
Representing Objects in a Logic

Programming Language with

Scoping Constructs

Joshua S. Hodas and Dale Miller

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104 { 6839, USA

hodas@eniac.seas.upenn.edu dale@linc.cis.upenn.edu

Abstract

We present a logic programming language that uses implications and univer-

sal quanti�ers in goals and the bodies of clauses to provide a simple scoping

mechanism for program clauses and constants. Within this language it is

possible to de�ne a simple notion of parametric module and local constant.

Given this ability to structure programs, we explore how object-oriented pro-

gramming, where objects are viewed as abstractions with behaviors, state,

and inheritance, might be accommodated. To capture the notion of muta-

ble state, we depart from the pure logic setting by adding a declaration that

certain local predicates are deterministic (they succeed at most once). This

declaration, along with a goal-continuation passing style of programming is

adequate to model the state of objects. We also examine a few aspects of

how having objects embedded in logic programming can be used to enrich the

notion of object: for examples, objects may be partial (that is, may contain

free variables) and non-deterministic, and it is possible not only to search

for objects with certain properties but also to do hypothetical reasoning with

them.

1 Introduction

Many attempts have been made in recent years to extend logic programming

with features found in object-oriented programming languages [2,3,5,6,12,9].

Much of this work has used Prolog and Horn clause as a foundation. In

this paper, we start with an enrichment of Horn clause logic that contains

a natural scoping mechanism and then show how aspects of object-oriented

programming can be represented. Our account of state and state updates

is the only place where we need to resort to a non-logical primitive. That

primitive, however, is a familar one: certain predicates will be declared to

be deterministic; that is, if they succeed, only their �rst solution is returned

and the remaining ones are discarded.



2 A Logic for Scoping Clauses and Constants

Various extensions to the foundation of logic programming have been pro-

posed to provide scoping constructs for program clauses and constants. We

shall base our language on a logic similar to N-Prolog [8], the intuitionistic

clausal system of [4,13,14], and the hereditary Harrop formulas of [15,16,17].

Since a simple modi�cation of the latter logic is the logic we consider here, we

refer to it simply as hH

0

. We briey describe hH

0

from an operational point-

of-view below. The reader interested in proof theoretic semantics should refer

to the papers mentioned above.

Positive Horn clauses are universally quanti�ed formulas of the form

A :- B

1

; . . . ; B

n

(n � 0);

where A;B

1

; . . . ; B

n

are atoms. In order to provide for scoping of program

clauses during execution, we shall need to introduce the notion of a current

program, that is, a stack of program clauses, and a current signature, that

is, a stack of constants. Implications in the body of clauses and in goals

specify clauses that should be added to the current program. In particular,

the atomic formulas B

i

can be replaced with more complex formulas of the

form

H

1

^ . . . ^H

m

=> B

i

(m � 0);

where H

1

; . . . ;H

m

are Horn clauses and => is the converse of :-. To prove

such a goal the clauses H

1

; . . . ;H

m

are �rst loaded into the current program

and only then is the atom B

i

is attempted. After B

i

succeeds or fails,

these clauses are discharged (removed from the current program). If we

consider Horn clauses to be of order 0, then clauses with at least one such

implicational formula in its body would be of order 1. Clauses of order 2

would then result from permitting the clauses H

1

; . . . ;H

m

to be of order 0

or 1. The logic hH

0

contains clauses of all orders. We shall also include

formulas where the consequence of the implication => is a conjunction, in

which case the clauses in the antecedent of => are scoped over all conjuncts.

The antecedent of => may not be a disjunction.

Providing scope to individual, function, and predicate constants can be

accommodated by using universal quanti�ers over goal formulas. Universal

quanti�ers will be written as all x

1

,. . . ,x

n

\, for n > 0. In order to prove

the universally quanti�ed goal all x\ G(x), some \new" constant (that is,

a constant not in the current signature), say c, is added to the current sig-

nature and is used to instantiate this goal. The resulting goal, G(c), is

attempted. After this instance succeeds or fails, the constant c is discharged

(removed from the current signature). Thus the interpretation of implica-

tions and universal quanti�cation in goals is similar: the �rst provides scope

to clauses and the second to constants.

