
Unification of Simply Typed Lambda-Terms as Logic

Programming

Dale Miller∗

Laboratory for the Foundation of Computer Science
University of Edinburgh, and

Computer Science Department
University of Pennsylvania

March 1991

Abstract

The unification of simply typed λ-terms modulo the rules of β- and η-conversions is often called
“higher-order” unification because of the possible presence of variables of functional type. This
kind of unification is undecidable in general and if unifiers exist, most general unifiers may not
exist. In this paper, we show that such unification problems can be coded as a query of the
logic programming language Lλ in a natural and clear fashion. In a sense, the translation only
involves explicitly axiomatizing in Lλ the notions of equality and substitution of the simply
typed λ-calculus: the rest of the unification process can be viewed as simply an interpreter of
Lλ searching for proofs using those axioms.

1 Introduction

Various recent computer systems require typed λ-terms to be unified. For example, the theorem
proving systems TPS [1] and Isabelle [14] and the logic programming language λProlog [13]
all require unification of simply typed λ-terms. The logic programming language Elf [15],
based on the type system LF [5], requires a similar operation for dependent typed λ-terms.
Flexible implementations of type systems will probably need to employ various aspects of such
unification.

In order to avoid using the very vague and over used adjective “higher-order,” we shall
refer to the problem of unifying simply typed λ-terms modulo β- and η-conversion as βη-
unification. There have been several presentations of βη-unification. One of the first to have
been implemented in numerous systems was given by Huet in [7]. Snyder and Gallier in [16]
and the author in [11] follow Huet’s presentation closely except that details of the search for
unifiers are made more declarative using notions similar to the transition systems found in [8].

The presentation given here will depart significantly from those found in these other papers,
although interesting connections between these presentations can be made. The most significant
departure is that the logic programming language Lλ [10] is employed to assist in specifying

∗Appears in the Proceedings of the 1991 International Conference on Logic Programming, edited by Koichi
Furukawa, June 1991.

1

βη-unification. To a certain extent, the transition systems used in [8, 11, 16] could be formalized
using first-order Horn clauses. The logic Lλ is more expressive than Horn clauses because it
contains constructs for the scoped introduction of program clauses and local constants. These
scoping constructs are used to address problems in handling the scopes and names of bound
variables in λ-terms.

The logic Lλ is a weak subset of the logic underlying λProlog: it is weaker in that an
implementation of Lλ would only need to contain a kind of first-order unification while λProlog
needs full higher-order unification. This paper is an attempt to understand exactly this gap
and to show that the gap can be bridged completely within the weaker language in a very direct
and declarative way.

This paper is divided into the following sections. The next section motivates a style of
specification used throughout the paper. Section 3 describes some basic aspects of the simply
typed λ-calculus and Section 4 presents two logic programming languages, hhω and Lλ, that we
use for specification. Equality and substitution are given an Lλ specification in Section 5. The
non-deterministic specification of βη-unification is completed in Section 6. Some considerations
for producing a deterministic implementation of this specification are given in Section 7. We
briefly conclude in Section 8.

2 Motivations

Consider a simple, multi-sorted first-order logic that consists of the primitive types (sorts)
S = {i, j} and signature (i.e., the set of constants)

Σ0 = {a : i, b : j, f : i → j, g : j → i → i}.

For example, the term (g (f a) (g b a)) is a closed, first-order terms of type i over Σ0. Let copyi

and copyj be the binary equality predicates for these two types (the reason for chosing the root
word “copy” instead of, say, “equal” will be apparent later). The provable instances of equality
for types i and j can be axiomatized using the two clauses

∀ix.copyi x x, ∀jx.copyj x x.

(The subscript on a quantifier indicates the type the quantified variable assumes in its scope.)
Of course, this description of equality does not provide any information about how equality is
checked. It is a convenient specification, however, since it is actually independent of the signa-
ture used to build terms of these two sorts. A more detailed specification for these predicates
given the signature above would be the clauses C0 listed below:

copyi a a, copyj b b,
∀ix∀iu(copyi x u ⊃ copyj (f x) (f u)),

∀jx∀ju(copyj x u ⊃ ∀iy∀iv(copyi y v ⊃ copyi (g x y) (g u v))).

It is a simple matter to prove that if t and s are two closed terms, then copyi t s is provable
from these formulas if and only if t and s are equal terms of type i over the signature Σ0. All
the clauses in C0 are essentially first-order Horn clauses.

