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Abstract. The operational semantics of programming and specification
languages is often presented via inference rules and these can generally
be mapped into logic programming-like clauses. Such logical encodings
of operational semantics can be surprisingly declarative if one uses logics
that directly account for term-level bindings and for resources, such as
are found in linear logic. Traditional theorem proving techniques, such
as unification and backtracking search, can then be applied to animate
operational semantic specifications. Of course, one wishes to go a step
further than animation: using logic to encode computation should facil-
itate formal reasoning directly with semantic specifications. We outline
an approach to reasoning about logic specifications that involves view-
ing logic specifications as theories in an object-logic and then using a
meta-logic to reason about properties of those object-logic theories. We
motivate the principal design goals of a particular meta-logic that has
been built for that purpose.

1 Roles for logic in the specification of computations

There are two broad approaches to using logic to specify computational systems.
In the computation-as-model approach, computations are encoded as mathemat-
ical structures, containing such items as nodes, transitions, and state. Logic is
used in an external sense to make statements about those structures. That is,
computations are used as models for logical expressions. Intensional operators,
such as the modals of temporal and dynamic logics or the triples of Hoare logic,
are often employed to express propositions about the change in state. This use
of logic to represent and reason about computation is probably the oldest and
most broadly successful use of logic for specifying computation.

The computation-as-deduction approach uses pieces of logic’s syntax (formu-
las, terms, types, and proofs) directly as elements of the specified computation.
In this much more rarefied setting, there are two rather different approaches to
how computation is modeled. The proof normalization approach views the state
of a computation as a proof term and the process of computing as normalization
(via β-reduction or cut-elimination). Functional programming can be explained
using proof-normalization as its theoretical basis [23]. The proof search approach
views the state of a computation as a sequent (a structured collection of formu-
las) and the process of computing as the search for a proof of a sequent: the
changes that take place in sequents capture the dynamics of computation. Proof



search has been used to provide a theoretical foundation for logic programming
[33] and to justify the design of new logic programming languages [31].

The divisions proposed above are informal and suggestive: such a classifi-
cation is helpful in pointing out different sets of concerns represented by these
two broad approaches (reduction, confluence, etc, versus unification, backtrack-
ing search, etc). Of course, a real advance in computation logic might allow us
merge or reorganize this classification.

This classification can help to categorize the various proof systems that have
been used to reason about computation systems. For example, the computation-
as-model approach usually implies that one divides the problem of reasoning
about computation into two steps. In the first step, one implements mathematics

via some set-theory or higher-order logic (for example, HOL [14], Isabelle/ZF
[46], PVS [44]). In the second step, one reduces program correctness problems to
mathematics. Thus, data structures, states, stacks, heaps, invariants, etc, all are
represented as various kinds of mathematical objects. One then reasons directly
on these objects using standard mathematical techniques (induction, primitive
recursion, fixed points, well-founded orders, etc).

Researchers who specify computation using the proof-normalization approach
usually first implement mathematics, but this time, in a constructive mathemat-
ics, using, for example, Martin-Löf type theory [23] and higher-order intuition-
istic logic or dependent type theory (for example, Coq [9] and NuPRL [8]).

This paper describes another possibility for the construction of a prover that
takes its inspiration from the proof search approach to the specification of com-
putation.

2 The proof search paradigm

As one builds cut-free proofs of sequents (in the sense of, say, Gentzen [12]),
sequents change and this change, reading proofs bottom-up, is used to capture
the dynamics of computation that one intends to model. The cut-rule and the
cut-elimination process do not have roles to play during this simulation of com-
putation: instead, they can play important roles in reasoning about specified
computations.

While proof search can be seen as a means of giving a broad foundation to
logic programming, there are a number of aspects of proof search (as computa-
tion) that have not been embraced by the general logic programming community.
For example, proof search relies primarily on proof theory for new designs and
analysis tools, instead of model theory as is more customarily used by logic pro-
gramming researchers. Proof search generally stresses logically correct deduction
even if non-logical techniques, such as dropping all occur-checks during unifica-
tion and using the ! pruning or “cut” operator of Prolog, can yield more effective
executions. Also, proof search design and theory also focuses on the meaning of
logical connectives and quantifiers for expressiveness and for new designs. Such
a focus is in contrast to, say, constraint logic programming [21].