In implementations of this logic that use free (logic) variables and uni�-

cation, these extensions provide some complications not found in implemen-

tations of Prolog. First, it is possible for the current program to contain free



variables. This can happen, for example, when trying to prove the formula

H

1

^ . . . ^H

m

=> B

i

;

if some H

i

contains a variable free. (In this language, quanti�ers must often

be explicitly written. For instance, variables not explicitly quanti�ed in the

clausesH

i

will be assumed to be bound around the outermost clause in which

they are embedded.) An example of this will be seen in the latter part of

this paper. To correctly enforce scoping of constants, uni�cation must be

modi�ed so that a scoped constant does not escape its intended scope. This

restriction amounts to requiring that when a new constant is introduced,

all free variables in the current goal and program be marked so that no

instantiation of them will be to terms that contain that constant. The paper

[15] presents a proof procedure that is sound and (non-deterministically)

complete for the intuitionistic theory of hH

0

.

On top of hH

0

we wish to add a syntax for modules similar to the one

presented in [16]. Thus, certain names, called module names, will be used to

denote (possibly parametric) collections of program clauses. For example,

the module declaration

MODULE mod(x

1

; . . . ; x

n

).

LOCAL y

1

; . . . ; y

m

.

H

1

(x

1

; . . . ; x

n

; y

1

; . . . ; y

m

)

.

.

.

.

.

.

H

p

(x

1

; . . . ; x

n

; y

1

; . . . ; y

m

)

associates to mod the parameters x

1

. . . ; x

n

, the local constants y

1

; . . . ; y

m

,

and the clauses (of hH

0

) H

1

; . . . ;H

p

, which may contain free occurrences of

the variables x

1

; . . . ; x

n

and constants y

1

; . . . ; y

m

. Modules are used within

goal formulas using the syntax mod(t

1

; . . . ; t

n

) ==> B. This syntax is con-

sidered only as short-hand for the formula

all y

1

; . . . ; y

m

n

[(H

1

(t

1

; . . . ; t

n

; y

1

; . . . ; y

m

); . . . ;H

p

(t

1

; . . . ; t

n

; y

1

; . . . ; y

m

)) => B]:

Here, we overload the symbols y

1

; . . . ; y

m

to be constants in the LOCAL

declaration and bound variables in the displayed formula above. In gen-

eral, this overloading should not cause problems. Also, in this example, it is

assumed that the formula B and the terms t

1

; . . . ; t

n

do not contain occur-

rences of y

1

; . . . ; y

m

. We may always assume this since the names of bound

variables (and local constants) can be changed as needed.

An important programming style that we shall use in this paper can be

referred to as goal-continuation passing. We use this term whenever a pred-

icate takes as an argument a goal to be called after augmenting the current

program or signature. Thus, the goal will be carried from one environment

to another. For example, consider the clause



p(X,G) :- all y\ (assoc(y,X) => G).

where assoc is some binary predicate symbol.

To prove the goal p(a,G) requires adding a new constant, say c, and a

new clause, assoc(c,a) and then calling the goal G. In a sense, G was carried

from one context to this augmented context.

For the purposes of making examples easier to present, we shall assume

that there is a special goal top that is the top-level of our interpreter; an

attempt to prove top causes a prompt to appear, a goal to be read from the

keyboard, that goal to be attempted, and answer substitutions to be printed.

Those steps are repeated until the special goal pop is seen, in which case,

the most recent call to top succeeds. If mod0 is a module, then entering the

goal mod0 ==> top at the top-level causes the next prompt to be issued from

a top-level that has access to the clauses and local constants contained in

mod0. Similarly, attempting to prove the goal p(a,top), where p is de�ned

as above, will result in invoking a new top-level in which a new constant,

say c, and the new clause, assoc(c,a), are available.

Many of the features hH

0

are available in the logic programming language

�Prolog language [19]. The examples in this paper have been developed and

tested using the eLP implementation of �Prolog [7].