Given this formulation of equality, it is very simple to specify substitution in the following
fashion. Let x : i be a “new” constant (chosen so as not to be in Σ0), let t be some closed term
of type i over Σ0, and let s be some term over Σ0 ∪ {x : i}. Then it is again an easy matter to

2

show that the atom copyi s r is provable from C0 augmented with the clause copyi x t if and
only if r is the result of substituting t for x in s; that is, C0 ∪ {copyi x t} ` copyi s r if and only
if r = [x 7→ t]s. This simple device of augmenting equality programs will be used frequently to
encode substitution. Since copy will sometimes indicate equality and sometimes substitution,
depending on the context, it was named for a more operational and neutral concept.

Finally, notice that the structure of the signature of Σ0 gives rise immediately to the struc-
ture of the program clauses in C0. Thus, for each functional arrow → in the type of a constant,
there corresponds two universal quantifiers and an implication in the program. Following this
observation, it seems clear how to incorporate a constant of second order type into the specifi-
cation of equality. For example, let Σ1 = Σ0 ∪ {h : (i → j) → i}. The λ-term h (λw.f (g b w)),
for example, is a Σ1-term of type i. Following the example above, the clause for describing
equality for terms containing h should be written as

∀i→jx∀i→ju(∀iy∀iv(copyi y v ⊃ copyj (x y) (u v)) ⊃ copyj (h x) (h u)).

As we shall see later in Section 5, this is the correct axiomatization of equality with respect to
the constant h. This clause, however, is clearly not a first-order Horn clause since it contains
an implication and universal quantifier in its body and because it uses quantification of the
second-order variables x and u.

The material in the next two sections provide a formal background by which the above
observations can be made precise and generalized.

3 Simply Typed λ-Calculus

Let S be a fixed, finite set of primitive types (also called sorts). The set of types is the smallest
set of expressions that contains the primitive types and is closed under the construction of
function types, using the binary, infix symbol →. The Greek letters τ and σ are used as
syntactic variables ranging over types. The type constructor → associates to the right: read
τ1 → τ2 → τ3 as τ1 → (τ2 → τ3). Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0.
(By convention, if n = 0 then τ is simply the type τ0.) The types τ1, . . . , τn are the argument
types of τ while the type τ0 is the target type of τ . The order of a type τ is defined as follows:
If τ ∈ S then τ has order 0; otherwise, the order of τ is one greater than the maximum order of
the argument types of τ . Thus, τ has order 1 exactly when τ is of the form τ1 → · · · → τn → τ0

where n ≥ 1 and {τ0, τ1, . . . , τn} ⊆ S.
For each type τ , we assume that there are denumerably many constants and variables of

that type. Constants and variables do not overlap, and if two constants (or variables) have
different types, they are different constants (or variables). A signature (over S) is a finite set
Σ of constants. We often enumerate signatures by listing their members as pairs, written a: τ ,
where a is a constant of type τ . Although attaching a type in this way is redundant, it makes
reading signatures easier.

A constant or variable of type τ is a term of type τ . If t is a term of type τ → σ and s is
a term of type τ , then the application (t s) is a term of type σ. Application associates to the
left; that is, the expression (t1 t2 t3) is read as ((t1 t2) t3). Finally, if x is a variable of type τ
and t is a term of type σ, then the abstraction λx t is a term of type τ → σ. If Σ is a signature
and t is a closed term all of whose constants are members of Σ, then t is a Σ-term.

If x and s are terms of the same type then [x 7→ s] denotes the operation of substituting s
for all free occurrences of x, systematically changing bound variables in order to avoid variable
capture.

3

Terms are related to other terms by the following conversion rules.

• The term s α-converts to the term s′ if s contains a subformula occurrence of the form
λx t and s′ arises from replacing that subformula occurrence with λy [x 7→ y]t, provided
y is not free in t.

• The term s β-converts to the term s′ if s contains a subformula occurrence of the form
(λx t)t′ and s′ arises from replacing that subformula occurrence with [x 7→ t′]t.

• The term s η-converts to s′ if s contains a subformula occurrence of the form λx (t x),
where x is not free in t, and s′ arises from replacing that subformula occurrence with t.

