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Abstrac t :  In this paper we consider the problem of extending Prolog to include predicate and 
function variables and typed ,~-terms. For this purpose, we use a higher-order logic to describe a 
generalization to first-order Horn clauses. We show that  this extension possesses certain desirable 
computational properties. Specifically, we show that  the familiar operational and least fixpoint 
semantics can be given to these clauses. A language, ~Prolog that  is based on this generalization 
is then presented, and several examples of its use are provided. We also discuss an interpreter 
for this language in which new sources of branching and backtracking must he accommodated. 
An experimental interpreter has been constructed for the language, and all the examples in this 
paper have been tested using it. 

Sec t i on  1: I n t r o d u c t i o n  

The introduction of higher-order objects has been a major consideration in the realm of 
functional programming, and indeed these have proved to be very valuable in languages such as 
Lisp, Scheme, and ML. It is of interest therefore to consider the possibility of introducing such 
objects into a logic programming language. We examine this issue in this paper.  

It is our belief that  any at tempt at providing a logic programming language like Prolog with 
the ability to deal with higher-order objects must be based on an extension to the underlying logic. 
Consider for example the facility Lisp provides for constructing lambda expressions which can be 
passed as parameters and can, later, be used as programs. In the setting of logic programming this 
corresponds to permitt ing predicate variables which may be instantiated by lambda expressions 
and allowing goals to be expressions that  need to be lambda normalized before they are invoked. 
Given its logical basis, this feature is not directly available in Prolog. However, an argument 

may be made (eg. [D. H. Warren, 1982]) that  no extension to Prolog or to the underlying logic 
is necessary by demonstrating how certain uses of this feature can be encoded in the first-order 
language. In our opinion, such an argument is inappropriate. First of all, it is desirable to provide 
for higher-order features such as the ones above in a natural  and theoretically well understood 
fashion and from this perspective the ability to encode certain uses of predicate variables in the 
existing language is clearry not sufficient. Furthermore, the nature of objects in the paradigm of 
logic programming is somewhat different from that  in the paradigm of functional programming. 
The question of what it means to have genuine higher-order objects in a logic programming 
language, therefore, is itself open to examination, and it seems that  a s tudy of this question 
should rely on an underlying logic. 

In this paper we present a logic programming language that permits functions and predicates 
as objects. This language is based on a logic that  uses the mechanism of the typed h-calculus for 
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constructing predicate and function terms and permits a quantification over such constructions. 
Using this logic we find that we are able to describe a higher-order generalization of the first-order 
Horn clauses which shares many computational properties with its first-order counterpart. These 

clauses can be used to define a programming language that allows function and predicate variables 

and whose term structure is now that of A-terms. One consequence of this is the provision of 
Lisp-like features. However, extending the notion of terms also gives the language a much richer 
set of data structures, and the operations of A-conversion and unification on these provides a 

computational paradigm not found earlier in either logic or functional programming paradigms. 

It must be pointed out that the features that are provided are higher-order in a strictly logical 
sense. They do not include features popularized by, for example, the se to f  and bagof constructs 
[D. H. Warren, 1982]; these extensions are perhaps better classified as meta or control level 
extensions since they involve endowing a logic programming language with an understanding of 

its own ability to prove. We do not focus on these meta level aspects in this paper, but we note 
that they may be added to our language in a manner analogous to their addition to Prolog. 

The structure of this paper is as follows. In Section 2 we describe the higher-order logic that 
we use as the basis of our language. Following this, in Section 3, we present our generalization 
to Horn clauses and discuss their formal properties. We have designed a programming language 
which includes not only these higher-order characteristics but also features like parametric poly- 
morphic types and modules, that have already been found useful in other contexts (eg. ML and 
[Mycroft and O'Keefe, 1985]). This language, called AProlog, is described in Section 4, where 

several examples of its use are also presented. Finally, Section 5 discusses theorem-proving in the 
context of our clauses, and then uses this to describe an interpreter for AProlog. An experimental 
interpreter has been built along these lines, and all the examples in Section 4 and [Miller and 
Nadathur, 1985] have been tested on it. 

Sec t ion  2: A H i g h e r - O r d e r  Logic 

The term "higher-order logic," as it is often understood, pertains to a logic whose language 
admits function and predicate variables, and in which such variables are interpreted as ranging 
over arbitrary functions and relations on any given domain. By virtue of GSdel's incompleteness 
theorems, it is known that a logic of this kind is not recursively axiomatizable and that its 
set of valid sentences is not effectively enumerable. Such a logic is not very interesting from our 

viewpoint, since our purpose is to use theorem-proving as the method of computation. Fortunately 
there is a higher-order logic that involves a weaker notion of quantification that can be recursively 

axiomatized. The Simple Theory of Types, presented by Church in [Church, 1940], is a typed 
A-calculus formulation of this logic. The higher-order logic, called T,  that we use as the basis 
of our programming language is derived from the Simple Theory of Types. In this section we 
present a brief exposition of T. A detailed account of the logic and its proof-theoretic properties 
are beyond the scope of this paper, and the interested reader is referred to IChurch, 1940] and 
[Miller, 1983]. 

The language of T is a typed language in the sense that each well formed formula of the 
system has associated with it a type symbol. We assume that we are given a set $ of sorts 
or primitive types, a set 3) of type variables, and a set C of type constructors where each type 
constructor has a unique positive arity. The types of T are then defined inductively by the 
following rules: 
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(1) Each  sor t  and  each type  var iable  is a type. 

(2) If c is an  n-a ry  type  cons t ruc to r  and  t l , . . .  , t n  are types,  t hen  (c Q . . .  t,~) is a type.  