3 Modules cum Objects

Several recent papers have suggested that, in the setting of positive Horn

clauses, the proper view of objects is not as a pairing of state information

with a set of behaviors, but rather simply as a set of behaviors. For example,

in [12] objects are identi�ed with parameterized modules of Prolog clauses

and a goal that is used to \send a message" to an object is proved within

the module corresponding to that object. hH

0

supports a similar notion of

object-sans-state by identifying them as abstract data types as outlined in

[15]. For example, a module for an object representing a locomotive (based

on one in [12, pages 47-54]) could be given by:

MODULE locomotive.

LOCAL train.

make_train(train(S,Cl,Co),S,Cl,Co).

color(train(S,Cl,Co),Cl).

speed(train(S,Cl,Co),S).

country(train(S,Cl,Co),Co).

journey_time(Train,Distance,Time) :-

speed(Train,S), Time is Distance div S.

A query about a particular train, such as how long one that travels 30 miles

per hour will take to go 100 miles, would then be posed as:



?- locomotive ==> top.

?- make_train(Tr,30,blue,usa),journey_time(Tr,100,Time).

Tr == train1(30,blue,usa)

Time == 3.333333.

Here the function constant train1 is just the new constant created for the

local constructor: it will be di�erent each time the module is loaded.

A point that should be made about this example is that a locomotive

could just as well be built via its selectors. A French train that travels 125

miles per hour could be built, and a trip time computed, by the following

query:

?- locomotive ==> top.

?- country(L,france),speed(L,125),journey_time(L,250,Time).

L == train2(125,Cl,france)

Time == 2.

This example also demonstrates the possibility of having partially described

objects, where certain descriptors are left uninstantiated. This is a natural

outgrowth of the Prolog proof procedure and will be useful in the dicussion

of hypothetical object queries in Section 6.2.

The scoping rules of hH

0

are quite strict. Any query that would result

in a locally de�ned constant being brought out of its scope will fail. By

beginning these examples with locomotive ==> top, the subsequent query

in each example is brought into the scope of the locally de�ned constructor.

If the last example is instead posed as

?- locomotive ==> (country(L,france), journey_time(L,250,2),

speed(L,Speed)).

no.

it fails, since the scope of the imported module (and hence its local constants)

ends at the end of the second line. For this goal to succeed it must be posed

with an explicit existential quanti�er.

?- locomotive ==> exists L\ (

country(L,france), journey_time(L,250,2),

speed(L,Speed)).

Speed == 125.

Thus, if we exclude the use of top, the data type is truly abstract, accessible

only through its constructors and destructors.

4 Introducing State

The technique of goal-continuation passing can be used to introduce a notion

of state. An obvious method for implementing mutable state in Prolog is



to augment the database with predicates corresponding to the objects. An

ad-hoc way of accomplishing this in a traditional Prolog is through the use

of the extralogical assert, as in:

?- assert(object(state)).

?- goal.

In hH

0

, the proof of an implicational goal is used with a continuation on the

right hand side to achieve a similar result, as in:

?- object(state) => goal.

A very simple program for maintaining a database of switch values using

this technique is given by:

MODULE switch(Name).

LOCAL register.

setting(Name,Setting) :- register(S), S = Setting.

set_on(Name,Goal) :- register(on) => Goal.

set_off(Name,Goal) :- register(off) => Goal.

Class de�nition modules are generally accompanied by a clause for a

predicate used to create objects of the class, such as make_switch(Name,Goal)

:- switch(Name) ==> Goal.When this module is loaded, as when proving

make_switch(sw1,top), a new constant is created for the LOCAL predicate

register. The 3 clauses from the module are then loaded into the current

program, instantiated with the name of the switch, sw1, and the new lo-

cal constant. In this way a correspondence is set up between the object's

name and the predicates used to represent its storage. That storage can be

accessed only through the methods provided.

This module could be used as follows:

?- make_switch(sw1,top).

?- set_on(sw1,top).