The binary relation of λ-conversion is defined so that t λ-converts to s if there is a list of
terms t1, . . . , tn, with n ≥ 1, t equal to t1, s equal to tn, and for i = 1, . . . , n − 1, either ti

converts to ti+1 or ti+1 converts to ti by α, β, or η. Expressions of the form λx (t x) are called
η-redexes (provided x is not free in t) while expressions of the form (λx t)s are called β-redexes.
A term is in λ-normal form if it contains no β- or η-redexes. Every term can be converted
to a λ-normal term, and that normal term is unique up to the name of bound variables. The
expression λnorm(t) denotes the λ-normal form of t. See [6] for a fuller discussion of these basic
properties of the simply typed λ-calculus.

To define formulas, we shall now consider the following extension to terms. Let o be
the type of propositions, where o is assumed not to be a member of S. A constant of type
τ1 → · · · → τn → o will be used to denote predicates; that is, a predicate is denoted by a func-
tional expression that takes its arguments to a proposition. The logical constants are given the
following types: ∧,∨,⊃ are all of type o → o → o; and ∀τ and ∃τ are of type (τ → o) → o, for all
types τ . We shall rule out quantification over predicates by restricting the type τ in ∀τ and ∃τ

not to contain the type symbol o. We shall assume that the logical constants are not members
of any signature. A formula is a term of type o. The logical constants ∧,∨,⊃ are written in
the familiar infix form. The expressions ∀τ (λz t) and ∃τ (λz t) are written simply as ∀τz t and
∃τz t. A closed formula is a Σ-formula if all of its non-logical constants are members of Σ. The
substitution operation and conversion relations on terms immediately extend to formulas.

4 Two Logic Programming Languages

4.1 Hereditary Harrop formulas: hhω

Our first logic programming language, called hhω, is based on two sets of closed, λ-normal
formulas: D, which can be used as program clauses, and G, which can be used as goals or
queries. The formulas in D, denoted by the syntactic variable D, are those that do not have
any positive occurrence of a disjunction or existential quantifier, while formulas in G, denoted
by the syntactic variable G, are their dual; that is, formulas in G cannot have any negative
occurrence of a disjunction or existential quantifier.

In order to formalize a notion of backchaining over clauses of this general form, we need the
following definition. Let P be a finite subset of D. The set of pairs |P|Σ is defined to be the
smallest set such that

• if D ∈ P then 〈∅, D〉 ∈ |P|Σ,

• if 〈Γ, D1 ∧D2〉 ∈ |P|Σ then 〈Γ, D1〉 and 〈Γ, D2〉 are members of |P|Σ,

4

• if 〈Γ, G ⊃ D〉 ∈ |P|Σ then 〈Γ ∪ {G}, D〉 ∈ |P|Σ, and

• if 〈Γ, ∀τxD〉 ∈ |P|Σ and t is a Σ-term, then 〈Γ, λnorm([x 7→ t]D)〉 ∈ |P|Σ.

The following proposition has been used elsewhere to justify calling hhω a logic programming
language [9, 12].

Proposition 1 Let Σ be a signature, let P be a finite subset of D, let {G1, G2,∃τx.G,∀τx.G} ⊆
G, and let D ∈ D. Then the following holds for intuitionistic provability `. (When we write
Σ;P ` G we assume that P ∪ {G} is a set of Σ-formulas.)

• Σ;P ` G1 ∧G2 if and only if Σ;P ` G1 and Σ;P ` G2.

• Σ;P ` G1 ∨G2 if and only if Σ;P ` G1 or Σ;P ` G2.

• Σ;P ` ∃τxG if and only if there is a Σ-term t of type τ such that Σ;P ` λnorm([x 7→ t]G).

• Σ;P ` D ⊃ G1 if and only if Σ;P ∪ {D} ` G1.

• Σ;P ` ∀τx.G if and only if Σ∪ {c : τ};P ` [x 7→ c]G, where c is a constant of type τ that
is not in Σ.

• If A is atomic, then Σ;P ` A if and only if for some Γ, 〈Γ, A〉 ∈ |P|Σ and for every
G ∈ Γ, Σ;P ` G.

