Unification of Simply Typed Lambda-Terms as Logic
Programming

Dale Miller*
Laboratory for the Foundation of Computer Science
University of Edinburgh, and
Computer Science Department
University of Pennsylvania

March 1991

Abstract

The unification of simply typed A-terms modulo the rules of G- and n-conversions is often called
“higher-order” unification because of the possible presence of variables of functional type. This
kind of unification is undecidable in general and if unifiers exist, most general unifiers may not
exist. In this paper, we show that such unification problems can be coded as a query of the
logic programming language Ly in a natural and clear fashion. In a sense, the translation only
involves explicitly axiomatizing in L, the notions of equality and substitution of the simply
typed A-calculus: the rest of the unification process can be viewed as simply an interpreter of
L, searching for proofs using those axioms.

1 Introduction

Various recent computer systems require typed A-terms to be unified. For example, the theorem
proving systems TPS [1] and Isabelle [14] and the logic programming language AProlog [13]
all require unification of simply typed A-terms. The logic programming language EIf [15],
based on the type system LF [5], requires a similar operation for dependent typed A-terms.
Flexible implementations of type systems will probably need to employ various aspects of such
unification.

In order to avoid using the very vague and over used adjective “higher-order,” we shall
refer to the problem of unifying simply typed A-terms modulo (- and n-conversion as (7-
unification. There have been several presentations of gn-unification. One of the first to have
been implemented in numerous systems was given by Huet in [7]. Snyder and Gallier in [16]
and the author in [11] follow Huet’s presentation closely except that details of the search for
unifiers are made more declarative using notions similar to the transition systems found in [8].

The presentation given here will depart significantly from those found in these other papers,
although interesting connections between these presentations can be made. The most significant
departure is that the logic programming language L, [10] is employed to assist in specifying

*Appears in the Proceedings of the 1991 International Conference on Logic Programming, edited by Koichi
Furukawa, June 1991.

fBn-unification. To a certain extent, the transition systems used in [8, 11, 16] could be formalized
using first-order Horn clauses. The logic L, is more expressive than Horn clauses because it
contains constructs for the scoped introduction of program clauses and local constants. These
scoping constructs are used to address problems in handling the scopes and names of bound
variables in A-terms.

The logic L, is a weak subset of the logic underlying AProlog: it is weaker in that an
implementation of L, would only need to contain a kind of first-order unification while AProlog
needs full higher-order unification. This paper is an attempt to understand exactly this gap
and to show that the gap can be bridged completely within the weaker language in a very direct
and declarative way.

This paper is divided into the following sections. The next section motivates a style of
specification used throughout the paper. Section 3 describes some basic aspects of the simply
typed A-calculus and Section 4 presents two logic programming languages, hh¥ and L,, that we
use for specification. Equality and substitution are given an L, specification in Section 5. The
non-deterministic specification of #n-unification is completed in Section 6. Some considerations
for producing a deterministic implementation of this specification are given in Section 7. We
briefly conclude in Section 8.

2 Motivations

Consider a simple, multi-sorted first-order logic that consists of the primitive types (sorts)
S = {i,j} and signature (i.e., the set of constants)

Yo={a:i, b:j, fri—jF, g:]—1—1i}.

For example, the term (g (f a) (g b a)) is a closed, first-order terms of type i over ¥,. Let copy;
and copy; be the binary equality predicates for these two types (the reason for chosing the root
word “copy” instead of, say, “equal” will be apparent later). The provable instances of equality
for types ¢ and j can be axiomatized using the two clauses

Viz.copy, x x, V;r.copy; x .

(The subscript on a quantifier indicates the type the quantified variable assumes in its scope.)
Of course, this description of equality does not provide any information about how equality is
checked. It is a convenient specification, however, since it is actually independent of the signa-
ture used to build terms of these two sorts. A more detailed specification for these predicates
given the signature above would be the clauses Cy listed below:

copy; a a, copy; b b,
Vix¥u(copy; = u D copy; (f) (f u)),
Va¥u(copy; © u D Yy (copy; y v O copy; (g = y) (9 uv))).