?- set_off(sw1,top).

?- setting(sw1,S).

S == off.

yes.

There is a problemwith this example that is best demonstrated by continuing

the last query where it left o�.

?- setting(sw1,S).

S == off;

S == on;

no



When an implication is to be proved, the term on the left of the implication is

added to the current program, and an attempt is made to prove the term on

the right. This means that as implicational goals are nested (as is the e�ect

here), clauses are added to the program, but none are discharged. Thus in

proving the goal set off(sw1,top) a new state value for sw1 was added,

but the old state also remained. While this can be seen as a feature and not a

bug | there have been proposals suggesting that objects with their full state

history available might be useful in certain database applications [2] | for

most applications one would expect an object to have only a single state. To

this end we have introduced a new special declaration STATE which has the

same basic meaning as LOCAL (that is, it can be used to create new scoped

predicate constants), but these predicates will now be deterministic. When a

predicate constant is created by a STATE declaration, any attempts to prove

goals involving that predicate will succeed at most once. The di�erence

between these two declarations can be seen in the following example:

MODULE example1. MODULE example2.

LOCAL R. STATE R.

set(Val,Goal) :- R(Val) => Goal. set(Val,Goal) :- R(Val) => Goal.

get(Val) :- R(U), U = Val. get(Val) :- R(U), U = Val.

?- example1 ==> set(1,set(2,top)). ?- example2 ==> set(1,set(2,top)).

?- get(X). ?- get(X).

X == 2; X == 2;

X == 1; no

no ?-

?-

Using example2, get(t) succeeds if and only if t uni�es with the most

recently set value; old values are not accessible within the call to top. The

de�nition of STATE relies on several details of the actual proof procedure

used. In particular, it assumes that the clauses added to the database in an

implicational goal are added at the top of the database and that clause se-

lection is top-down and depth-�rst. In this regard it is certainly extralogical,

though it is related to the deterministic and once declarations in various

logic programming languages. There is some evidence that this, or a similar

construct, has a reasonable semantics in linear logic [3]. In any case, it is less

problematic than general assert/retract. In particular, the nested goals

are fully backtrackable, a feature that will be illustrated in Section 6.

5 Inheritance

An important feature of object oriented systems is inheritance, the ability to

describe the features of a new class of objects in terms of a existing classes.

The subclass being de�ned inherits all of the attributes (state information

and methods) of the superclasses in terms of which it is being de�ned. It

is easy to extend the style of programming demonstrated in the last section



gate

biGate

�

�

�

�

�

�

�>

andGate

�

�

�

�

��

orGate

A

A

A

A

AK

monoGate

Z

Z

Z

Z

Z

Z

Z}

notGate

6

Figure 1: The class hierarchy for logic gates

to represent a class structure with multiple inheritance (though only single

inheritance will be shown here).

To demonstrate this idea we will consider modelling simple digital logic

circuits. In this system there are two sorts of objects: wires and gates. Wires

are represented by just one class while six classes are used to represent the

logic gates. The six gate classes are organized into a hierarchy as shown in

Figure 1. This example is inspired by the circuit simulator used in [1, pages

219{230] but di�ers in that here wires and gates are objects while in [1] only

wires are objects.

The root class gate is de�ned by the parametric module below and rep-

resents the most abstract notion of a logic gate. It speci�es only the features

common to all logic gates.

MODULE gate(Gate,OutputWire).

STATE reg.

reg(OutputWire,off).

class(Gate,gate).

output(Gate,Wire) :- reg(W,_), Wire = W.

state(Gate,State) :- reg(_,S), State = S.

setOutput(Gate,Out,G) :- output(Gate,OldW), state(Gate,State),

reg(Out,State) =>

setSignal(OldW,off,setSignal(Out,State,G)).

alert(Gate,G) :- computeState(Gate,New), output(Gate,Wire),

reg(Wire,New) => setSignal(Wire,New,G)).

In order to create a gate, we use the predicate make_gate, de�ned by the

clause

make_gate(Gate,OutWire,G) :- gate(Gate,OutWire) ==> G.