This proposition in fact describes a non-deterministic interpreter for hhω. Moving from this
proposition to an actual deterministic interpreter for hhω is a difficult task. Various aspects
of implementing a language like hhω have been considered in [3, 13]. We mention a couple
aspects in Section 7. In order to motivate introducing the next logic programming language,
it is important to mention here that an interpreter for hhω will need to perform β-reductions
while looking for proofs. That is, although programs and goals start out in λ-normal form,
substitutions may cause them to become non-normal. Thus, references to the λnorm() function
in Proposition 1 and in the definition of |P|Σ are necessary in general. It is because β-conversion
can cause significant changes to a term that unification in this setting is very hard. The next
language we introduce will be restricted in such a way that only a very simple fragment of
general β-conversion is required in the interpreter. As a result, unification in that language will
be particularly simple.

4.2 The sublanguage: Lλ

A bound variable occurrence in a formula G ∈ G is essentially universal if it is bound by
a positive occurrence of a universal quantifier or by a (term-level) λ-abstraction in G; it is
essentially existential if it is bound by either a positive existential or a negative universal
quantifier in G. Dually: a bound variable occurrence in a formula D ∈ D is essentially existential
if it is bound by a positive occurrence of a universal or negative occurrence of an existential
quantifier in D; it is essentially universal if it is bound by a negative universal quantifier or a
(term-level) λ-abstraction in D. In the running of the non-deterministic interpreter described
above, the essentially existential variables can get instantiated with general terms; it is via
substitutions for these variables that new β-redexes can appear.

Our second logic programming language, called Lλ, is based on two sets of λ-normal formulas:
D′ ⊆ D, which can be used as program clauses, and G′ ⊆ G, which can be used as goals or queries.

5

The restriction to determine the subsets intended is the following in both cases: whenever any
formula in these sets has an essentially existential bound variable occurrence, say x, appearing
as the head of an expression of the form (x t1 . . . tn) (n ≥ 1) then t1, . . . , tn is a list of distinct
variables that are essentially universally quantified within the scope of the binding for x.

For example, if predicate p has type j → o then the formula

∀i→jx∀iy(p (x y) ⊃ p (f y))

is an example of both a goal and program clause for hhω; it is only a legal goal in Lλ. As a
clause of Lλ, it has a subterm occurrence (x y) where both x and y are essentially existential.
Such a subterm is not premitted. All the formulas in Section 2 are in Lλ. Of course, first-order
Horn clauses are both goals and clauses in Lλ.

Given this restriction to the syntax of program clauses and goals, the only β-redexes that
must be computed from within an interpreter for Lλ are those of the form (λx.M)y where y
is a bound variable that is not free in λx.M . Such β-redexes are very simple to reduce: just
change free occurrences of x in M to y. Given that α-conversion is available, this can be stated
even more simply: a term t is related to s by β0-conversion if one is gotten from the other by
replacing a β0-redex (λx.M)x in one with M in the other. If the interpreter for hhω is given a
program and goal of the restricted language Lλ, the only β-redexes that need to be reduced are
β0-redexes.

It is proved in [10] that the unification problems that arise from writing an interpreter for
Lλ, say β0η-unification problems, are decidable and most general unifiers exists when unifiers
exist. It is argued in that paper that the unification needed for Lλ is the weakest extensions to
first-order unification that treats bound variables directly.

5 Specifying Equality and Substitution

Let t and s be two λ-normal terms of type σ. Define the following function by induction on the
structure of simple types.

[[t, s : σ]] =
{

λnorm(copyσ t s) if σ is primitive
∀σ1x∀σ1u([[x, u : σ1]] ⊃ [[(t x), (s u) : σ2]]) if σ is σ1 → σ2.

(This recursive definition is similar to that used in [4] to code a dependent typed λ-calculus into
hhω.) For example, the expression [[h, λx.(g (x a) a) : (i → j) → i]] yields the formula

∀i→jx∀i→ju(∀iy∀iv[copyi y v ⊃ copyj (x y) (u v)] ⊃ copyi (h x) (g (u a) a)).

Notice that the clauses given in Section 2 are exactly the clauses

[[a, a : i]], [[b, b : j]], [[f, f : i → j]], [[g, g : j → i → i]], [[h, h : (i → j) → i]]

It is an easy matter to show that such a formula is always both a goal and a clause for Lλ and
that the formula [[t, s : σ]] is a Horn clause if and only if σ is of order 0 or 1. The following
proposition is stated here without proof. Its proof is a straightforward induction on the structure
of proofs (which mirrors the structure of βη-long normal forms [6]).