It is a simple matter to prove that if ¢t and s are two closed terms, then copy, t s is provable
from these formulas if and only if ¢ and s are equal terms of type i over the signature X,. All
the clauses in Cy are essentially first-order Horn clauses.

Given this formulation of equality, it is very simple to specify substitution in the following
fashion. Let z : i be a “new” constant (chosen so as not to be in Xg), let ¢ be some closed term
of type i over X, and let s be some term over g U {z : i}. Then it is again an easy matter to

show that the atom copy, s r is provable from C, augmented with the clause copy, x t if and
only if r is the result of substituting ¢ for = in s; that is, Co U {copy; = t} - copy, s r if and only
if r = [z — t]s. This simple device of augmenting equality programs will be used frequently to
encode substitution. Since copy will sometimes indicate equality and sometimes substitution,
depending on the context, it was named for a more operational and neutral concept.

Finally, notice that the structure of the signature of ¥, gives rise immediately to the struc-
ture of the program clauses in Cy. Thus, for each functional arrow — in the type of a constant,
there corresponds two universal quantifiers and an implication in the program. Following this
observation, it seems clear how to incorporate a constant of second order type into the specifi-
cation of equality. For example, let ¥; = XgU{h: (i — j) — i}. The A-term h (Aw.f (g b w)),
for example, is a X;-term of type i. Following the example above, the clause for describing
equality for terms containing h should be written as

ViV u(ViyViv(copy; y v O copy; (z y) (uv)) D copy; (h z) (h u)).

As we shall see later in Section 5, this is the correct axiomatization of equality with respect to
the constant h. This clause, however, is clearly not a first-order Horn clause since it contains
an implication and universal quantifier in its body and because it uses quantification of the
second-order variables xz and u.

The material in the next two sections provide a formal background by which the above
observations can be made precise and generalized.

3 Simply Typed A-Calculus

Let S be a fixed, finite set of primitive types (also called sorts). The set of types is the smallest
set of expressions that contains the primitive types and is closed under the construction of
function types, using the binary, infix symbol —. The Greek letters 7 and o are used as
syntactic variables ranging over types. The type constructor — associates to the right: read
7L — Ty — 73 a8 71 — (79 — 73). Let 7 be the type 77 — --+ — 7,, — 79 where 79 € S and n > 0.
(By convention, if n = 0 then 7 is simply the type 79.) The types 71,...,7, are the argument
types of T while the type 7y is the target type of 7. The order of a type 7 is defined as follows:
If 7 € S then 7 has order 0; otherwise, the order of 7 is one greater than the maximum order of
the argument types of 7. Thus, 7 has order 1 exactly when 7 is of the foorm 7y — -+ — 7, — 7
where n > 1 and {79, 71,...,7,} C S.

For each type 7, we assume that there are denumerably many constants and variables of
that type. Constants and variables do not overlap, and if two constants (or variables) have
different types, they are different constants (or variables). A signature (over S) is a finite set
>} of constants. We often enumerate signatures by listing their members as pairs, written a: 7,
where a is a constant of type 7. Although attaching a type in this way is redundant, it makes
reading signatures easier.

A constant or variable of type 7 is a term of type 7. If £ is a term of type 7 — o and s is
a term of type 7, then the application (¢ s) is a term of type o. Application associates to the
left; that is, the expression (¢; to t3) is read as ((t; t2) t3). Finally, if is a variable of type 7
and t is a term of type o, then the abstraction Az t is a term of type 7 — o. If X is a signature
and t is a closed term all of whose constants are members of ¥, then ¢ is a X-term.

If z and s are terms of the same type then [z +— s] denotes the operation of substituting s
for all free occurrences of z, systematically changing bound variables in order to avoid variable
capture.

Terms are related to other terms by the following conversion rules.

e The term s a-converts to the term s’ if s contains a subformula occurrence of the form
Az t and s arises from replacing that subformula occurrence with Ay [z — ylt, provided
y is not free in t.

e The term s (-converts to the term s’ if s contains a subformula occurrence of the form
(Az t)t’ and s arises from replacing that subformula occurrence with [z — t'[t.

e The term s n-converts to s’ if s contains a subformula occurrence of the form Az (¢ x),
where x is not free in ¢, and s’ arises from replacing that subformula occurrence with t.