Here, Gate is the name of the gate being created and OutWire is the name

of the wire connected to the gate's output channel. All the make-clauses for

a program would generally be gathered into a single module. See Figure 2

for an example.

The class de�nition for gates speci�es two instance variables whose stor-

age is represented by the predicate reg. The �rst position is used for the

name of the wire object that is connected to the output of the gate. The

second stores the current output value of the gate. Selectors are provided to

check the value of both of these variables but only the name of the output

wire can be changed directly. The gate can be sent an alert message that

directs it to recompute its output value. The details of this computation

are not, however, speci�ed within the module. The gate class is, therefore,

what Smalltalk-80 programmers refer to as an abstract superclass. Such a

class is not intended to have instances created, since such instances would

lack crucial functionality. Rather they are intended to represent the common

aspects of two classes, neither of which properly contains the other [11].

The abstract class biGate given by:

MODULE biGate(Gate,InputA,InputB)

STATE reg.

reg(InputA,InputB).

class(Gate,biGate).

inputA(Gate,Wire) :- reg(W,_), Wire = W.

inputB(Gate,Wire) :- reg(_,W), Wire = W.

setInputA(Gate,InpA,G) :- inputA(Gate,OldA), inputB(Gate,InpB),

reg(InpA,InpB) => addGate(InpA,Gate,remGate(OldA,Gate,alert(Gate,G))).

setInputB(Gate,InpB,G) :- inputA(Gate,InpA), inputB(Gate,OldB),

reg(InpA,InpB) => addGate(InpB,Gate,remGate(OldB,Gate,alert(Gate,G))).

is used to describe those attributes common to all gates that have two input

wires. Wire objects maintain a list of the names of gates to which they carry

input. This list is maintained by the addGate and remGate methods de�ned

for the wire class (see Figure 2). Therefore, when a biGate (or monoGate)

is created with

make_biGate(Gate,InpA,InpB,Out,G) :-

addGate(InpA,Gate, addGate(InpB,Gate,

make_gate(Gate,Out,(biGate(Gate,InpA,InpB) ==> G)))).

(which speci�es its name and the names of its input and output wires) it

begins by informing the two input wires that they should add the gate being

created to their respective lists. It then creates a set of methods for this gate

that will include the methods from the generic gate description, as well as

those for a biGate. This is accomplished by calling make gate, and passing

it, as a continuation, a goal that includes loading the biGate speci�cation

instantiated to the same gate name.

The biGate module speci�es that a two input gate features a second

binary storage predicate (though it uses the same local name, reg, it will



be instantiated to a di�erent constant than the one used to store the gate's

output wire and state) which stores the names of the wires carrying input

to the gate. To insure that the circuit remains consistent, the methods for

changing the inputs of the gate send messages to the old and new input wires

telling them to update their respective gate lists.

Finally, the concrete class andGate is given by:

MODULE andGate(Gate)

class(Gate,andGate).

computeState(Gate,on) :- inputA(Gate,WireA), signal(WireA,on),

inputB(Gate,WireB), signal(WireB,on).

computeState(Gate,off) :- inputA(Gate,WireA), signal(WireA,off).

computeState(Gate,off) :- inputB(Gate,WireB), signal(WireB,off).

A member of this class is built using the predicate de�ned with the clause:

make_andGate(Gate,InpA,InpB,Out,G) :-

make_biGate(Gate,InpA,InpB,Out,(andGate(Gate) ==> alert(Gate,G))).

which speci�es that an and-gate is just a two input gate together with the

knowledge of how to compute its output value. When an andGate is created

it is immediately told to compute its initial state based on the signals being

carried on its input wires. The same sort initialization is used in the creation

of an orGate or a notGate. The remaining class de�nitions for the circuit

simulator example are given in Figure 2. One predicate worth examining is

the setSignal method for the class wire. The notify predicate is entirely

local to setSignal. Since, G (the eventual continuation) is free in it, notify

can be written with only a single argument.