Proposition 2 Let Σ contain at least the distinct constants c1 : σ1, . . . , cn : σn (n ≥ 0). Let
t1, . . . , tn be Σ-terms of type σ1, . . . , σn, respectively, and let C be the set {[[ci, ti : σi]] | i =
1, . . . , n}. Finally, let M and N be Σ-terms of type τ . Then Σ; C ` [[M, N : τ]] if and only if M
is a {c1, . . . , cn}-term and (λc1 . . . λcn.M)t1 . . . tn βη-converts to N .

6

From this proposition, the following corollary follows immediately.

Corollary 1 Let Σ be a signature and let CΣ be the set {[[c, c : σ]] | c : σ ∈ Σ}.
• If M and N are Σ-terms of type τ , then Σ; CΣ ` [[M, N : τ]] if and only if M βη-converts

to N .

• If M and N are Σ-terms of type σ → τ and τ , respectively, then Σ; CΣ ` ∀σx([[x, t : σ]] ⊃
[[M x, N : τ]]) if and only if (M t) βη-converts to N .

Thus, it is possible to use the formulas [[c, c : σ]] to help specify both equality (that is,
βη-conversion) and substitution. To illustrate how substitution can be axiomatized, consider
the following Lλ clause

∀ix(copyi x T ⊃ copyi (M x) S) ⊃ substi→i M T S.

(Here, we shall start adopting the (familiar Prolog) convention that essentially existential vari-
ables will be capitalized letters and that if any variable is not explicitly quantified, it is as-
sumed to be universally quantified or existentially quantified with outermost scope depending
on whether or not the formula is intended to be a program clause or a goal.) The type of
substi→i is (i → i) → i → i → o.

Assume for the moment that we have a Prolog-like interpreter for Lλ, and consider at-
tempting to find a substitution term for the (essentially existential) variable F so that the goal
substi→i F a (g b a) is provable from this clause and the clauses in Section 1. Backchaining
would cause this goal to be reduced to

∀ix(copyi x a ⊃ copyi (F x) (g b a)).

This goal is then reduced by introducing a new constant, say c : i, and then adding the clause
copyi c a to the program before attempting to prove the goal copyi (F c) (g b a). Notice that
since c was introduced after the “logic” variable F was introduced, a correct interpreter for Lλ

would need to make certain that F is not instantiated with a term that contains c. There is
only one clause, namely [[g, g : j → i → i]], on which to backchain to prove this goal. Doing
so reduces this goal to the two goals copyj F1 b and copyi F2 a, where the disagreement pair
F c = g F1 F2 must still be solved. The first of these two goals has exactly one solution, namely
F1 7→ b, gotten by backchaining on copyj b b. The second goal, however, can be proved two
different ways: by backchaining over either copyi a a, yielding F2 7→ a or copyi c a yielding
F2 7→ c. Putting these substitutions back together, we get two different solutions to the original
goal: namely F 7→ λw.(g b a) by solving the disagreement pair F c = g b a, and F 7→ λw.(g b w)
by solving the disagreement pair F c = g b c. (The possible solution F 7→ λw.g b c is ruled
out since c is not permitted to occur free in the substitution term of F .) Notice, that these two
substitutions are exactly the two solutions to the βη-unification problem ∃i→iF. F a = g b a.

Substitution can be axiomatized in a general fashion by extending the example above. As-
sume that we have the predicates

substτ→σ : (τ → σ) → τ → σ → o

for each pair of types τ and σ. These predicates are then axiomatized by the following clause
scheme:

∀τx([[x, T : τ]] ⊃ [[(M x), S : σ]]) ⊃ substτ→σ M T S.

7

It follows immediately from the corollary above, that, when used in conjunction with the clauses
{[[c, c : σ]] | c : σ ∈ Σ}, these clauses prove (substτ→σ M T S) if and only if (M T) is βη-
convertible to S. Now assume that M is of the form λx.M ′. The computation of the λ-normal
form of (M T) happens in two steps. First, T is substituted for free occurrences of x in
M ′. It is this step that the logical structure of the subst clause makes explicit. The second
step requires any newly introduced β-redexes to be reduced. This step is not made explicit
in the code above: if it needs to happen, the meta-level proof operation must perform those
reductions. Thus, the subst-clauses cannot generally be Lλ program clauses. For example, the
clause specifying substitution at type (i → j) → i is

∀i→jx(∀iY ∀iV (copyi Y V ⊃ copyj (x Y) (T V)) ⊃ copyi (M x) S) ⊃ subst(i→j)→i M T S.