The binary relation of A-conversion is defined so that ¢ A-converts to s if there is a list of
terms tq,...,t,, with n > 1, ¢ equal to t;, s equal to t,, and for ¢ = 1,...,n — 1, either ¢;
converts to t;,1 or t;;1 converts to t; by «, 3, or n. Expressions of the form Az (¢ x) are called
n-redexes (provided x is not free in ¢) while expressions of the form (Az t)s are called S-redexes.
A term is in A-normal form if it contains no (- or n-redexes. Every term can be converted
to a A-normal term, and that normal term is unique up to the name of bound variables. The
expression Anorm(t) denotes the A-normal form of ¢. See [6] for a fuller discussion of these basic
properties of the simply typed A-calculus.

To define formulas, we shall now consider the following extension to terms. Let o be
the type of propositions, where o is assumed not to be a member of S. A constant of type
T — -+ — 7, — o will be used to denote predicates; that is, a predicate is denoted by a func-
tional expression that takes its arguments to a proposition. The logical constants are given the
following types: A, V, D are all of type 0 — 0 — 0; and V, and 3, are of type (1 — 0) — o, for all
types 7. We shall rule out quantification over predicates by restricting the type 7 in V, and 3,
not to contain the type symbol 0. We shall assume that the logical constants are not members
of any signature. A formula is a term of type o. The logical constants A,V,D are written in
the familiar infix form. The expressions V. (Az t) and 3,(\z t) are written simply as V,z ¢t and
d,z t. A closed formula is a X-formula if all of its non-logical constants are members of X. The
substitution operation and conversion relations on terms immediately extend to formulas.

4 Two Logic Programming Languages

4.1 Hereditary Harrop formulas: hh®

Our first logic programming language, called hh®, is based on two sets of closed, A-normal
formulas: D, which can be used as program clauses, and G, which can be used as goals or
queries. The formulas in D, denoted by the syntactic variable D, are those that do not have
any positive occurrence of a disjunction or existential quantifier, while formulas in G, denoted
by the syntactic variable G, are their dual; that is, formulas in G cannot have any negative
occurrence of a disjunction or existential quantifier.

In order to formalize a notion of backchaining over clauses of this general form, we need the
following definition. Let P be a finite subset of D. The set of pairs |P|s is defined to be the
smallest set such that

e if D € P then (0, D) € |P|s,

o if (I', D1 A D) € |P|s then (T, Dy) and (I', Dy) are members of |P|s,

4

e if (G D D) € |P|s then (' U{G}, D) € |P|s, and
o if (I',V.x D) € |P|s and ¢ is a X-term, then (I', Anorm([x — t]D)) € |P|s.

The following proposition has been used elsewhere to justify calling hh* a logic programming
language [9, 12].

Proposition 1 Let X be a signature, let P be a finite subset of D, let {G1, G, 3,2.G,V,2.G} C
G, and let D € D. Then the following holds for intuitionistic provability &. (When we write
;P G we assume that P U{G} is a set of X-formulas.)

e X PF Gy NGy if and only if ;P F Gy and 3;P F Gs.

e X;PEG,V Gy if and only if X3P F Gy or ;P = Gs.

e X, P+ 3,2 G if and only if there is a X-term t of type T such that ;P = Anorm([z — t]G).
e X:PFD DG, if and only if ;P U{D} F G;.

e X:PEV,2.G if and only if X U{c:7};PF [x — c|G, where ¢ is a constant of type T that
is not in 2.

e If A is atomic, then X;P & A if and only if for some T, (I'; A) € |P|s and for every
GeT, S:PHG.

This proposition in fact describes a non-deterministic interpreter for hh*. Moving from this
proposition to an actual deterministic interpreter for hh* is a difficult task. Various aspects
of implementing a language like hh* have been considered in [3, 13]. We mention a couple
aspects in Section 7. In order to motivate introducing the next logic programming language,
it is important to mention here that an interpreter for hh* will need to perform (-reductions
while looking for proofs. That is, although programs and goals start out in A-normal form,
substitutions may cause them to become non-normal. Thus, references to the Anorm() function
in Proposition 1 and in the definition of |P|s are necessary in general. It is because S-conversion
can cause significant changes to a term that unification in this setting is very hard. The next
language we introduce will be restricted in such a way that only a very simple fragment of
general B-conversion is required in the interpreter. As a result, unification in that language will
be particularly simple.