(3) If t l  and  t2 are types,  t hen  t l  ~ t2 is a type.  

The  set  S mus t  conta in  the  sorts  o and  i; o is in tended  to be  the  type  of proposi t ions  and  i is 

the  type  of individuals .  These  are the  only sorts  t h a t  are necessary in the  logic, bu t  we shall 

assume here  t h a t  S also conta ins  the  sor t  i n t  for integer.  %) mus t  be  a denumerab le  set and  we 

assume t h a t  a and  fl are included amongs t  its members .  We also assume t h a t  C contains the 

type  cons t ruc to r  l is t  of ar i ty  1. A type  in which type  var iables  occur  is in t ended  to correspond 

to the  set of all its type  ins tances  t h a t  do not  conta in  any type  variables;  a type  t '  is said to be 

a type instance of ano the r  type  t j u s t  in case it is ob ta ined  f rom t by replacing s imultaneously 

some of the  var iables  in t wi th  types.  The  type  t i  --~ t2 is also called a f unc t ion  type.  We adopt  

the  convent ion  t h a t  --~ is r ight  associative,  i.e. we read t l  ~ t2 --~ t3 as t l  ~ (t2 --* t3). A type 

t l  --+ t2 in which  no type  variables occur  is in tended to be  the  type  of func t ions  whose domain  is 

of type  t l  and  whose codomain  is of type  t2. 

We now t u r n  to the  well formed formulas  of T .  Here we assume t h a t  we are given a set of 

cons tan t s  and  a denumerab le  set of variables,  and  t h a t  each e lement  of these  sets is specified wi th  

a pa r t i cu la r  type.  The  set of cons tan t s  contains  at  least  the  following symbols  t h a t  are referred 

to as the  logical constants  of T :  

C o n s t a n t  Type  

A o ~ o ~ o  

V 0 ~ 0 ~ 0  

0 ~ 0 ~ 0  

O ~ O  

t rue  o 

n ( ~  ~ o) ~ o 

( ~  ~ o) ~ o 

The  remain ing  cons tan t s  are called the  nonlogical constants. The  following is a famil iar  set 

of such cons tan t s  t h a t  we shall  find occasion to use in th is  paper :  

C o n s t a n t  Type  

cons a - - ,  ( l ist  a) --+ (list  a) 

nil (l ist  a) 

+ in t  --+ in t  --+ in t  

- in t  --+ in t  --+ in t  

* in t  --+ in t  --+ in t  

The  formulas  of T ,  wi th  the i r  respect ive  types,  are defined induct ively  by the  following rules: 

(1) A var iable  of type  t is a formula  of type  t. 

(2) A cons tan t  whose specified type  is t is a formula  of type  t ' ,  for any t '  which is a type  

ins tance  of t. Thus  cons is a formula  of type  in t  --~ (l ist  int)  -+ ( l is t  int)  as well as of 

type  ( l ist  1~) --* (l ist  ( l is t  ~))  ~ (l ist  ( l i s t /3) ) .  

(3) If f l  is a formula  of type  t l  --+ t2 and  ]'2 is a formula  of type  t l ,  t h e n  the  application 

of f l  to  ]'2, wr i t t en  ( f l  f2) is a formula  of type  tz. We assume t h a t  appl icat ion is left 
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associative, i.e. we read ( f l  ]'2 f3) as ( ( f l  f2) ]'3)- Functions of many arguments are 

represented here in a curried form. 

(4) If x is a variable of type t l  and f is a formula of type t2 then the abstraction of f by 

x, wri t ten (Ax ]'), is a formula of type t t  --* t2; the abstract ion is said to bind x and its 

scope is said to be f .  

A formula in which no variables occur free is said to be a closed formula; an occurrence of 

a variable, x, in a formula is a free occurrence if it is not  in the scope of an abstract ion that  

binds x. A type symbol is considered to occur in a formula if it occurs in the type of some 

variable or constant  of the formula. If a formula is the result  of subst i tut ing types for some 

of the type variables in another  formula, then the former is said to be a type instance of the 

latter. A formula in which type variables occur is to be interpreted as a scheme - it represents 

the  set of all its type  instances in which no type variables occur. Type  variables thus provide 

a form of quantification over types. However, no explicit quantif ication is provided for, and the 

implicit universal quantification of a type variable tha t  occurs in a formula is obviously over 

the whole formula. A stronger type system and a bet ter  formalizat ion of the formulas that  we 

have presented here is perhaps obtained through the use of explicit  type quantification as in the 

second-order lambda calculus ([Reynolds, 1985], [Fortune, Leivant and O'Donnell ,  1983]), but  we 

do not pursue this aspect in this paper. The use tha t  we make of type  variables does not add 

anything to the logic, but  it does provide a valuable form of polymorphism in the programming 

language that  we shall define. In that  context  type constructors conspire wi th  type variables to 

provide a form of parametric polymorphism. For instance, cor~s may be used to construct  many 

different kinds of lists, the  elements of each such list being homogenous.  

A-conversion plays an impor tant  role in T .  Let  x be a variable and let t and A be terms. If 

there is no abstract ion in A in whose scope x appears free and which also binds a free variable 

of t then we say tha t  t is free/or x in A. We write Air~x] to represent the result  of replacing all 

free occurrences of x in A by t; obviously this is a meaningful operat ion only if t and x have the 

same type and t is free for x in A. The following three operat ions now comprise A-conversion. 

a-conversion: Replacing (Ax A) with (Ay A[y/x]) provide y is free for x in A. 

fl-conversion: Replacing (Ax A)t with Air~x] and vice versa provided t is free for x in A. 

y-conversion: Replacing A with Az(Az) and vice versa if A has type a --~ ~ and z has type a, 

provided z is not  free in A. 