As we highlight in the rest of this section, the proof search paradigm al-
lows for a relatively straightforward treatments of such “intensional” aspects of
computation as binders, binder mobility, and resource management.

2.1 Encoding symbolic expression via λ-tree syntax.

Most human authored and readable symbolic expressions start life as strings:
such linearly organized data are full of semantically unimportant information
such as white space, infix/postfix operators, and parentheses. Before processing
such concrete syntax, one removes much of this concrete nonsense by parsing
the data into a more abstract representation we call here parse trees (often also
called abstract syntax).

Most parsing technology unfortunately leaves the names of bound variables
in the resulting parse trees. Although binders are, of course, important aspects
of the meaning of computational objects, the name of variables used to encode
binders are another form of concrete nonsense. Since dealing with bindings in
syntax is a well known problem, various techniques are available to help make
this concrete and semantically meaningless aspect of syntax more abstract. One
approach to bindings in syntax uses deBruijn numerals [5]. While such an en-
coding has proved its value within implementations, deBruijn numerals seem
too explicit and complicated to support declarative reasoning of syntax. Other
approaches involve the direct use of named variables and a version of set theory
to accommodate names and renaming [11].

The higher-order abstract syntax (hoas) [47] approach to encoding syntax pro-
poses that bindings in data should be mapped to the bindings found in whatever
programming or specification language one is using. Within functional program-
ming, term-level binders are then encoded as functional objects. While some
interesting specifications have resulted [10, 18], this approach has numerous se-
mantic problems. For example, while expressions with bindings are still intended
to be finite and syntactic objects, the corresponding functions yields values that
are usually infinite in extension. Also, there are usually many more constructors
for function spaces than simply the λ-abstraction within a functional program-
ming setting: for example, recursive function definition.

In contrast, the proof search approach to the specification of computation
allows for a different approach to hoas. In that setting, λ-terms modulo various
weak subsets of λ-conversion can be used to directly encode expressions. Here,
α-conversion abstracts away from the names of bindings, β0-conversion allows for
binder mobility [28, 30], and β-conversion allows for object-level substitution. We
shall use the term λ-tree syntax [29] to denote the proof search approach to hoas.
While there is a long history of using λ-tree syntax in specifying computation,
starting with Huet and Lang [20] and Miller and Nadathur [32], few computer
systems actually support it directly: the λProlog [40] programming language
and the Isabelle [43] and Twelf [48] specification languages are the best known
exceptions.

Using meta-level application to encode object-level applications is standard
practice: for example, one uses meta-level application to apply, say, cons, to two



arguments: (cons X L). The λ-tree syntax approach is simply a dualizing of this
practice that uses meta-level abstraction to encode object-level binders.

2.2 Encoding computational processes as formula or as terms

It seems that there are two choices one can make when encoding “active” com-
ponents of a computation into proof search. Usually, these active objects, such
as computation threads, automata states, etc, which we collectively call here
as simply “processes”, are encoded as terms. In this process-as-term approach,
predicates are then used to state relationships between computational items. For
example, we have statements such as “M has value V ”, “in context Γ , M has
type σ”, “P makes an A transition and becomes Q”, etc. Given such atomic
formulas, one then encodes operational semantics as compound formulas within
either an intuitionistic or a classical logic. For an example of encoding the π-
calculus using this process-as-term approach, see [35, 54] and Section 6.

With the availability of linear logic and other sub-structural logics, it seems
sensible to consider another style of encoding where processes are encoded di-
rectly as formulas. In the process-as-formula approach to encoding, formulas no
longer denote truth values: instead they denote “resources” which can change
over time. In such a setting, the combinators of a processes calculus are mapped
to logical connectives and the environment of a computation thread (includ-
ing, for example, memory and other threads) are modeled via a logical context
(within a sequent, for example). In principle, this approach requires fewer non-
logical constants than are used with the process-as-term approach. There is a
large literature of specifying programming language features in this manner us-
ing linear logic [31].

While encodings using the process-as-formula approach can often capture the
notion of process execution or of reachability, they fail to directly support rich
notions of program or process equivalences, such as bisimulation or observational
equivalence. To capture these equivalences, the process-as-term approach has
provided more successes.