4.2 The sublanguage: L),

A bound variable occurrence in a formula G € G is essentially universal if it is bound by
a positive occurrence of a universal quantifier or by a (term-level) A-abstraction in Gj; it is
essentially existential if it is bound by either a positive existential or a negative universal
quantifier in G. Dually: a bound variable occurrence in a formula D € D is essentially existential
if it is bound by a positive occurrence of a universal or negative occurrence of an existential
quantifier in D; it is essentially universal if it is bound by a negative universal quantifier or a
(term-level) A-abstraction in D. In the running of the non-deterministic interpreter described
above, the essentially existential variables can get instantiated with general terms; it is via
substitutions for these variables that new (-redexes can appear.

Our second logic programming language, called L, is based on two sets of A-normal formulas:
D’ C D, which can be used as program clauses, and G’ C G, which can be used as goals or queries.

The restriction to determine the subsets intended is the following in both cases: whenever any
formula in these sets has an essentially existential bound variable occurrence, say x, appearing
as the head of an expression of the form (z ¢; ... t,) (n > 1) then t,,...,t, is a list of distinct
variables that are essentially universally quantified within the scope of the binding for x.

For example, if predicate p has type 7 — o then the formula

Viej2Viy(p (x y) D p (f y))

is an example of both a goal and program clause for hh*; it is only a legal goal in Ly. As a
clause of Ly, it has a subterm occurrence (z y) where both = and y are essentially existential.
Such a subterm is not premitted. All the formulas in Section 2 are in Ly. Of course, first-order
Horn clauses are both goals and clauses in L.

Given this restriction to the syntax of program clauses and goals, the only (-redexes that
must be computed from within an interpreter for L, are those of the form (Az.M)y where y
is a bound variable that is not free in Axz.M. Such (-redexes are very simple to reduce: just
change free occurrences of x in M to y. Given that a-conversion is available, this can be stated
even more simply: a term ¢ is related to s by By-conversion if one is gotten from the other by
replacing a (y-redex (Ax.M)x in one with M in the other. If the interpreter for hh* is given a
program and goal of the restricted language L, the only §-redexes that need to be reduced are
Bo-redexes.

It is proved in [10] that the unification problems that arise from writing an interpreter for
L, say Byn-unification problems, are decidable and most general unifiers exists when unifiers
exist. It is argued in that paper that the unification needed for L, is the weakest extensions to
first-order unification that treats bound variables directly.

5 Specifying Equality and Substitution
Let t and s be two A-normal terms of type o. Define the following function by induction on the
structure of simple types.

[t,s: o] = Anorm(copy, t s) if o is primitive
5ol = Vo, 2V, u([z,u : 01] D [(t x), (s u) : 03]) if ois o7 — 0s.

(This recursive definition is similar to that used in [4] to code a dependent typed A-calculus into
hh*.) For example, the expression [h, Az.(g (z a) a) : (i — j) — i] yields the formula
Vi @V ju(ViyViv[copy; y v D copy; (z y) (v v)] O copy; (h z) (9 (ua) a)).

Notice that the clauses given in Section 2 are exactly the clauses
la,a:d], [b,b: 4], [f.f:i—4], lg,9:7—1i—1], [hh:(@E— j)—i]

It is an easy matter to show that such a formula is always both a goal and a clause for Ly and
that the formula [t,s : o] is a Horn clause if and only if ¢ is of order 0 or 1. The following
proposition is stated here without proof. Its proof is a straightforward induction on the structure
of proofs (which mirrors the structure of n-long normal forms [6]).

Proposition 2 Let ¥ contain at least the distinct constants ¢y : 01,...,¢, : 0, (n > 0). Let
ti,...,t, be X-terms of type o1,...,0,, respectively, and let C be the set {[c;,t; : o;] | i =
1,...,n}. Finally, let M and N be X-terms of type 7. Then ¥;C = [M, N : 7] if and only if M
is a {ci,...,cpt-term and (Acq ... e, M)ty ... t, Bn-converts to N.