A formula A is said to be convertible to another  formula B if B can be obtained from A by 

a sequence of A-conversions. Two formulas are considered equal if they are each convertible to 

the other; further distinctions can be made between formulas in this sense by omit t ing the rule 

for rl-conversion, but  we feel that  these are not  impor tant  in our context.  We shall say here that  

a formula is a A-normal formula if it has the form 

Axl ...Ax,~ (h t l  . . .  tin) where n , m  > 0, 

where h is a constant  or variable, (h t~ . . .  trn) does not  have a function type, and, for 1 < i < m, 

ti also has the same form. We call the list of variables x l , .  • •, x,~ the binder, h the head and the 

formulas t l , . . .  , t in the arguments of such a formula. It is known tha t  every formula, A, can be 

converted to a A-normal formula that  is unique upto a-conversions. We call such a formula a 

A-normal form of A and we use Anorrn(A) to denote any of these alphabetic  variants. 
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The type o plays a special role in T .  A formula wi th  a function type of the form t l  --~ 

. . .  --* t,, --* o is also classified as a predicate of n arguments  whose i th argument  must be of 

type ti. Predicates are use to denote sets and relations. For example,  predicates of type int --+ o 

represent sets of integers, predicates of type (int ~ o) --~ o represent sets of sets of integers, and 

predicates of the type a --* (list ~) --* o represent binary relations between objects of any type a 

in which no type variables occur and the corresponding type  (list a). Formulas of type o are called 

propositions; notice that  these formulas must have an empty  binder. The  logical constants A, V, 

and D correspond to the familiar propositional connectives, and we shall adopt  the customary infix 

nota t ion for these. The symbols II and E are used in conjunct ion with  the abstraction operation 

to represent universal and existential quantification over propositions: Vx f is an abbreviation for 

II()~x f )  and 3x f is an abbreviat ion for ~ (~x  f ) .  Derivabili ty in T ,  denoted by F~-, is a notion 

tha t  pertains to propositions and is an extension of the not ion for first-order logic. The axioms 

of T are the subst i tut ion instances of the propositional tautologies, the formula Vx B x  D Bt,  and 

the formula Vx (Px  A Q) D Vx P x  A Q. The rules of inference of the system are Modus Ponens, 
Universal Generalization, Substitution, and )~-conversion. h-conversion is essentially the only rule 

in T that  is not  in first-order logic, but  combined with the richer syntax of formulas in T it makes 

more complex inferences possible. T ,  unlike the Simple Theory of Types,  is a logic that  is not 

extensional; i.e. given two 1-ary predicates P and Q it may be possible to prove Vx (Px =- Qx) 

in T wi thout  being able to prove that  P and Q are equal. 

We are interested in T because it possesses several properties that  make it a suitable basis 

for the kind of programming language tha t  we desire. It provides a mechanism for constructing 

function and predicate terms and for permit t ing variables to range over such constructions, and 

this was our main reason for looking for a higher-order logic. Fur ther  the proof-theory for T 

bears a close resemblance to tha t  of first-order logic; for instance there  is a generalization to 

Herbrand 's  Theorem [Miller, 1983] that  holds for T .  This  proper ty  shall be of importance when 

we consider the task of designing an interpreter for our language. Finally there is a sublogic 

of T tha t  generalizes the definite clauses of first-order logic while preserving several of their 

computat ional  properties.  It is this sublogic that  we examine in the next  section, and that  we 

use later to define our programming language. 

S e c t i o n  3: H i g h e r - O r d e r  D e f i n i t e  C l a u s e s  a n d  t h e i r  P r o p e r t i e s  

We shall henceforth assume that  we have a fixed set K of nonlogical constants. The positive 
Herbrand Universe is identified in this context  to be the set of all the A-normal formulas that  

can be constructed using the nonlogical constants in K and no logical constants  other than true, 
A, V and ]E. We use the symbol ~/+ to denote this set. Proposit ions in this set are of special 

interest to us. We shall use, perhaps with subscripts, the symbol G to denote an arbitrary such 

proposit ion throughout  this paper.  Notice that  the head of such a formula is either a predicate 

constant  or variable or one of the constants true, A, V, and ~. Of these formulas we single out 

those tha t  have nonlogical constants as their  heads. We shall call such formulas atoms, and we 

use the symbol A uniformly to denote an atom. 

A (higher-order) definite clause is defined to be the universal closure of a formula of the form 

G D A, i.e. the  formula V~ (G D A) where ~ is an arbitrary lis~ing of all the  free variables in G and 

A. These clauses are our generalization of the Horn clauses af first-order logic. There are certain 

relationships between these that  should be pointed out.  Firs t-order  Horn clauses are contained 
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in our definite clauses under an implicit encoding. This encoding essentially assigns types to 

the first-order terms and predicates: variables and constants (i.e. 0-ary function symbols) are 

assigned the type  i, function symbols of arity n > 0 are assigned the type i --* . . .  --* i --~ i, with 

n + 1 occurrences of i, and n-ary predicate symbols are assigned the type i --, . . .  --* i --, o, with 

n occurrences of i. Looked at differently, our definite clauses contain wi th in  t h e m  a polymorphic 

many-sor ted version of first-order Horn clauses. The  formula on the left of the D in a higher-order 

definite clause may contain nested disjunctions and existential  connectives. This generalization 

may be dispensed with in the first-order case because of the existence of appropriate  normal 

forms. For the higher-order case, it is more natura l  to retain the embedded disjunctions and 

existential quantifications since substi tut ions have the potent ia l  for reintroducing them. Finally 

A-terms may occur in the higher-order clauses and the quantifications in these clauses may involve 

function and predicate variables. This is a genuine extension provided by our clauses, and is the 

very reason why we study them. 