3 Operational semantics as logic specification

A common style of operational semantics specification is presented as inference
rules involving relations. We illustrate how such semantic specifications can be
mapped into logical specifications.

For example, some of the rules for specifying CCS [37] are given by the
following inference rules.

P
A

−−→ R

P + Q
A

−−→ R

Q
A

−−→ R

P + Q
A

−−→ R

P
A

−−→ P ′

P |Q
A

−−→ P ′|Q

Q
A

−−→ Q′

P |Q
A

−−→ P |Q′

By viewing + and | as constructors of processes and ·
·

−−→ · as a predicate of
three arguments, it is easy to write these inference rules as the following first-



order Horn clauses.

∀P∀Q∀A∀R[P
A

−−→ R ⊃ P + Q
A

−−→ R]

∀P∀Q∀A∀R[Q
A

−−→ R ⊃ P + Q
A

−−→ R]

∀P∀A∀P ′∀Q[P
A

−−→ P ′ ⊃ P |Q
A

−−→ P ′|Q]

∀P∀A∀Q′∀Q[Q
A

−−→ Q′ ⊃ P |Q
A

−−→ P |Q′]

For a slightly more challenging specification of operational semantics, we
consider a specification of call-by-name evaluation, which involves bindings and
substitution (call-by-value evaluation can also be used here just as easily). Let
the type tm denote the syntactic category of untyped λ-terms and let the two
constructors abs of type (tm → tm) → tm and app of type tm → tm → tm

denote abstraction and application within the untyped λ-calculus, respectively.
This encoding places α-equivalence classes of untyped λ-terms in one-to-one
correspondence with βη-equivalence classes of terms of type tm. To specify call-
by-name evaluation, we use an infix binary predicate ⇓ to denote evaluation
between two arguments of type tm. Call-by-name evaluation can be specified by
the following two inference rules.

(abs λx.S) ⇓ (abs λx.S)

M ⇓ (abs λx.S) (S[x/N ]) ⇓ V

(app M N) ⇓ V

To translate these inference rules into logic, one needs to explain carefully the
proper treatment of binding (here, λx) and the definition of term-level substi-
tution (here, S[x/N ]). As is often observed, these details are complex and there
are a number of different solutions. Furthermore, dealing with all those details
does not help in understanding the essential semantics of such a specification
rule. Fortunately, we can simply invoke the λ-tree approach to syntax to ad-
dress these problems. In particular, we assume that our logic contains variables
of higher-order type (in particular, of type tm → tm) and that it contains an
equality of simply types that includes βη-conversion. In this way, we can simply
reuse the careful specification done by, say, Church in [6], of how λ-abstraction
and logic interact. Given this motivation, we can now choose to write the above
specification as simply the following (higher-order) Horn clauses [41]:

∀R.[(abs R) ⇓ (abs R)]

∀M∀N∀V ∀R.[M ⇓ (abs R) ∧ (R N) ⇓ V ⊃ (app M N) ⇓ V ]

Here, R has type tm → tm and corresponds to the expression λx.S and the
substitution S[x/N ] is replaced by the expression (R N).

Various forms of static analysis, such a typing, can be specified using inference
rules as well. Consider, for example, the specification of simple typing for the
untyped λ-calculus. To specify simple typing for the untyped λ-calculus, we
introduce the logic-level type ty to denote the syntactic category of simple type



expressions and use the constructors gnd of type ty (denoting a ground, primitive
type) and arr of type ty → ty → ty (denoting the function type constructor).
The usual rule for simple typing is given as follows:

Γ ` M : (arr U T ) Γ ` N : U

Γ ` (app M N): T

Γ, x: T ` S: U

Γ ` (abs λx.S): (arr T U)
(†)

The second inference rule has the proviso (†): x must be a new variable; that is,
it is not free in T , U , nor in any of the pairs in Γ . To encode these inference rules
into logic, we first pick a binary predicate typeof, whose arguments are of type
tm and ty, respectively, to denote the colon relation above. Then the following
formulas provide an elegant encoding of these typing inference rules.