This clause is not an Lλ program clause because the essentially existential variable T has an
occurrence (T V) where it is applied to another essentially existential variable. New β-redexes
(which are not β0-redexes) can be introduced at this point. In defining substτ→σ, if the type τ
is primitive, then no new β-redexes will appear and the corresponding subst clause is, in fact,
in Lλ (see the axiomatization of substi→i above).

It is possible to axiomatize subst completely in Lλ. Since it can be determined statically
where β-reductions will need to be performed within the computation of a subst goal, it is
possible to replace the β-redex with an explicit call to subst, this time at a lower type. In
particular, if τ is functional, then substτ→σ will need to call substτ . For example, the following
is an Lλ specification of subst(i→j)→i:

∀i→jx(∀iY ∀iV (copyi Y V ⊃ ∀jU [substi→j T V U ⊃ copyj (x Y) U])
⊃ copyi (M x) S) ⊃ subst(i→j)→i M T S.

Here, the positively occurring atom copyj (x Y) (T V) is replaced with

∀jU [substi→j T V U ⊃ copyj (x Y) U] :

the β-reduction needed to simplify (T V) is made explicit by the call to substi→j.
The two implementations of subst prove the same goals. In this fashion, we shall assume

that the predicates substτ→σ are all axiomatized completely in Lλ. The translation of a clause
of hhω into a clause in Lλ given by this example can be generalized. We present a general
translation in the next section.

6 Transforming hhω Goals into Lλ Goals

It is possible to systematically translate a goal in hhω into a goal in Lλ so that the proofs
of the goal in hhω differ from the proofs in Lλ only in that additional subst and copy goals
need to be established. Otherwise, all substitutions made in these proofs are identical. Since
Σ; {D1, . . . , Dn} ` G is equivalent to Σ; ∅ ` D1 ⊃ · · · ⊃ Dn ⊃ G, it is enough to restrict this
translation to goal formulas only: it dualizes immediately for program clauses.

For convenience, we axiomatize the predicates

substn
τ1→···→τn→σ : (τ1 → · · · → τn → σ) → τ1 → · · · → τn → σ → o

to do an n-fold substitution in the following way:

∀τ1x1([[x1, T1 : τ1]] ⊃ · · · ⊃ ∀τn
xn([[xn, Tn : τn]] ⊃ [[Mx1 · · ·xn, S : σ]]) . . .)

⊃ substn M T1 . . . Tn S.

8

As before, these clauses can be adjusted so that they are actually Lλ program clauses.
A subterm of a goal formula G will be called a non-Lλ subterm if it is of the form (X t1 · · · tn)

where n ≥ 1, X is essentially existential in G, and the terms t1, . . . , tn do not satisfy the
restrictions defining Lλ. The translation from hhω goals to Lλ goals is by induction on the
number of non-Lλ subterm occurrences. Let G ∈ G. If G is not an Lλ goal, then there is an
occurrence of an atomic formula A in G which has a subterm of the form (X t1 · · · tn) where n,
X and t1, . . . , tn are as above. Let y1, . . . , ym (m ≥ 0) be the list of essentially universal variables
that are bound in the scope of X’s binding occurrence and that also contain (X t1 · · · tn) in
their scope. Let σ1, . . . , σm be the types of y1, . . . , ym, respectively. Let H be a variable not
occurring free in A and let A′ be the result of replacing the occurrence of (X t1 · · · tn) with
(H y1 . . . ym). Let G′ be the result of replacing A with either the expression

∀H([∀σ1y1([[y1, y1 : σ1]] ⊃ · · · ⊃ ∀σm
ym([[ym, ym : σm]] ⊃

substn X t1 . . . tn (H y1 . . . ym)) · · ·)] ⊃ A′)

if A occurs negatively in G, or

∃H([∀σ1y1([[y1, y1 : σ1]] ⊃ · · · ⊃ ∀σm
ym([[ym, ym : σm]] ⊃

substn X t1 · · · tn (H y1 . . . ym)) . . .)] ∧A′)

if A occurs positively in G. The resulting formula now has one fewer non-Lλ subterms. If we
repeat this process until all such subterms are removed, the result will be an Lλ goal formula.
The following proposition establishes a simple correctness property for this translation.