6

From this proposition, the following corollary follows immediately.

Corollary 1 Let ¥ be a signature and let Cx, be the set {[c,c: 0] |c:0 € X}.

e If M and N are X-terms of type T, then X;Cs & [M, N : 7] if and only if M (Bn-converts
to N.

e If M and N are X-terms of type 0 — 7 and T, respectively, then ¥;Cs = Vox([z,t : o] D
[M x,N : 1)) if and only if (M t) Bn-converts to N.

Thus, it is possible to use the formulas [e,c¢ : o] to help specify both equality (that is,
fBn-conversion) and substitution. To illustrate how substitution can be axiomatized, consider
the following L, clause

Vix(copy; x T D copy, (M x) S) D subst;_,; M T S.

(Here, we shall start adopting the (familiar Prolog) convention that essentially existential vari-
ables will be capitalized letters and that if any variable is not explicitly quantified, it is as-
sumed to be universally quantified or existentially quantified with outermost scope depending
on whether or not the formula is intended to be a program clause or a goal.) The type of
subst;_.; is (i — 1) — i — i — o.

Assume for the moment that we have a Prolog-like interpreter for L), and consider at-
tempting to find a substitution term for the (essentially existential) variable F' so that the goal
subst,; F a (g b a) is provable from this clause and the clauses in Section 1. Backchaining
would cause this goal to be reduced to

Vix(copy, x a D copy; (F z) (g b a)).

This goal is then reduced by introducing a new constant, say c¢ : ¢, and then adding the clause
copy; ¢ a to the program before attempting to prove the goal copy, (F ¢) (g b a). Notice that
since ¢ was introduced after the “logic” variable I’ was introduced, a correct interpreter for L,
would need to make certain that F' is not instantiated with a term that contains c¢. There is
only one clause, namely [g,g : j — i — i], on which to backchain to prove this goal. Doing
so reduces this goal to the two goals copy; F1 b and copy, F> a, where the disagreement pair
F ¢ =g F, F5 must still be solved. The first of these two goals has exactly one solution, namely
Fy — b, gotten by backchaining on copy; b b. The second goal, however, can be proved two
different ways: by backchaining over either copy, a a, yielding F> — a or copy, ¢ a yielding
F, — c. Putting these substitutions back together, we get two different solutions to the original
goal: namely F' +— Aw.(g b a) by solving the disagreement pair F' ¢ = g b a, and F — Aw.(g b w)
by solving the disagreement pair F' ¢ = g b ¢. (The possible solution F' +— Aw.g b ¢ is ruled
out since ¢ is not permitted to occur free in the substitution term of F'.) Notice, that these two
substitutions are exactly the two solutions to the Sn-unification problem 3, ,;F. FFa=g b a.

Substitution can be axiomatized in a general fashion by extending the example above. As-
sume that we have the predicates

subst, .o : (T —0) —=>T—0—0

for each pair of types 7 and o. These predicates are then axiomatized by the following clause
scheme:

Vox([z, T : 7] D [(M z),S : o]) D subst,—., M T S.

7

It follows immediately from the corollary above, that, when used in conjunction with the clauses
{[e,c : o] | ¢ : 0 € £}, these clauses prove (subst,_, M T S) if and only if (M T) is On-
convertible to S. Now assume that M is of the form Axz.M’. The computation of the A-normal
form of (M T) happens in two steps. First, T is substituted for free occurrences of x in
M’. Tt is this step that the logical structure of the subst clause makes explicit. The second
step requires any newly introduced [-redexes to be reduced. This step is not made explicit
in the code above: if it needs to happen, the meta-level proof operation must perform those
reductions. Thus, the subst-clauses cannot generally be L, program clauses. For example, the
clause specifying substitution at type (i — j) — i is

Vi o (ViYV;V(copy; Y V D copy; (x Y) (T 'V)) D copy; (M x) S) D substi_jy—i M T S.