Parallel to the first-order case, we wish to accord a computa t ional  in terpreta t ion to our 

definite clauses. Let P be a set of definite clauses, and let G have no type variables in it. We want 

to think of P as a program and of G as query or a goal. The computa t ion  involved is then to be 

that  of answering the query. The sense in which the query is to be answered may be made precise 

as follows. Let  us define a subst i tut ion to be a finite sequence of pairs, ~ = ( (x l ,  Q ) , . . . ,  (xn, tn)), 

where the x~'s are distinct variables, and, for each i, t~ is a formula of the same type  as x~; ~ is said 

to be a subst i tut ion for x l , . . . ,  x,~ and its range is the set { t l , . . . ,  t~}. The  application of ~ to a 

formula B ,  wr i t ten  as ~ B ,  is defined to be ,~norm([,~x~ . . .  ,~xn B ] t ~ . . .  tn). Let fl be an arbi t rary 

listing of all the  variables free in G. Now, we want the query G to be answered affirmatively if 

P ~-r 3~ G and we also want an affirmative answer to be accompanied by a subst i tut ion for 

such that  P F-T ~oG. 

The lat ter  may not always be possible if P is any arbi t rary  set of formulas. However, the 

following theorem assures us that  it is indeed possible for a collection of definite clauses. Here 

and in the rest of the paper we reserve the terms pos/t/ve subst i tut ion for one whose range is a 

subset of ~ + ,  and closed substi tut ion for one whose range consists of closed formulas.  We also 

use the symbol P uniformly to denote a (possibly empty) set of  definite clauses, and we write [P] 

to denote the set of formulas of the form ~o(G D A) where V~ (G D A) is a type instance of a 

formula of P which contains no free type variables, and ~o is a positive,  closed subst i tut ion for ~. 

T h e o r e m  1: Let  G E ~+  be a closed proposit ion tha t  has no type variables in it. Then  the 
following are true: 

(1) If G is G1 A G2 then P I-1" G if and only if P FT G1 and P FT G2. 

(2) If G is G1 V G2 then P F r G if and only if P F ' r  G1 or P FT G2. 

(3) If G is ~ B then P FT G if and only if there is a closed formula t E ~'+ such that  

P ~-r ~norrn(Bt) .  

(4) If G is an a tom then  P F- r G if and only if there is a formula G~ D G E [P] such that  

P FT G1. 

The  proof  of this and the other theorems in this paper  may be obtained from the results in 

[Miller and Nadathur ,  1986]. As a consequence of this theorem we may a t t r ibu te  a procedural  

in terpreta t ion to a clause. Consider the  definite clause V~(G D A). G may ei ther be true or 

a compound  formula containing conjunctions,  disjunctions, and existential  quantifiers. If G is 

true, then the clause is logically equivalent to V~A, and is to be interpreted as a fact. Otherwise 
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we interpret  it as a procedure declaration, where the non-logical head of A is the name of the 

procedure being defined, and G is the procedure body which is to be used to compute  it. Note 

tha t  by vir tue of this theorem we need only consider posit ive subst i tut ions in order to establish a 

goal f rom a set of definite clauses. This fact, in conjunction with the observation that  a positive 

subst i tut ion when applied to an element in h '+ produces another  element  in ~/+, enables us to 

define, even in the presence of predicate variables, a theorem-prover  for this sublogic that  is based 

on this procedural  interpretat ion of clauses. We shall consider such a theorem-prover  shortly. 

It is possible to explicate the meaning of a set of definite clauses in a more direct manner  

by associating with  it a set of atoms. The idea is similar to that  used in the first-order case (see 

[Apt and van Emden,  1982] and [van Emden and Kowalski, 1976]) and may be made precise in 

the following manner .  Let us define an interpretation to be any set of closed atoms in which no 

type variables occur. Relative to an interpretat ion I we may define a derivation sequence to be a 

finite sequence Go, G I , . .  •, G~ of closed propositions in ~/+ in which no type variables occur and 

for each i _< n, 

(1) a~ is true, or 

(2) Gi is an a tom and Gi A-converts to some member  of I ,  or 

(3) a l  is G~ V a~ and there is a j < i such that  G i is C~ or a i is C~, or 

(4) Gi is G~ A G~ and there are j , k  < i such that  G j  is G~ and Gk is G~, or 

(5) G~ is EG and there is a closed formula t E ~'+ and a j < i such that  G~. is Anorm(Gt). 
If G is the last element of such a sequence, we say that  I satisfies G and we denote this relation 
by _/" ~ :  a .  

Given a set of definite clauses P,  we associate with it a mapping T;0 from interpretations 

to interpretat ions which is such that  A E Tp(I) if and only if there is a formula G D A E [P] 

such tha t  I ~ :  G. It is not difficult to see that  Tp is monotone and continuous on the set of all 

interpretat ions.  Tp therefore has a least fixed point which is given by T~ ° (0) : U,~°°__ 0 T~(0). It is 

this subset of ~+  tha t  we think of as being determined by P,  and we call it the denotation of v .  

The computa t ion  tha t  is involved in answering a query G may be viewed as that  of determining 

whether  there is a closed subst i tut ion instance of G that  is satisfied in the denotat ion of P. The 

consistency of this view with the earlier operational  view is the content  of the following theorem: 

T h e o r e m  2: Let G be a closed formula with no type variables. Then  T~° (0) ~ :  G if and only if 

P F T G .  