6 Logic Programming as an Enhancement to Ob-

jects

A motivating factor behind our research has been a desire to not only en-

hance logic programming by adding object-oriented extensions but also en-

hance objects with logic programming features. We describe two such en-

hancements to object-oriented programming that arise from this approach

to embedding it into logic programming.

6.1 Searching Over Objects

In traditional object-oriented languages it is possible to query an individual

object about its current state, but there is generally no way to search through

the entire space of objects for those objects which satisfy a given constraint.

(Such a facility could be programmed in Smalltalk-80 as a method for the

system dictionary object, but this sort of direct global manipulation of the

object space is considered bad style.) It is possible, in this system, to use



MODULE orGate(Gate)

class(Gate,orGate).

computeState(Gate,on) :- InputA(Gate,WireA), signal(WireA,on).

computeState(Gate,on) :- InputB(Gate,WireB), signal(WireB,on).

computeState(Gate,off) :- InputA(Gate,WireA), signal(WireA,off),

InputB(Gate,WireB), signal(WireB,off).

MODULE uniGate(Gate,InputWire)

STATE reg.

reg(InputWire).

class(Gate,uniGate).

input(Gate,Wire) :- reg(W), Wire = W.

setInput(Gate,Inp,G) :- input(Gate,OldW),

reg(Input) => addGate(Inp,Gate,remGate(OldW,Gate,alert(Gate,G))).

MODULE notGate(Gate)

class(Gate,notGate).

computeState(Gate,off) :- Input(Gate,Wire), signal(WireA,on).

computeState(Gate,on).

MODULE wire(Wire).

STATE reg.

reg(off,[]).

class(Wire,wire).

signal(Wire,Signal) :- reg(S,_), S = Signal.

setSignal(Wire,Sig,G) :-

all notify\ (notify([]) :- G,

all H,T\ (notify([H|T]) :- alert(H,notify(T))))

=> (Reg(_,Outs),reg(Sig,Outs) => notify(Outs))).

addGate(Wire,Gate,G) :- reg(Sig,Outs), reg(Sig,[Gate|Outs]) => G.

remGate(Wire,Gate,G) :- reg(Sig,Outs), delete(Gate,Outs,NewOuts),

reg(Sig,NewOuts) => G.

MODULE circuit_simulator.

make_wire(Wire,G) :- wire(Wire) ==> G.

make_gate(Gate,OutWire,G) :- gate(Gate,OutWire) ==> G.

make_biGate(Gate,InpA,InpB,Out,G) :-

addGate(InpA,Gate, addGate(InpB,Gate,

make_gate(Gate,Out,(biGate(Gate,InpA,InpB) ==> G)))).

make_andGate(Gate,InpA,InpB,Out,G) :-

make_biGate(Gate,InpA,InpB,Out,(andGate(Gate) ==> alert(Gate,G))).

make_orGate(Gate,InpA,InpB,Out,G) :-

make_biGate(Gate,InpA,InpB,Out,(orGate(Gate) ==> alert(Gate,G))).

make_uniGate(Gate,Inp,Out,G) :-

make_gate(Gate,Out,(uniGate(Gate,Inp) ==> G)).

make_notGate(Gate,Inp,Out,G) :-

make_uniGate(Gate,Inp,Out,(notGate(Gate) ==> G)).

Figure 2: The remaining code for the circuit simulator



Figure 3: A sample half-adder circuit

Prolog's built-in search facility to ask questions about the database of ob-

jects. The circuit simulator program will be used for an example. Figure 3

shows a half-adder circuit. This circuit can be built with the following in-

teraction, which also turns on the wire a. All the other wires are o� by

default:

?- circuit_simulator ==> top.

?- make_wire(a, make_wire(b, make_wire(c,

make_wire(d, make_wire(e, make_wire(s, top)))))).

?- make_orGate(or1,a,b,d,top).

?- make_andGate(and1,a,b,c,top).

?- make_notGate(not1,c,e,top).

?- make_andGate(and2,d,e,s,top).

?- set_signal(a,on,top).

It is then possible to ask which wires are currently carrying positive signals.