Proposition 3 Let Σ be a signature, let CΣ be the set {[[c, c : σ]] | c : σ ∈ Σ}, and let G be
an hhω goal formula that does not contain occurrences of any copy or subst predicates. Let G′′

be the Lλ goal that results from performing the above mentioned translations to the hhω goal
formula G. Then

Σ; ∅ ` G if and only if Σ; CΣ ` G′′.

Furthermore, if G is of the form ∃τX.H then G′′ is of the form ∃τX.H ′′, and for all Σ-terms t
of type τ ,

Σ; ∅ ` λnorm([X 7→ t]H) if and only if Σ; CΣ ` λnorm([X 7→ t]H ′′).

In other words, answers substitutions are the same between these two goals.

Consider the βη-unification problem

∃i→iX[k(λv(m (X v))) = k(λy(X (m y)))],

over the signature {m : i → i, k : (i → i) → i}. This can be written as the hhω goal

∀iZ(eq Z Z) ⊃ ∃i→iX[eq (k(λv(m (X v)))) (k(λy(X (m y))))].

This query has one non-Lλ subterm, namely, (X (m y)). Using the above mentioned transfor-
mation leads to the Lλ goal

∀iZ(eq Z Z) ⊃ ∃i→iX∃i→iH[∀iy(copyi y y ⊃ substi→i X (m y) (H y)) ∧
eq (k(λv(m (X v)))) (k(λy(H y)))].

Solving this query using the copy-clauses for the constants m and k, we find that there are
an infinite number of proofs, yielding a sequence of substitution terms for X, namely, λw.w,
λw.(f w), λw.(f(f w)), etc. These are thus the unifiers for the original βη-unification problem.

9

7 Some Implementation Considerations

The presentation of βη-unification given so far is rather simple and declarative. This is partly
due to pushing lots of details concerning bound variables and search into an imaginary in-
terpreter for Lλ, where, presumably, all these details must be carefully addressed. The eLP
implementation of λProlog [2] provides an interpreter for both hhω and Lλ. Many details
regarding how such an interperter can be built are given in the paper [3].

There are only two special implementation considerations that we would like to address
here. Assume that we are designing an interpreter that uses logic variables and unification in
the usual way to postpone determining substitution terms for essentially existential variables.
Let t be a λ-normal term of primitive type. We say t is flexible if its head symbol is a logic
variable; otherwise, it is rigid. If σ is a primitive type, a goal of the form copyσ t s is classified as
a rigid-rigid, flexible-rigid, rigid-flexible, or flexible-flexible copy-goal depending on the status of
the two terms t and s. Given that copy is axiomatized only in the forms used in this paper, that
is, as axiomatizations of equality and substitution, then we can conclude the following behavior
for proving copy-goals. A rigid-rigid or rigid-flexible copy-goal can be used to backchain over
at most one clause. These are therefore “deterministic” goals. A flexible-rigid goal may have
several clauses to backchain over. Consider the case where the top-level constant of s is, say,
f : i → i. Thus, it will be possible to backchain using the clause [[f, f : i → i]]. There may have
also been extensions to the program via subst-goals in which clauses of the form copyi x (f u),
where x is some “new” constant. It is then possible to backchain over these additional clauses.
Thus, flexible-rigid copy-goals give rise to the searching that goes on in βη-unification: it is this
non-determinancy that is reflected in the MATCH procedure of [7]. A sensible interpretation
of such a goal is to order these backchaining choices and to try one after the other using some
search discipline (such as depth-first search).

Consider proving a flexible-flexible goal copyσ t s. Every copyσ-clause in the program could
be used to backchain on this goal: there may be a large number of such clauses. Also, backchain-
ing over a clause encoding a constant of non-primitive type will generate more flexible-flexible
copy-goals and these may also be used to backchain over a large number of clauses. In certain
cases, say when the only clauses for copyσ are for constants that are of primitive type or when
there are, in fact, no clauses for copyσ (σ is an empty type), proving such flexible-flexible copy-
goals may not lead to an explosion in the search space. In general, however, a sensible approach
to proving flexible-flexible goals would be to suspend them (using delay mechanisms such as
in NU-Prolog [17]) and attempt to prove other goals in the hope that the flexible heads will
be instantiated to make them rigid, at which point they could be resumed. Suspending such
flexible-flexible copy-goals is similar to advice given in [7] and to the treatment of βη-unification
in λProlog [13] and its current implementations [2, 3].