∀M∀N∀T∀U [typeof M (arr U T ) ∧ typeof N U ⊃ typeof (app M N) T ]

∀R∀T∀U [∀x.[typeof x T ⊃ typeof (R x) U ] ⊃ typeof (abs R) (arr T U)]

Notice that these formulas are no longer Horn clauses. The use of λ-tree syntax
allows for dispensing with any explicit reference to bindings. The use of the impli-
cation in the body of clauses means that the explicit context Γ is being managed
implicitly by logic. The term-level binding in λx can be seen as “moving” to the
formula-level binding ∀x. During proof search, this formula-level binding will be
replaced with an eigenvariable: thus, this formula-level binding will move to a
proof-level binding. Such binder mobility gives λ-tree syntax one of its strength:
a specification does not need to specify details about how binders are encode,
instead, binders only need to be moved from term-level to formula-level to proof-
level bindings. Details of binders need to be addressed only by implementors of
the logic.

4 What good is a logic specification anyway?

People working in programming language specification and implementation have
a history of using declarative tools. For example, both lexical analyzers and
parsers are often generated by special tools (e.g., lex and yacc) that work from
such declarative specifications as regular expressions and context-free grammars.
Similarly, operational semantics has been turned into interpreters via logic pro-
gramming engines [4] and denotational semantics have been used to generate
compilers [45].

Given a history of interest in declarative techniques to specify programming
language systems, it seems natural to now focus on the question: why should
anyone care that we have written an operational semantic specification or a typ-
ing relation declaratively? What benefits should arise from using λ-tree syntax,
from using intuitionistic logic or linear logic?

One benefit arises from the fact that logic is a difficult discipline to follow: the
efforts of the specifier to hammer a specification into a declarative setting that
lacks, for example, side-conditions, can often lead to new ways of thinking about
what one is specifying. Such rarefied and declarative settings can also allow broad



results to be inferred from specifications: for example, the fact that bisimulation
is a congruence can be established for process calculi (see, for example, [15, 56])
or for functional programming languages [19] by checking syntactic conditions
on the declarative specification of operational semantics.

Another benefit is that an implementation of logic might provide a uniform
means to animate a wide range of logic specifications.

The benefit that concerns us here, however, is that a logic specification should
facilitate the inferring of formal properties. While this might sound obvious,
designing a “meta-logic” for reasoning about logic specifications requires some
work. We motivate via some examples one particular meta-logic.

5 Example: A subject-reduction theorem

Consider again the specification of evaluation and typing given in Section 3. The
following theorem is usually called the type preservation or the subject-reduction

theorem. The informal proof of this theorem below is taken from [24].

Theorem 1 If P evaluates to V and P has type T then V has type T .

Proof. We write ` B to mean that there is a uniform proof of B, where uni-
form proofs are certain kinds of cut-free proofs that have been used to formal-
ize the notion of goal-directed proof search [33]. Restricting to such uniform
proofs in this setting does not result in a loss of completeness. We proceed
by induction on the structure of a uniform proof of P ⇓ V that for all T , if
` typeof P T then ` typeof V T . Since P ⇓ V is atomic, its proof must end
by backchaining on one of the formulas encoding evaluation. If the backchaining
is on the ⇓ formula for abs, then P and V are both equal to abs R, for some
R, and the consequent is immediate. If P ⇓ V is proved using the ⇓ formula
for app, then P is of the form app M N and for some R, there are shorter
proofs of M ⇓ (abs R) and (R N) ⇓ V . Since ` typeof (app M N) T , this
typing relation must have been proved using backchaining and, hence, there is
a U such that ` typeof M (arr U T ) and ` typeof N U . Using the inductive
hypothesis, we have ` typeof (abs R) (arr U T ). This atomic formula must
have been proved by backchaining on the typeof formula for abs, and, hence,
` ∀x.[typeof x U ⊃ typeof (R x) T ]. Since our meta-language is (intuitionistic)
logic, we can instantiate this quantifier with N and use cut and cut-elimination
to conclude that ` typeof (R N) T . (This last step is essentially a “substitution
lemma” which comes for free given cut elimination and our use of λ-tree syntax.)
Using the inductive hypothesis a second time yields ` typeof V T .

This proof is clear and natural and we would like our meta-logic to support
similarly structured proofs. This example suggests that the following features
would be valuable in the meta-logic.