?- signal(Wire,on).

Wire == s;

Wire == e;

Wire == d;

Wire == a;

no

Note that the search facility is quite powerful. In this example it will �nd any

object which responds (succeeds) to a signal/2 method, even if it is not in

the class of wire objects. A technique that we have adopted for constraining

the search is to include a class-name predicate in the methods for an object.

In the circuit simulator example we have used the predicat class/2 for

this purpose, though the name, of course, is arbitrary. This predicate can



be used to limit the scope of search to a speci�c class of objects and its

subclasses (since an object will have a class axiom for each class above it in

the hierarchy). A constrained version of the above query would be posed as:

?- class(Wire,wire),signal(Wire,on).

The ability to use such straightforward generate-and-test techniques opens

up new possibilities for object-oriented systems, and in particular for object-

oriented database systems. It is surprising how few papers investigating

objects in logic have discussed this possibility; see [9,12] for some discussion.

6.2 Hypothetical Queries

In Section 4 it was stated, without justi�cation, that the pairing of im-

plicational goals with the STATE declaration has distinct advantages over

assert/retract as a method of implementing mutable state. A major ad-

vantage is the ability to pose hypothetical queries about the object space.

While this paper has relied heavily on a continuation-passing style of pro-

gramming, thus far the continuations passed have been open-ended, stretch-

ing out to the end of program execution. Hypothetical queries use a closed-

ended continuation to ask \what-if" questions. For instance, continuing from

the end of the last example, we can ask whether turning on the wire b will

cause the half-adder's carry-out wire (c) to be enabled:

?- set_signal(b, on, signal(c,on)).

yes.

Here, the set signal message to b sets up a lengthy computation which

propagates the state change through the network. When the network set-

tles, the one remaining task is to execute the continuation, which has been

maintained by being passed from object to object as the computation pro-

gressed. In this case, that continuation is just the query signal(c,on),

which succeeds in the new circuit state. The nested implicational goals then

succeed one by one, eventually causing the original query to succeed. If the

query had failed, the system would backtrack looking for alternative solu-

tions; in this example no backtrack points are available, and the entire goal

would fail. In either case, the implication discharges its assumption and the

circuit is left in its original state. This type of query can also be combined

with a generate-and-test query of the type demonstrated in the last section.

It is thereby possible to ask queries of the form:

?- set_signal(b, State, signal(c,off)).

State == off;

no

which will drive the network through a series of possibilities based on di�er-

ent signal values for the wire b, backtracking as necessary, until a settled state

is found in which c is enabled. The trace of this proof is interesting. The



proof of set signal leads to a new state for the wire b being added to the

current program. This state, however, has an uninstantiated logic variable

in place of the signal value. The proof then sends an alert message to and1

(as part of the proof of the local procedure notify) which attempts to com-

pute its new state based on the signal values of its input wires. It picks the

�rst clause for computeState and this forces the uninstantiated signal value

stored for the signal on b to instantiate to on. Eventually the computation

propagates through the circuit, but the continuation signal(c,off) fails.

This causes a backtrack to the point at which the signal value was commit-

ted, and the proof is reattempted, picking the third clause of computeState

(since the second clause cannot be used given the current signal on wire a).

The signal on b is instantiated to off and this value is propagated. This

time the continuation succeeds. If there were other values for b (or other

proofs paths with the same value) which would allow the entire proof to

succeed, these would be presented as well.

7 Conclusion

We have shown how a logic programming language with scoping construc-

tions for constants and program clauses can be used to model several aspects

of object oriented programming. To capture state and state changes, a non-

logical feature was required, that of declaring a local predicate to be deter-

ministic. Given this mild departure from logic, mutable state can adequately

be modeled. Via an example, we showed how search and hypothetical rea-

soning, integral parts of logic programming, can be easily performed with

objects.

There have been proposals to add scoping to Horn clauses that are in

some senses less dynamic and open than the one based on the intuitionistic

implication used in this paper. The examples in Section 5 illustrate why

this more dynamic notion of scoping may be needed. In particular, abstract

object classes refer to predicates that are de�ned only later when members

of concrete object classes are created. This style of programming would not

be possible using the proposal presented in [10,18].