S e c t i o n  4: T h e  A P r o l o g  l a n g u a g e  

Our programming language, AProlog, is based on higher-order definite clauses. Since their 

underlying logics are similar, we find it convenient to adopt several features of the syntax of 

Prolog in AProlog. Symbols tha t  begin with capital  letters, both  in clause definitions and in type 

definitions, are t reated as variables. All other  symbols represent constants.  The  symbols ,, ;, and 

• - are used for A, V and D respectively, and clauses are wri t ten  backwards. Variables occuring 

in clauses are assumed to be implicitly universally quantified. 

There are, however, a few differences. We need to represent A-terms and the symbol \ is 

reserved for this purpose: AX A is wri t ten in AProlog as X \ A. The constant  s igma is reserved for 

E. A curried nota t ion is adopted since it is especially convenient in our context,  and application is 

represented by juxtaposi t ion.  Types must be associated with every (term) constant and variable 

and this is achieved via a type declaration that  has the format  t y p e  t o k e n  l o g i c a l  type .  
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We have found it useful to organise declarations into modules and have introduced this notion 

as a structuring concept in AProlog. Modules are, in our context, named environments within 
which operator and type declarations may be associated with tokens, and defining clauses may 
be presented for predicate constants. The following is an illustration of this structure: 

module tiny. 

op 258 xfx :-. 

op 40 xfx =. 

type :- o -> o -> o. 

type = A -> A -> o. 

onep X :- X = I. 

identity_fun F :- (X\ X) = F. 

Operator declarations override the default prefix application precedence, and are similar to those 
in Prolog: op 225 xfx : -  corresponds to op(225,xfx,:-) in Decl0 Prolog syntax. Type and 
operator declarations are considered attributes of a module and are not side effects. In general, 
very little type information needs to be given, since most of it can be inferred from the context. 

The rules for inferring types are essentially those used in ML [Milner, 1978]. In performing such 
an inference, we assume that all occurrences of a bound variable within the scope of its abstraction 
and all occurrences of a constant in a module have the same type. As an instance of such a type 
determination, the types of the constants onep and i d e n t i t y _ f u n  can be inferred to be i n t  -> o 
and (A -> A) -> o, respectively. Our module parser is able to perform such a type determination, 
and in this case it assumes that these are also part of the type declarations in the module. The 
module t i n y  also associates defining clauses with the predicates onep and i d e n t i t y _ f u n .  This 
module, thus, defines eight associations: two operator specifications, four type declarations (two 

explicit, two inferred), and two predicates with their definite clauses. 

A module may also import several other modules. The effect of this operation is to make 
available the operator and type declarations and the definite clauses of the imported modules in 

the module being defined. The precise logical characterization of this operation with regard to 

the clauses depends on an assimilation of implication into the body of definite clauses, and an 
attempt in this direction may be found in [Miller, 1986]. 

We assume, in the rest of this section, that the module b a s i c s  contains all type and operator 

declarations for many standard Prolog logical constructions. The following module, which imports 
basics, then provides an illustration in AProlog of some standard list manipulation programs. 

module &ists. 

import basics. 

type cons A -> (list A) -> (list A). 

type nil (list A). 

append nil K K. 

append (cons X L) K (cons X M) :- append L K M. 

memb X (cons X L). 

memb X (cons Y L) :- memb X L. 

member X (cons X L) :- !. 

member X (cons Y L) :- member X L. 
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Here, cut (!) is intended to have the same operational meaning as it does in Prolog, i.e. it removes 
all backtracking points. The following type information is inferred and is also assumed to be a 
part of this module's definition. 

type append (llst A) -> (llst A) -> (list A) -> o. 

type memb (llst A) -> (llst A) -> o. 

type member (list A) -> (list A) -> o. 

One ofthe novelties of AProlog is the provision of predicate variables. The followingmodule 

offers an illustration ofthis facet: 

module age. 

import basics lists. 

type age i -> int -> o. 

type have_property (A -> o) -> (list A) -> (list A) -> o. 

have_property P (cons X L) (cons X K) :- P X. have_property P L K. 

have_property P (cons X L) K :- have_property P L K. 

have_property P nll nil. 

mappred P (cone X L) (cons Y K) :- P X Y. mappred P L K. 

mappred P nil nil. 

have_age L K :- have_property (Z\(eigma X\(age Z X))) L K. 

same_age L K :- have_property (Z\(age Z A)) L K. 

age sue 24. 

age bob 23. 

This module defines the predicate have_proper ty  whose first argument must be a predicate and 
is such that (have_property P L K) is true if K is some sublist of L and all the members in K 
satisfy the property expressed by the predicate P. Using have proper ty  the predicate h a v e a g e  

is defined such that (have_age L K) is true if K is a sublist of the objects in L which have an age. 

Notice that there is an explicit quantifier imbedded in the predicate used to define have_age. 
The predicate (Z\(eigma X\(age Z X))),  which may be written in logic as Az3x age(z,x), is 
true of an individual if that individual has an age. The predicate same_age whose definition is 

obtained by dropping that quantifier defines a slightly different property; (same age L K) is true 

only when the objects in K have, in addition, the same age. 

In the cases considered above, predicate variables that appeared as the heads of goals were 
fully instantiated before the goal was invoked. This kind of use of predicate variables is similar 
to the use of apply and lambda terms in Lisp; the A-contraction followed by the goal invocation 

essentially simulates the apply operation. However, the variable head of a goal need not always 
be fully instantiated, and in such cases there is a question concerning what substitution should 
be returned. Consider for example the query (P bob 23). One value that may be returned for P 
is X\Y\ (age X Y). But there are many more substitutions which also satisfy this goal; XkY\ (X = 

bob, Y = 23), X\Y\(Y = 23), X\Y\(age sue 24), etc. are all terms that could also be picked. 