1. Two distinct logics. In the above informal proof, there are clearly two distinct
logics being used. One logic is written with logical syntax and describes



some relations, e.g. typability and evaluation. The second logic is written
with English text: atomic formulas of that logic are (provability) judgments
about the object-logic. This use of two distinct logics – one for the specifying
operational semantics and typing and one for the meta-logic – is an important
aspect of our approach to reasoning about computation.

2. Structural induction over object-level sequent calculus proofs was used. Ob-
viously induction over other structures (e.g., expressions, formulas) and co-
induction play important roles in meta-level reasoning about computation.

3. The instantiation of meta-level eigenvariables was used in this proof. In par-
ticular, the variable P was instantiated in one part of the proof to (abs R)
and in another part of the proof to (app M N). Notice that such instan-
tiation of eigenvariables within a proof does not happen in proof search in
conventional sequent calculi.

4. The inversion of assumed judgment was used in the above proof a few times,
leading, for example, from the assumption ` typeof (abs R) (arr U T ) to
the assumption ` ∀x[typeof x U ⊃ typeof (R x) T ]. The specification of
typeof allows the implication to go in the other direction, but given the
structure of the specification of typeof, this direction can also be justified at
the meta-level.

The system Twelf is capable of proving such type preservation properties
along rather similar lines, except that an explicit meta-logic with an explicit
induction rule is replaced by a meta-level tool that checks properties such as
coverage and termination [51].

In the example above, bindings in the object-logic and object-language played
a small role: they were treated only by instantiation. In the next section, we
consider the π-calculus since it provides a more challenging problem for dealing
with bindings in syntax and in computations.

6 Example: A π-calculus specification

To encode the syntax of the π-calculus, let the types p, n, and a denote the
syntactic category of processes, names, and actions, respectively. A signature for
the π-calculus can thus be listed as

0 : p, out : n → n → p → p, in : n → (n → p) → p,
+, | : p → p → p, match : n → n → p → p, ν : (n → p) → p.

For example, the expression x(y).P , where x is a name and y is a binding with
scope P , can be encoded using a constructor in as the expression (in x (λy.P ′)).
Similarly, the restriction operator νx.P can be encoded as ν(λx.P ).

We next introduce three constructors for actions: τ denotes the silent action
and the down arrow ↓ and up arrow ↑ encode input and output actions, resp: in
particular, the expression (↓xy) denotes an input action on channel x of value
y. Notice that the two expressions, λy.↑xy and ↑x, denoting abstracted actions,
are equal up to η-conversion and can be used interchangeably.



To specifying the operational semantics of the π-calculus, we use the horizon-
tal arrow −−→ to relate a process with an action and a continuation (a process),
and the “harpoon” −−⇀ to relate a process with an abstracted action and an
abstracted continuation (of types n → a and n → p, resp.).

The following three rules (named (close), (res), (open)) are part of the
specification of one-step transitions for the π-calculus: the full specification using
λ-tree syntax can be found in, for example, [34, 36].

P
↓X

−−⇀ M Q
↑X

−−⇀ N

P | Q
τ

−−→ νy.(My | Ny)

∀n(Nn
A

−−→ Mn)

νn.Nn
A

−−→ νn.Mn

∀y(Ny
↑Xy

−−→ My)

νy.Ny
λy.↑Xy

−−⇀ λy.My

The (close) rule describes how a bound input and bound output action can
yield a τ step with a ν-restricted continuation. The (res) rule illustrates how
λ-tree syntax and appropriate quantification can remove the need for side condi-
tions: since substitution in logic does not allow for the capture of bound variables,
all instances of the premise of this rule have a horizontal arrow in which the ac-
tion label does not contain the universally quantified variable free. Thus, the
usual side condition for this rule is treated declaratively. There is a direct trans-
lation of such inference rules into, say, λProlog [40], in such a way that one can
directly animate the operational semantics of the π-calculus.