We hope in the future to extend the analysis of this programming style in

several directions. The question of how a class de�nition might rede�ne an

inherited method will be investigated, as will changes to the current syntax

to make continuation-passing implicit. It is expected that this may lead to

a syntax similar to the \dynamic predicates" of [5]. Another area of interest

is how paramaterized modules might be implemented in a more e�cient

manner, avoiding the need to load multiple copies of a segment of code.



Acknowledgements

Both authors are supported in part by grants ONR N00014-88-K-0633,

NSF CCR-87-05596, DARPA N00014-85-K-0018, and ARO DAAL03-89-C-

0031PRI. They would like to thank Amy Felty, John Hannan, Remo Pareschi,

Lynn Stein, Ehud Shapiro, David S. Warren, and the ICLP90 reviewers for

their helpful comments.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure

and Interpretation of Computer Programs. MIT Press / McGraw-Hill,

1985.

[2] R. Agrawal and N. H. Gehani. ODE (object database and environment):

The language and the data model. SIGMOD, pages 36{45, 1989.

[3] Jean-Marc Andreoli and Remo Pareschi. Linear objects: logical pro-

cesses with built-in inheritance. In Logic Programming: Proceedings of

the Seventh International Conference, 1990.

[4] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Ex-

pressing database queries with intuitionistic logic. In Logic Program-

ming: Proceedings of the North American Conference, pages 831{850,

1989.

[5] Weidong Chen and David Scott Warren. Objects as intensions. In

R. Kowalski and K. Bowen, editors, Logic Programming: Proceedings of

the 5th International Conference and Symposium, pages 404{419. MIT

Press, 1988.

[6] John S. Conery. Logical objects. In R. Kowalski and K. Bowen, editors,

Logic Programming: Proceedings of the 5th International Conference

and Symposium, pages 420{434. MIT Press, 1988.

[7] C. Elliot and F. Pfennig. eLP, a common lisp implementation of

�Prolog. January 1989.

[8] D. M. Gabbay and U. Reyle. N-prolog: An extension of prolog with

hypothetical implications. i. The Journal of Logic Programming, 1:319{

355, 1984.

[9] H. Gallaire. Merging objects and logic programming: Relational se-

mantics. In AAAI, pages 754{758, 1986.

[10] L. Giordano, A. Martelli, and G. Rossi. Local de�nitions with static

scope rules in logic programming. In Proceedings of the FGCS Interna-

tional Conference, pages 389{396, 1988.



[11] Adele Goldberg and David Robson. Smalltalk-80: The Language. Ad-

dison Wessley, 1989.

[12] F. G. McCabe. Logic and Objects: Language, application, and imple-

mentation. PhD thesis, Imperial College of Science and Technology,

1989.

[13] L. Thorne McCarty. Clausal intuitionistic logic I. �xed point semantics.

The Journal of Logic Programming, 5:1{31, 1988.

[14] L. Thorne McCarty. Clausal intuitionistic logic II. tableau proof proce-

dure. The Journal of Logic Programming, 5:93{132, 1988.

[15] Dale Miller. Lexical scoping as universal quanti�cation. In Logic Pro-

gramming: Proceedings of the Sixth International Conference, pages

268{283, 1989.

[16] Dale Miller. A logical analysis of modules in logic programming. The

Journal of Logic Programming, pages 79{108, 1989.

[17] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.

Uniform proof systems as a foundation for logic programming. To ap-

pear in the Annals of Pure and Applied Logic.

[18] L. Monteiro and A. Porto. Contextual logic programming. In Logic

Programming: Proceedings of the Sixth International Conference, 1989.

[19] Gopalan Nadathur and Dale Miller. An overview of �Prolog. In

R. Kowalski and K. Bowen, editors, Logic Programming: Proceedings of

the 5th International Conference and Symposium, pages 810{827. MIT

Press, 1988.