This clause is not an L, program clause because the essentially existential variable 7" has an
occurrence (T' V') where it is applied to another essentially existential variable. New [-redexes
(which are not [y-redexes) can be introduced at this point. In defining subst,_.,, if the type 7
is primitive, then no new [-redexes will appear and the corresponding subst clause is, in fact,
in Ly (see the axiomatization of subst;_.; above).

It is possible to axiomatize subst completely in L,. Since it can be determined statically
where (-reductions will need to be performed within the computation of a subst goal, it is
possible to replace the (-redex with an explicit call to subst, this time at a lower type. In
particular, if 7 is functional, then subst,_., will need to call subst,. For example, the following
is an L, specification of subst(;_.;)_;:

Vi o (ViYV;V(copy; Y V D V;U[subst.; TV U D copy; (xY) UJ)
D copy; (M x) S) D subst_j—; M T S.

Here, the positively occurring atom copy; (z Y') (T' V) is replaced with
V;U[subst; TV U D copy; (xY) U] :

the B-reduction needed to simplify (T" V') is made explicit by the call to subst;_.;.

The two implementations of subst prove the same goals. In this fashion, we shall assume
that the predicates subst,_,, are all axiomatized completely in Ly. The translation of a clause
of hh* into a clause in L, given by this example can be generalized. We present a general
translation in the next section.

6 Transforming hh“ Goals into L), Goals

It is possible to systematically translate a goal in hh“ into a goal in L, so that the proofs
of the goal in hh* differ from the proofs in L, only in that additional subst and copy goals
need to be established. Otherwise, all substitutions made in these proofs are identical. Since
¥ {Dy,...,D,} F G is equivalent to ;0 - D; D --- D D,, D G, it is enough to restrict this
translation to goal formulas only: it dualizes immediately for program clauses.

For convenience, we axiomatize the predicates

subst” (n—>m—0)>T— s> T, >0 >0

TI— = Tp—0

to do an n-fold substitution in the following way:

Vori (e, Ty :m] D DV, ([0, T 1] D [May -+ 2,,S 1 0]) .. .)
D subst™ M T, ...T, S.

As before, these clauses can be adjusted so that they are actually L, program clauses.

A subterm of a goal formula G will be called a non-Ly subterm if it is of the form (X ¢, ---¢,)
where n > 1, X is essentially existential in G, and the terms ti,...,t, do not satisfy the
restrictions defining L. The translation from hAh® goals to L, goals is by induction on the
number of non-L, subterm occurrences. Let G € G. If G is not an L, goal, then there is an
occurrence of an atomic formula A in G which has a subterm of the form (X ¢, ---¢,) where n,
X and ty,...,t, are as above. Let y1,...,y,, (m > 0) be the list of essentially universal variables
that are bound in the scope of X’s binding occurrence and that also contain (X ¢;---¢,) in
their scope. Let oy,...,0,, be the types of yi,..., 4., respectively. Let H be a variable not
occurring free in A and let A’ be the result of replacing the occurrence of (X ¢;---t,) with
(H y1...Ym). Let G’ be the result of replacing A with either the expression

\V/H([\v/a1yl([[y17y1 : Ul]] DD vamym(ﬂym’ym : Um]])
subst X ty...ty, (Hyr...Ym)))] DA)

if A occurs negatively in G, or

EH([Volyl(Hylvyl : Gl]] DD Vamym([[ym7ym : Um]] D)
subst™ X ty--t, (Hyy...Ym)).-)]NA)

if A occurs positively in G. The resulting formula now has one fewer non-L, subterms. If we
repeat this process until all such subterms are removed, the result will be an L, goal formula.
The following proposition establishes a simple correctness property for this translation.

Proposition 3 Let ¥ be a signature, let Cx be the set {[c,c : o] | ¢ : 0 € B}, and let G be
an hh* goal formula that does not contain occurrences of any copy or subst predicates. Let G
be the Ly goal that results from performing the above mentioned translations to the hh® goal
formula G. Then

;0= G if and only if X;Cx - G”.