Clearly there are too many such substitutions to pick from and then backtrack over. Our 

decision is to use only the substitution that corresponds to the largest "extension" in such cases; 

in the above case, for example, the term X\Y\true would be picked. It is possible to make such 

a choice without adding to the incompleteness of an interpreter, and we comment on this issue 

in Section 5. For the moment we note that this decision does not trivialize the use of predicate 
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variables. Assume for instance that a predicate concept of type ( i  -> o) -> o has been defined. 
Then the query concept P, P t would still be a meaningful one. This query would entail looking 
for a predicate term which is a concept, and then asking if t is in its extension. 

As we noted, the addition of predicate variables is a little like adding Lisp's notions of 
apply and lambda expressions to Prolog. The additions of function variables and higher-order 
unification, however, are in an entirely new direction. Consider adding the following definite 
clauses at the the end of the module l i s t s .  

• mapfun F (cons X L) (cons (F X) K) :- mapfun F L K. 

mapfun F nil nil. 

The type for mapfun would be inferred to be (A -> B) -> (list A) -> (list B) -> o. Given 

the goal (mapfun (X\(g X X)) (cons a (cons b nil)) L), our interpreter would return the 

list (cons (g a a) (cons (g b b) nil)) as the answer substitution for L. In other words, if the 

first two arguments are instantiated then the list that results from applying the first argument 

to each element of the second would be returned as the value of the third argument. Notice that 

mapping a function over a list is quite different from mapping a predicate over a list as in the 

mappred procedure defined earlier. In the latter case the idea of applying a predicate, say P, to an 

argument, say X, entails creating a new goal - the ),-normal form of (P X Y) for some variable Y. 

The value placed in the list is an instance of Y that enables this goal to be derived. In mapping a 
function over a list, no new goals are constructed. The function is simply applied to the argument 

and the resulting ,~-normal form is the value entered into the list. Since mapping a function is 
weaker than mapping a predicate, the problem of discovering functions which successfully map a 
list into another list is better defined and does not always permit trivial solutions. For example, 
consider the goal, 

(mapfun F (cons a (cons b n i l )}  (cons (g a a) (cons (g a b) n i l ) ) ) .  

Here there is exactly one substitution for F which satisfies this goal, namely F gets X\ (g a X). 

Notice that backtracking may occur on unifying substitutions as well. In searching for an answer 
substitution a depth-first interpreter would first consider unifying (F a) with (g a a). There 
are four possible substitutions for F that are unifiers: 

x\(g x x) x\(g a x) x\(g x a) x\(g a a). 

If any of these other than the second is picked, the interpreter would fail in matching (F b) with 

(g a b),  and would therefore have to backtrack. 
)`-terms obviously provide much richer data structures than those afforded by simple first- 

order terms, and there are situations in which this richness in )`Prolog can be exploited. Examples 
of its use in the realms of knowledge representation and natural language semantics may he found 
in [Miller and Nadathur, 1985] and [D. S. Warren, 1983]. Another realm in which it is useful is 

that of program transformations. [Huet and Lang, 1978] indicates how program transformation 
algorithms may be written rather directly by encoding program structures using )`-terms, and 

then using higher-order unification. The following module presents a program that may be used 

to do the unfolding transformation. 
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type if (env -> bool) -> A -> A -> A. 

type while (env -> boo1) -> (env -> env) -> (env -> env). 

type unfold (A -> (env -> env)) -> (A -> (env -> env)) -> o. 

unfold (X\(while (Cond X) (Pros X))) 

(X\(if (Cond X) 

(E\(while (Cond X) (Pros X) (Pros X E))) 

(F\F))). 

The predicate u n f o l d  can be used to expand a whi le - loop  into an i f  construction. Consider the 

goal, 

unfold (W\(while (lesethan W 10) (advance W i))) Q. 

The unique solution to this goal returns the following subst i tut ion for Q that  is computed entirely 

within the unification process. 

W\(if (lessthan W 10) E\(while (lessthan W i0) (advance W 1) (advance W I E)) F\F) 

The clause defining unfold is used with the variables Cond and Prog bound to W\(lessthan W 

10) and U\(advance U I) respectively in this computation. 

The provision of polymorphic types and function types adds an interesting complexity to the 

language. Consider the following module. 

module interpreter. 

import basics lists. 

interp H true. 

interp H (GI, G2) :- interp H GI, interp H G2. 

interp H (GI; G2) :- interp H GI; interp H G2. 

interp H (sigma G) :- interp H (G X). 

interp H A :- memb Clause H, instan Clause (A :- G), interp H G. 

instan (pi B) C :- instan (B X) C. 

instan C C. 

Here, i n t e r p  is a two place predicate.  If Ce is a list of closed definite clauses and G is a goal then 

( i n t e r p  Ca G) succeeds if and only if there is a proof of an instance of G from the clauses in Cs. 

This program consti tutes an interpreter  for that  subset of AProlog in which type variables are 

not  permi t ted  in definite clauses. In the first clause of i n s t a n ,  the variable B has type A -> o 

for some type variable A. When this clause is invoked, this type variable must be instantiated. A 

value for that  type variable may only be obtained by examining the te rm with which it is getting 

unified. In other  words, this is a case where a function type needs to be determined dynamically. 

When i n s t a n  is called from i n t e r p  there is a fully instant iated te rm in its second argument,  so 

this does not  consti tute a problem. It may, however, be the case tha t  when a type  variable needs 

to be determined at runt ime the te rm that  needs to be examined is not instant iated in such a way 

as to provide an actual type. This would happen,  for example,  if i n s t a n  is invoked with only its 

second argument  instantiated.  Such a si tuation may cause a problem for the interpreter,  and we 

discuss it further in the next section. 