7 Example: Bisimulation for the π-calculus

There seems to be something questionable about the use of the universal quan-
tifier in the premises of the operational semantics for the π-calculus above. For

example, the (res) rule says that if Nn
A

−−→ Mn is provable for all instances

of the free variable n then the transition νn.Nn
A

−−→ νn.Mn is justified. This
does not seem to be a completely correct sense of what is implied by the original
specification rule of the π-calculus. A more correct sense of the rule should be

something like: if Nn
A

−−→ Mn is provable for some new name n, then the above
conclusion is justified. In a proof search setting involving only positive inference
about computation (for example, judgments involving only may behavior of a
process), such a quantifier appears only positively and is instantiated with a new
(proof-level bound) variable called an eigenvariable. In this setting, the notion
of new name is supported well by the universal quantifier. If, however, negative
information is being inferred, as is possible with judgments involving must be-
haviors, then the universal quantifier is instantiated with any number of existing
names. This seems like the wrong meaning for this rule.

To illustrate this example more concretely, note that for any name x, the
process νy.[x = y]x̄z is bisimilar to 0: that is, this process can make no transi-
tions. This fact also seems to follow from the nature of bindings: the scope of
the bindings for x and for y are such that any instance of x can never equal y (a
simple consequence of that fact that sound substitutions avoid variable capture).



Now, proving this bisimulation fact should be equivalent to proving

∀x∀A∀P ′¬(νy.[x = y]x̄z
A

−−→ P ′)

Using the above operational semantics, this should be equivalent to proving

∀x∀A∀P ′′¬∀y([x = y]x̄z
A

−−→ P ′′) and ∀x∀A∀P ′′∃y¬([x = y]x̄z
A

−−→ P ′′)

Now it seems that standard proof theory techniques will not achieve a proof:
somehow we need to have additional information that for every name there exists
another name that is distinct from it. Adopting such an axiom is often done in
many settings, but this seems to go against the usual spirit of sequent calculus
(a system usually containing no axioms) and against the idea that proof theory
is, in fact, an ideal setting to deal with notions of bindings and scope directly.

To come up with a proof theoretic approach to address this problem with
using the ∀-quantifier in operational semantics, Miller and Tiu [35, 36] intro-
duced the ∇-quantifier: the informal reading of ∇x.Bx, in both positive and
negative settings, is equivalent to Bx for a new name x. To support this new
quantification, sequent calculus is extended to support a notion of “generic judg-
ments” so that “newness” remains a (proof-level) binding and can be seen as
being hypothetical. That is, the truth condition of ∇x.Bx roughly reduces to
the conditional “if a new name c is created then Bc.” Notice that no assumption
about whether or not the domain of quantification is non-empty is made (this
detail makes ∇ behave differently from the Gabbay-Pitts “newness quantifier”
[11]). If one is interested only in establishing one-step transitions (and not their
negation), then it is possible to use ∇ and ∀ in the premises of the operational
semantics for the π-calculus interchangeably.

Using ∇-quantification instead of ∀-quantification in the premise of the (res)
rule does, in fact, allow proving the formula

∀x∀A∀P ′¬(νy.[x = y]x̄z
A

−−→ P ′),

since this now reduces to ∀x∀A∀P ′′∇y¬([x = y]x̄z
A

−−→ P ′′). If one follows the
proof theory for ∇ carefully [36] this negation is provable because the expressions
λy.x and λy.y do not unify (for free variable x). Notice that the binding of y is
maintained all the way to the level of unification where, in this case, it ensures
the correct failure to find an appropriate instance for x.

Using the ∇-quantifier, it is now easy and natural to specify bisimulation for
the π-calculus with the equivalence displayed in Figure 1. Notice the elegant par-
allelism between using ∀ to quantify bisimulation of abstracted continuations for
bound inputs and using ∇ to quantify bisimulation of abstracted continuations
for bound outputs. As is shown in [54], proving this formula in intuitionistic
logic yields open bisimulation [49]. Without an inference rule for co-induction,
this equivalence is only correct for the finite π-calculus (a subset of the π-calculus
that does not contain the replication operator ! nor recursive definition of pro-
cesses). If we add the excluded-middle assumption ∀w∀z(w = z ∨w 6= z) (which