Furthermore, if G is of the form 3, X.H then G" is of the form 3. X.H", and for all X-terms t
of type T,

30 F Xnorm([X — t|H) if and only if 3;Cs F Anorm([X — t|H").
In other words, answers substitutions are the same between these two goals.
Consider the @n-unification problem
Fii X [k(Ao(m (X v))) = k(Ay(X (m y)))];
over the signature {m :i — i, k: (i — ¢) — i}. This can be written as the hh* goal
ViZ(eq Z Z) > 3 X[eq ((o(m (X 0)))) (FOw(X (m)]

This query has one non-L, subterm, namely, (X (m y)). Using the above mentioned transfor-
mation leads to the L, goal
ViZ(eq Z Z) D 3, X3 H[Vy(copy, y y D substi—; X (my) (H y))
eq (k(hv(m (X v)))) (k(Ay(H y)))]-
Solving this query using the copy-clauses for the constants m and k, we find that there are

an infinite number of proofs, yielding a sequence of substitution terms for X, namely, Aw.w,
Aw.(f w), Mw.(f(f w)), etc. These are thus the unifiers for the original Sn-unification problem.

9

7 Some Implementation Considerations

The presentation of Sn-unification given so far is rather simple and declarative. This is partly
due to pushing lots of details concerning bound variables and search into an imaginary in-
terpreter for Ly, where, presumably, all these details must be carefully addressed. The eLP
implementation of AProlog [2] provides an interpreter for both hh* and L,. Many details
regarding how such an interperter can be built are given in the paper [3].

There are only two special implementation considerations that we would like to address
here. Assume that we are designing an interpreter that uses logic variables and unification in
the usual way to postpone determining substitution terms for essentially existential variables.
Let t be a A-normal term of primitive type. We say t is flexible if its head symbol is a logic
variable; otherwise, it is rigid. If o is a primitive type, a goal of the form copy, ¢ s is classified as
a rigid-rigid, flexible-rigid, rigid-flexible, or flexible-flexible copy-goal depending on the status of
the two terms t and s. Given that copy is axiomatized only in the forms used in this paper, that
is, as axiomatizations of equality and substitution, then we can conclude the following behavior
for proving copy-goals. A rigid-rigid or rigid-flexible copy-goal can be used to backchain over
at most one clause. These are therefore “deterministic” goals. A flexible-rigid goal may have
several clauses to backchain over. Consider the case where the top-level constant of s is, say,
f : 1 — . Thus, it will be possible to backchain using the clause [f, f : ¢ — i]. There may have
also been extensions to the program via subst-goals in which clauses of the form copy, = (f w),
where x is some “new” constant. It is then possible to backchain over these additional clauses.
Thus, flexible-rigid copy-goals give rise to the searching that goes on in #n-unification: it is this
non-determinancy that is reflected in the MATCH procedure of [7]. A sensible interpretation
of such a goal is to order these backchaining choices and to try one after the other using some
search discipline (such as depth-first search).

Consider proving a flexible-flexible goal copy, t s. Every copy,-clause in the program could
be used to backchain on this goal: there may be a large number of such clauses. Also, backchain-
ing over a clause encoding a constant of non-primitive type will generate more flexible-flexible
copy-goals and these may also be used to backchain over a large number of clauses. In certain
cases, say when the only clauses for copy, are for constants that are of primitive type or when
there are, in fact, no clauses for copy, (o is an empty type), proving such flexible-flexible copy-
goals may not lead to an explosion in the search space. In general, however, a sensible approach
to proving flexible-flexible goals would be to suspend them (using delay mechanisms such as
in NU-Prolog [17]) and attempt to prove other goals in the hope that the flexible heads will
be instantiated to make them rigid, at which point they could be resumed. Suspending such
flexible-flexible copy-goals is similar to advice given in [7] and to the treatment of Sn-unification
in A\Prolog [13] and its current implementations [2, 3].