S e c t i o n  5: A n  A b s t r a c t  I n t e r p r e t e r  f o r  D e f i n i t e  C l a u s e s  

We now desire a mechanism for finding proofs in T for a goal of the form 3~G from a set 

of definite clauses P. In its abstract  description we expect  such a mechanism to be complete, 
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i.e. it should re turn a positive answer whenever a derivation does exist. Fur thermore,  whenever 

it provides a positive answer, it should also provide a subst i tut ion ~ for • such that  P F-~- ~G.  

The structure of such a mechanism is easily obtained from Theorem 1 in Section 3. However we 

desire to describe it at a sufficient level of detail  so tha t  it may form the basis of an interpreter 

for ),Prolog. In order to do so we need to consider briefly the problem of unifying typed ),-terms. 

Let us call a pair  of terms of the same type a disagreement pair. A disagreement set is a 

finite set {( t l ,  s l ) , . . . ,  (t,~, a,~)} of disagreement pairs, and a unifier for this disagreement set is a 

subst i tut ion 9 such that ,  for each i < n, 8t~ is ),-convertible to 8si. The higher-order unification 
problem is the problem of determining whether  a disagreement set can be unified and, when it 

can be, of providing a unifier for it. We note that  in the general case the question of existence 

of unifiers is only undecidable [Goldfarb, 1981]. Also, when unifiers do exist, there may not be a 

most general unifier. Nevertheless, a systematic search can be made for unifiers which succeeds 

in discovering them whenever  they exist. We outline, with a small modification, the procedure in 

[Huet, 1975] which conducts such a search. 

Certain disagreement sets, called solved sets here, have trivial unifiers (al though computing 

all their unifiers can be quite hard). Certain other  disagreement sets, ca l l ed /a i l ed  sets here, are 

easily seen to have no unifiers. The search for a unifier proceeds by a t tempt ing  to reduce a given 

disagreement set to either a solved set or a failed set. Central  to this process are the operations 

SIMPL,  T R I V  and MATCH.  SIMPL a t tempts  to simplify a disagreement set by looking at pairs 

of terms whose heads cannot be changed by substi tutions.  It either decides tha t  the terms of at 

least one such pair cannot be unified, or reduces the question of unification of the terms of each 

such pair to that  of the unification of their  arguments.  In the first-order case, this corresponds 

to descending through the pair of terms simultaneously so long as no variables are encountered 

and the t e rm structures are identical at the top. Given a disagreement set P, S IMPL returns the 

marker  jr if it has determined that  P has no unifiers, or it produces a simplified disagreement 

set P '  that  has the same set of unifiers as P. If P~ is not  a solved set then substi tutions are 

necessary to continue the reduction process. T R I V  examines a simplified disagreement set and 

returns the set of pairs in it of the form (x,t  I where x is a variable and t is a t e rm in which 

x does not  appear  free. (An implementat ion of T R I V  may, of course, drop this %ccur-check" 

condition, t rading soundness with efficiency.) If there are such pairs, then  any one of them may 

be used as a subst i tut ion to simplify the disagreement set further.  SIMPL and T R I V  are used 

repeatedly till ei ther the set has been successfully reduced to a solved or failed set, or no further 

simplifications are possible. In the lat ter  case strictly higher-order considerations are needed to 

carry the search process forward. This is the domain of the M A T C H  procedure.  When MATCH 

is applied to a simplified disagreement set, it first picks a pair in the set and then produces a 

finite set of substi tut ions that  help in unifying tha t  disagreement pair. M A T C H  is therefore a 

non-determinist ic  function, since the value it returns depends of the choice of disagreement pair. 

We do not describe the s tructure of MATCH here due to a lack of space. 

We may now define a not ion of derivation relative to a set of definite clauses P .  Let us use, 

perhaps wi th  subscripts,  the symbols .~ to denote a finite subset of ~ + ,  l) to denote a disagreement 

set and 0 to denote a substi tution.  Then the triple (.~2,/)2,02) is said to be P-derived from the 

triple (~61, /)1, 81) if the former is obtained from the lat ter  by one of the following steps; in this 

definition, we say that  a variable is new if it is does not occur free in any of the formulas that  

appear  in (~1, /)1, 01). 
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C1) Goal reduction and backchaining steps: Let G be some member  of 9 and let ,~' be the result 

of  removing that  occurrence of G from 9.  In the first four cases below, set /)2 :=  Pl and 

02 :=  0. We refer to the first five cases as goal reduction steps and the last one as the 

backchaining step. 

Ca) If G is true, then ,~2 :=  ~l.  

(b) If G is G1 ^ G2 then 92 :=  {G1, Gp} U 9 ' -  

(c) If G is G1 V Gp, then ~2 :=  {G1) U ~ '  or 92 :=  {Gp} U 9 ' .  

(d) If G is ~ B ,  then ~2 :=  {)~norrn(By)) U ~ '  for some new variable y. 

(e) If G has a variable, y of type a l  --~ . . .  --~ at, --~ o, as its head, then set 02 := {(y, 

)~xl ...Ax,drue)}, 92 :=  029' ,  and l)2 := SIMPL(02Pl) .  Here, the type of xi is a~, for 

i = l . . . , n .  
(f) Otherwise,  G has a nonlogical constant  as its head. Let ~'~ (G' D A) be a type variable 

free, type-instance of a clause in P. Set 02 :=  0, ~2 :=  ( G  t} t.J ~ ,  and /)2 := D1 U 

S1MPL({(G,A)}) .  Here we assume that  the variables ~ are new. 

(2) Unification step: If/)1 is neither ~r nor a solved set, then we either apply T R I V  or MATCH. 