bisim P Q ≡ ∀A∀P ′ [P
A

−−→ P ′
⇒ ∃Q′.Q

A

−−→ Q′
∧ bisim P ′ Q′] ∧

∀A∀Q′ [Q
A

−−→ Q′
⇒ ∃P ′.P

A

−−→ P ′
∧ bisim Q′ P ′] ∧

∀X∀P ′ [P
↓X

−−⇀ P ′
⇒ ∃Q′.Q

↓X

−−⇀ Q′
∧ ∀w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [Q
↓X

−−⇀ Q′
⇒ ∃P ′.P

↓X

−−⇀ P ′
∧ ∀w.bisim (Q′w) (P ′w)] ∧

∀X∀P ′ [P
↑X

−−⇀ P ′
⇒ ∃Q′.Q

↑X

−−⇀ Q′
∧∇w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [Q
↑X

−−⇀ Q′
⇒ ∃P ′.P

↑X

−−⇀ P ′
∧∇w.bisim (Q′w) (P ′w)]

Fig. 1. A specification of bisimulation for the π-calculus.

is trivially true in a classical meta-theory), the resulting specification can be
used to specify late bisimulation [38] (see [54] for the precise statements regard-
ing this specification). A logic programming-style implementation of proof search
provides an immediate symbolic bisimulation checker (in the sense of [17, 3]) for
the finite π-calculus [54, 53].

8 The LINC meta-logic

The three examples above allow us to now motivate the design of a meta-logic
that can be used to state properties of object-level provability and, hence, to
reason about operational semantics (via their encodings into object-logics). Our
meta-logic is called LINC, an acronym coined by Tiu [52] for “lambda, induction,
nabla, co-induction.” This logic contains the following three key features.

First, LINC is based on the predicative and intuitionistic fragment of Church
Simple Theory of Types [6] (restricted to the axioms 1 – 6). Provability for this
logic can be described as being essentially Gentzen’s LJ sequent calculus [12] to
which is added simple typing for all variables and constants, quantification at
all types (excluding the type of predicates), and an inference rule that allows
βη-conversion on any formula in a sequent. This logic provides support for λ-tree
syntax. Considering a classical logic extension of LINC is also of some interest,
as is an extension allowing for quantification at predicate type.

Second, LINC incorporates the proof-theoretical notion of definition, a simple
and elegant device for extending logic with the if-and-only-if closure of a logic
specification (similar to the closed-world assumption [7]). This notion of defini-
tion was developed by Hallnäs and Schroeder-Heister [16, 50] and, independently,
by Girard [13]. This feature of definitions allows for the “inversion of assumed
judgments” mentioned at the end of Section 5 and for the ability to capture not
just may behavior but also must behavior. In particular, definitions are central
to the treatment of bisimulation mentioned in Section 7 (see also [27]) and for
doing model checking directly with operational semantics (see, for example, [53,
55]). It also allows for certain failures of proof search to be turned into successful
proofs of negations. Definitions are also a natural place to incorporate inductive
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Fig. 2. A three level architecture.

and co-inductive inference rules: for full details, see paper by McDowell, Miller,
Momigliano, and Tiu [25, 26, 35, 39, 52].

Third, LINC contains the ∇ quantifier, which, as we just illustrated, allows
for more natural and direct reasoning about syntactic encodings based on λ-tree
syntax.

As Tiu has shown in [52], under restrictions of appropriately “stratified”
definitions (a restriction which rules out, for example, a predicate being defined
as its own negation), the LINC logic satisfies cut-elimination. The logic FOλ∆IN

of [25, 26] is a subset of LINC, corresponding roughly to the fragment that results
from deleting the ∇-quantifier, removing co-induction, and limiting induction to
natural number induction.

The principal use of the ∇-quantifier is helping with the treatment of bindings
in λ-tree syntax encodings. In fact, we know of no use of ∇ in specifications that
involve only, say, first-order terms. It is also the case that ∇ is interchangeable
with ∀ when definitions are “positive”: that is, when they contain no occurrences
of implications and negations. In such Horn clause-like definitions, one can in-
terchange these two quantifiers in the body of definitions without affecting the
atomic formulas that are provable [36].

9 Formal reasoning about logic specifications

Figure 2 presents an architecture for organizing the various symbolic systems in-
volved with the specification of and reasoning about computation systems. The
top level contains the many applications about which we hope to provide formal
proofs. Possible applications should include programming languages, specifica-
tions languages, security protocols, type systems, etc.