As a final comment on an implementation, consider the occurrence-check in the usual first-
order unification algorithm. This does not generalize directly when variables of higher-order
type are present. For example, the unification problem 3; X3, ;F. X = F X has answer
substitutions as long as there are terms of type ¢. For example, if @ is of type ¢, then set F
to Aw.w or to Aw.a and set X to a. In our setting, however, it is possible to generalize the
occurrence-check by a check on ancestor goals. That is, if the current copy-goal is subsumed
by an ancestor goal, then it is possible to fail the current goal without loss of completeness.
In the first order setting where the clauses [t,s : o] are just Horn clauses, this is equivalent
to the occurrence-check. In the general case, however, the ancestor check is still a legitimate
step although a simple occurrence-check is not. Thus, a reasonable implementation of L, when

)

10

employed to deal with Sn-unification might well have such an ancestor check to stop this simple
kind of infinite branch. For more explicit information on generalizations of the occurrence-check
to fn-unification, see [7, 11].

8 Conclusion

We have presented a specification of gn-unification using the logic programming language L.
This specification approach simplifies the presentation of an implementation of gn-unification
by allowing us to focus on the simple declarative aspects of equality and substitution in isolation
from details of search and the complex, low-level syntax of A-abstractions. These latter details
are addressed by an implementation of L. Fortunately, a great many techniques and ideas from
the implementation of various other logic programming languages can be used to build such an
implementation. Of course, L, is of greater interest than as just the basis for implementing
On-unification. The translation given in Section 6 shows that many AProlog programs can be
translated to Ly programs in a very direct fashion. Thus, an L, interpreter could be used as
the core of a AProlog interpreter.

9 Acknowledgements

I am grateful to Bob Constable, Fernando Pereira, and the conference reviewers for their com-
ments and suggestions on an earlier draft of this paper. At the University of Edinburgh, this
work has been supported by SERC Grant No. GR/E 78487 “The Logical Framework” and
ESPRIT Basic Research Action No. 3245 “Logical Frameworks: Design, Implementation, and
Experiment.” At the University of Pennsylvania, from where the author is on a one year leave,
this work has been supported by ONR N00014-88-K-0633 and NSF CCR-87-05596.

References

[1] Peter B. Andrews, Eve Longini Cohen, Dale Miller, and Frank Pfenning. Automating higher
order logic. In Automated Theorem Proving: After 25 Years, pages 169-192. American
Mathematical Society, 1984.

[2] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of AProlog. Im-
plemented as part of the CMU ERGO project, May 1989.

[3] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic
programming language. In Peter Lee, editor, Topics in Advanced Language Implementation.
MIT Press, 1990. (in press).

[4] Amy Felty and Dale Miller. Encoding a dependent-type A-calculus in a logic program-
ming language. In Mark Stickel, editor, Proceedings of the 1990 Conference on Automated
Deduction, volume 449, pages 221-235. Springer Lecture Notes in Artificial Intelligence,
1990.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Second Annual Symposium on Logic in Computer Science, pages 194-204, Ithaca, NY, June
1987.

11

[6]

[12]

[13]

[14]

[15]

[16]

[17]

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and Lambda
Calculus. Cambridge University Press, 1986.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions
on Programming Lanuages and Systems, 4(2):258-282, April 1982.

Dale Miller. Abstractions in logic programming. In Peirgiorgio Odifreddi, editor, Logic and
Computer Science, pages 329 — 359. Academic Press, 1990.

Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. In Peter Schroeder-Heister, editor, Eztensions of Logic Program-
ming. Springer Lecture Notes in Artificial Intelligence, 1990.

Dale Miller. Unification under a mixed prefix. To appear in the Journal of Symbolic
Computation.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. To appear in the Annals of Pure and Applied Logic.

Gopalan Nadathur and Dale Miller. An Overview of AProlog. In Fifth International Logic
Programming Conference, pages 810-827, Seattle, Washington, August 1988. MIT Press.

Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Peirgiorgio Odifreddi,
editor, Logic and Computer Science, pages 361 — 386. Academic Press, 1990.

Frank Pfenning. EIf: A language for logic definition and verified metaprogramming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313-321, Monterey, CA,
June 1989.

Wayne Snyder and Jean H. Gallier. Higher order unification revisited: Complete sets of
transformations. Journal of Symbolic Computation, 8(1-2):101-140, 1989.

James Thom and Justin Zobel. NU-Prolog reference manual, version 1.3. Technical report,
Department of Computer Science, University of Melbourne, Australia, 1988.

12

