: the meta-logic

• LINC stands for a logic with Lambdas, Induction, Nabla, and Co-induction.

(Also: LINC Is Not Coq.) Details in Tiu’s PhD thesis (2004).

• Extends FOλ∆IN of McDowell/Miller (ToCL 2002).

• Intuitionistic logic (no linear logic at the “mathematics level”). Classical logic

is of interest as well.

• It is a big logic, providing a framework for proving properties about logic

specifications (current target: operational semantics).

• Allows induction and co-induction on the proof search approach to HOAS.

20 August 2006 30/33

A possible architecture

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

B
B
B
B
BB

�
�
�

�
��

π-calculus

Concurrent-ML

· · ·

· · ·
Idealize Algol

λ-calculus

HC HH LL . . .

LINC

I. Applications: focus on
operational semantics

II. Object-logics: A small
number of these

III. Meta-logic: Just one of these

20 August 2006 31/33

Bedwyr: a proof search implementation of part of LINC

Bedwyr is an OCaml implementation of small part of LINC.

It is a generalization of logic programming in that it uses both finite success and

finite failure for the search for proofs. Also includes tabling.

Bedwyr’s application areas look similar to those for model checking, game

playing, and bisimulation checking.

For example, it completely implements open bisimulation for finite π-calculus.

The implementation is the natural specification.

Open source: http://slimmer.gforge.inria.fr/bedwyr/

Current implementation and design team:

INRIA & LIX: D. Baelde (PhD student) & D. Miller

University of Minnesota: A. Gacek (PhD student) & G. Nadathur

Australian National University: A. Tiu

20 August 2006 32/33

Future and related work

• A interactive theorem prover for LINC is planned.

• Semantics for the ∇-quantifier should be developed. A candidate is Ulrich

Schoepp’s LFMTP 2006 paper.

• There are similarities and differences between ∇ and the Pitts-Gabbay “new

name quantifier”. Their connection needs to be be understood. See Tiu’s

LFMTP 2006 paper.

• Format rules for SOS: generalize tfyt/txyt format rules for process calculi

with name-passing so that open bisimulation is a congruence

(Ziegler/Miller/Palamidessi, SOS 2005).

• Format rule for specifying inference rules in object-level sequent calculus that

guarantee elimination of initial and cut rules (Pimentel/Miller, LPAR 2005).

• Lots of other related work at cited in the paper in the proceedings.

20 August 2006 33/33

Conclusion

• When dynamic and static semantic specifications of computation are

presented as inference rules, these can often be converted to logical theories

or definitions (fixed points).

• Proof theory and proof search ideas can provide useful tools for encoding and

reasoning with such specifications.

• In particular, object-level bound variable always remain bound. This frees

one from the many non-semantically interesting aspects of variable names.

• When reasoning about HOAS specifications, something like ∇ seems required

(at least when negation is involved). We have no examples of ∇ that do not

involve HOAS.

• The main area of application of these ideas seem to be in the operational

semantic specifications of rich, symbolic systems (programming languages,

specification languages, security protocols, type systems, etc).