The middle layer contains a few object-level logics, such as Horn clauses
(HC), hereditary Harrop formulas (HH) [33], and linear logic (LL). These log-
ics all have well understood meta-theories and their operational semantics is
given by proof search following the normal forms dictated by uniform proofs
and backchaining [33] or focused proofs [1]. In fact, all of these logics can be
seen as modularly sitting inside one single logic, namely, linear logic.

The bottom layer consists of the single logic LINC, where object-level prov-
ability must be encoded (as an abstracted logic programming interpreter) and
important results about object-level provability (including cut-elimination) must
be proved. Also, object-level logic specifications used to capture aspects of an
application must also be encoded into the meta-level. Since the meta-logic and
object-logic share the same application and abstraction, terms used to encode
application-level objects (for example, a π-calculus expression) are the same at
both levels.

To illustrate these three-levels, consider the proof of the subject-reduction
theorem in Section 5. The application level contains two classes of linguistic
items: untyped λ-terms (constructed using abs and app) and simple type ex-
pressions (constructed using gnd and arr). The formulas in Section 5 that spec-
ify evaluation and typing are object-level (hereditary Harrop) formulas. At the
meta-level, such formulas are simply terms, where object-level predicates, such
as ⇓ and typeof, are now binary constructor in the meta-logic and where object-
level logic connectives and quantifiers are also meta-level term constructors (re-
quiring meta-level λ-abstraction to encode quantifiers). Formulas at the LINC
(meta-logic) level must now encode the notion of provability for the object-level
logic as well as any other judgments that are specific to the application being
considering (such as, say, bisimulation). For example, provability of hereditary
Harrop formulas can be defined in LINC via a predicate, say, seq Γ B to describe
when the object-level formula B is provable from the list of object-level formu-
las in Γ and the object-level formulas describing evaluation and typing (see [26,
Section 4.3] for specifics on how this can be done). The meta-level formula that
one wishes to prove within LINC is then

∀P∀V [seq nil (P ⇓ V ) ⊃ ∀T [seq nil (typeof P T ) ⊃ seq nil (typeof V T )]]

This and many similar theorems are proved in [26, 36].

For another example, consider again the π-calculus examples given above. In
Section 6, operational semantics was given using Horn clauses that allowed ∀ in
their bodies. When we moved to Section 7, we needed to make sure that these
∀-quantifiers were replaced by ∇-quantification. This transition is now easily
explained: when specifying at the LINC level an interpreter for object-level Horn
clauses, that interpreter will naturally translate the object-level conjunction and
existential quantifier to the meta-level conjunction and existential quantifier.
It will, however, need to translate the object-level universal quantifier to the
meta-level ∇-quantifier (for full details, see [36, Section 6]).



10 Future work and conclusions

We have described how logic can be used to specify operational semantics: the
logics used for this purpose are essentially logic programming languages based in
either classical, intuitionistic, or linear logic. These logics generally use higher-
type quantification in order to support λ-tree syntactic representation. Logic
is also used to reason about specifications made in this first logic. This second
logic is thus a meta-logic for reasoning about provability in those object-logics.
A particular meta-logic, LINC, is based on intuitionistic logic and incorporates
the ∇-quantifier and principles of induction and co-induction.

Armed with the meta-logic LINC, with several interesting examples of using
it to reason about computation, and with several years of experience with im-
plementing proof search systems involving the unification of λ-term, it is now
time to build prototype theorem provers for LINC and develop larger examples.
Already, we can use λProlog [40] via its Teyjus implementation [42] to animate
specifications given in a number of object-logics. A simple model checking-style
generalization of (part of) λProlog has also been implemented and used to verify
various simple properties of, say, the π-calculus [55, 53].

One of the goals of the Parsifal project at INRIA is to use this two level logic
approach to reason formally about operational semantics, say, in the context
of the POPLmark challenge [2]. We also hope to use this framework to reason
about specification logics themselves: for example, to prove soundness of logics
used to annotate programming languages for extended static checking, such as
the ESC/Java2 object logic [22]. Consistency of two simpler object-logics have
been proved in [26] by showing showing formally in (a subset of) LINC that
cut-elimination holds for them.
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