As a final comment on an implementation, consider the occurrence-check in the usual first-
order unification algorithm. This does not generalize directly when variables of higher-order
type are present. For example, the unification problem ∃iX∃i→iF. X = F X has answer
substitutions as long as there are terms of type i. For example, if a is of type i, then set F
to λw.w or to λw.a and set X to a. In our setting, however, it is possible to generalize the
occurrence-check by a check on ancestor goals. That is, if the current copy-goal is subsumed
by an ancestor goal, then it is possible to fail the current goal without loss of completeness.
In the first order setting where the clauses [[t, s : σ]] are just Horn clauses, this is equivalent
to the occurrence-check. In the general case, however, the ancestor check is still a legitimate
step although a simple occurrence-check is not. Thus, a reasonable implementation of Lλ when

10

employed to deal with βη-unification might well have such an ancestor check to stop this simple
kind of infinite branch. For more explicit information on generalizations of the occurrence-check
to βη-unification, see [7, 11].

8 Conclusion

We have presented a specification of βη-unification using the logic programming language Lλ.
This specification approach simplifies the presentation of an implementation of βη-unification
by allowing us to focus on the simple declarative aspects of equality and substitution in isolation
from details of search and the complex, low-level syntax of λ-abstractions. These latter details
are addressed by an implementation of Lλ. Fortunately, a great many techniques and ideas from
the implementation of various other logic programming languages can be used to build such an
implementation. Of course, Lλ is of greater interest than as just the basis for implementing
βη-unification. The translation given in Section 6 shows that many λProlog programs can be
translated to Lλ programs in a very direct fashion. Thus, an Lλ interpreter could be used as
the core of a λProlog interpreter.

9 Acknowledgements

I am grateful to Bob Constable, Fernando Pereira, and the conference reviewers for their com-
ments and suggestions on an earlier draft of this paper. At the University of Edinburgh, this
work has been supported by SERC Grant No. GR/E 78487 “The Logical Framework” and
ESPRIT Basic Research Action No. 3245 “Logical Frameworks: Design, Implementation, and
Experiment.” At the University of Pennsylvania, from where the author is on a one year leave,
this work has been supported by ONR N00014-88-K-0633 and NSF CCR-87-05596.

References

[1] Peter B. Andrews, Eve Longini Cohen, Dale Miller, and Frank Pfenning. Automating higher
order logic. In Automated Theorem Proving: After 25 Years, pages 169–192. American
Mathematical Society, 1984.

[2] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of λProlog. Im-
plemented as part of the CMU ERGO project, May 1989.

[3] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic
programming language. In Peter Lee, editor, Topics in Advanced Language Implementation.
MIT Press, 1990. (in press).

[4] Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic program-
ming language. In Mark Stickel, editor, Proceedings of the 1990 Conference on Automated
Deduction, volume 449, pages 221–235. Springer Lecture Notes in Artificial Intelligence,
1990.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Second Annual Symposium on Logic in Computer Science, pages 194–204, Ithaca, NY, June
1987.

11

[6] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and Lambda
Calculus. Cambridge University Press, 1986.

[7] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1:27–57, 1975.

[8] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions
on Programming Lanuages and Systems, 4(2):258–282, April 1982.

[9] Dale Miller. Abstractions in logic programming. In Peirgiorgio Odifreddi, editor, Logic and
Computer Science, pages 329 – 359. Academic Press, 1990.

[10] Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. In Peter Schroeder-Heister, editor, Extensions of Logic Program-
ming. Springer Lecture Notes in Artificial Intelligence, 1990.

[11] Dale Miller. Unification under a mixed prefix. To appear in the Journal of Symbolic
Computation.

[12] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. To appear in the Annals of Pure and Applied Logic.

[13] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International Logic
Programming Conference, pages 810–827, Seattle, Washington, August 1988. MIT Press.

[14] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Peirgiorgio Odifreddi,
editor, Logic and Computer Science, pages 361 – 386. Academic Press, 1990.

[15] Frank Pfenning. Elf: A language for logic definition and verified metaprogramming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313–321, Monterey, CA,
June 1989.

[16] Wayne Snyder and Jean H. Gallier. Higher order unification revisited: Complete sets of
transformations. Journal of Symbolic Computation, 8(1–2):101–140, 1989.

[17] James Thom and Justin Zobel. NU-Prolog reference manual, version 1.3. Technical report,
Department of Computer Science, University of Melbourne, Australia, 1988.

12