(a) If TRIV(/ ) I )  ~ ~ then for any a E TRIV(/ ) I )  set 82 :=  a, 92 := a ~ l  and P2 := 
SIMPL(aD1). 

(b) Let ® be some value re turned for MATCH(D1). If O is empty, then D1 is recognized as 

a failed set. In this case, set 92 :-- 91, / )2 := Y', and 8 := 0. Otherwise,  pick a E O, and 

set 02 :=  a,  92 :=  a91 and/)2  :=  SIMPL(a/)I). 
A sequence (gl,/)i,0i)i_<~ in which, for each i < n, (9i+1,Pi+1,0~+1) is P-derived from 

(~i,  D¢, 0i), is called a P-derivation sequence. In addition, if Do = ~, 00 = 0 and 90 = (G} then 

the sequence is said to be a P-derivat ion sequence for G. Notice that  sequences for which ~,~ = 0 

and/)~, is either a solved set or .T, cannot be extended. If 9~ -- 0 and /),~ is a solved set, we say 

tha t  that  P-derivat ion of G is a proof o/G from P, and tha t  the subst i tut ion 0,~ o . . .  o ~1 is its 

answer substitution. The following theorem establishes the soundness and completeness for this 
notion of proof. 

T h e o r e m  3: Let 3~G be a closed goal formula which contains no type variables. P ~-T 3~G if 

and only if there is a P-derivat ion sequence which is a proof of G from P.  In the la t ter  case, if 0 is 

the answer subst i tut ion for the sequence and er is a unifier for the final solved set, then P F't" G ~ 

for every ground instance G ~ of a o 0 G. 

Notice that  if P and G are essentially first-order, the final solved set of a proof  of G from 7 

is always empty, so a can be taken to be the empty substi tution.  In this case, the notion of an 

answer subst i tut ion coincides with the usual (first-order) definition. 

The  mechanism that  we desired at the beginning of this section may be described as one 

tha t  s tarts  with the triple ({G}, 0, 0) and performs an exhaust ive search for a proof  of G from P. 

There are several choices in extending a derivation sequence, but  most  of these are inconsequen- 

tial. A complete procedure may for instance choose to do any one of the unificatlon steps or a 

backchaining step or one of the goal reduction steps l (a ) - l (d ) .  Within  the unification step 2(b), 

however, the choice of subst i tut ion may be critical. A similar observation applies to the choice of 
clause in l ( f ) .  

In construct ing an interpreter  for AProlog, it appears inappropriate  to per form a breadth-first 

search even where necessary, and trade-offs need to be made between completeness and practi- 

cality. We have designed an interpreter  that  performs a depth-first  search with backtracking that 
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is similar to the one standard Prolog interpreters perform: It always chooses to do a unification 

step, applying TRIV, whenever possible. When a choice of goal has to be made it picks the first 

in the list. In determining a clause to use (l(f)), it picks the first appropriate one in a predeter- 

mined ordering. However there are a few points peculiar to our language that bear mentioning: 

(1) Before using l(e) to solve a goal with a variable, y, as its head it is necessary for completeness 

to check that y does not appear free in an argument of any of the other goals or in the associated 

disagreement set. Our interpreter does not perform such a check, preferring instead not to reorder 

goals in the goal list. (2) Even after a clause has been chosen in l(f), it is still necessary to choose 

a type instance of it. Our solution to this problem is to permit type variables in goals and to 

delay their determination until term unification. SIMPL and TRIV can be easily modified to 

deal with such variables, but there are problems in adapting MATCH to deal with type variables 

that need to be instantiated to function types. When it encounters such a case, our interpreter 

gives up and indicates a run-time error. A better analysis of this problem is clearly necessary, 

and must be based on a stronger formalization of type quantification. (3) Choices may have 

to be made in the unification step, and backtracking points need to be maintained for these as 

well. Our interpreter saves such points and can backtrack over them. We have implemented no 

control primitives for the unification search process. Although such controls will most certainly 

be necessary for various kinds of programs, we have been successful at running many ~Prolog 

programs which make non-trivial uses of higher-order unification without such controls. 

There are several other issues pertaining to the interpreter that need to be discussed, but we 

omit these here due to a limitation on space. 

Sec t i o n  6: Conc lus ions  

In this paper we have investigated the issue of introducing higher-order objects into a logic 

programming language. Toward this end we have used a higher-order logic to generalize the 

first-order Horn clauses. Our theoretical results show that this generalisation preserves certain 

important computational properties. We have described a programming language that is based 

on these results, and we have also outlined an interpreter for this language. Our current imple- 

mentation of an interpreter was not designed with efficiency in mind. We are now investigating 

the design of an abstract machine to support a more efficient implementation. 

The language that we have presented here gives first-class logical status to typed ~,-terms of 

all types, and this constitutes a considerable enrichment to the data structures of Prolog. This 

enrichment brings with it a cost, viz a branching in unification, that at first sight may appear 

prohibitive. However, there are certain points to be noted. First of all, branching occurs only 

in cases that involve genuinely higher-order unification, and in these cases the cost may not 

be unacceptable. Moreover there are several uses of A-terms where the unification involves no 

branching at all. Examples in this category include all the uses of Lisp-like features described in [D. 

H. Warren, 1982] and situations where the A-terms are used solely for the purpose of performing 

computations through reductions. In cases like these the language described here provides a 

clear and theoretically well-understood implementation. Finally, our preliminary investigations 

indicate that an interpreter for AProlog may be written in such a way that it performs very 

efficiently for the first-order fragment without jeopardizing its ability to deal with higher-order 

terms. If this is indeed true, then the new additions to the language would be achieved in a 

manner that is strictly conservative. 
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