
Linear Logic Using Negative Connectives

Dale Miller

Inria Saclay & LIX,
Institut Polytechnique de Paris
Partout Team

FSCD 2025
15-18 July 2025
Birmingham, UK

Art by Nadia Miller

1 / 23

https://nadiaamiller.wixsite.com/website

Invertibility

A rule is invertible if whenever the conclusion is provable, the
premises are provable.

Γ,B ⊢ C

Γ ⊢ B ⊃ C

Γ,B ⊢ E Γ,C ⊢ E

Γ,B ∨ C ⊢ E

Invertibility is an important property of inference rules to observe.

▶ When searching for proofs, invertible rules yield don’t-care
non-determinism (no backtracking needed).

▶ Gentzen never considered this property in his publications.

▶ Ketonen [1944] recognized its importance and restructured
Gentzen’s LK calculus around invertible rules.

▶ The popular G3 sequent calculus proof system is designed to
maximize the presence of invertible rules.

2 / 23

Polarity

A logical connective is

▶ negative if its right-introduction rule is invertible.

▶ positive if its left-introduction rule is invertible.

This classification can be ambiguous (a connective can be both
positive and negative) or partial (a connective might not be either).

Two striking facts about linear logic.

▶ This classification is unambiguous and total.

Negative Positive
⊥, `, ⊤, &, ∀, ? 1, ⊗, 0, ⊕, ∃, !

▶ De Morgan duality flips polarity.

3 / 23

Polarity

A logical connective is

▶ negative if its right-introduction rule is invertible.

▶ positive if its left-introduction rule is invertible.

This classification can be ambiguous (a connective can be both
positive and negative) or partial (a connective might not be either).

Two striking facts about linear logic.

▶ This classification is unambiguous and total.

Negative Positive
⊥, `, ⊤, &, ∀, ? 1, ⊗, 0, ⊕, ∃, !

▶ De Morgan duality flips polarity.

3 / 23

Polarity and focused proofs

Focused proofs organize proofs into two phases.

▶ the invertible or negative phase

▶ the non-invertible or positive phase

Uniform proofs [LICS 1987] used goal reduction and backward
chaining as two phases (for a subset of intuitionistic logic).

Andreoli [JLC 1992] provided the first comprehensive focused proof
system by using polarization and working with linear logic.

Focused proof systems for classical and intuitionistic logics.

▶ LKT, LKQ: Danos, Joinet, and Schellinx [1993]

▶ LJT, LJQ: Heberlin’s PhD [1995]

▶ LJF, LKF: Liang & M [CSL 2007]: generalizes the others

4 / 23

Polarity and focused proofs

Focused proofs organize proofs into two phases.

▶ the invertible or negative phase

▶ the non-invertible or positive phase

Uniform proofs [LICS 1987] used goal reduction and backward
chaining as two phases (for a subset of intuitionistic logic).

Andreoli [JLC 1992] provided the first comprehensive focused proof
system by using polarization and working with linear logic.

Focused proof systems for classical and intuitionistic logics.

▶ LKT, LKQ: Danos, Joinet, and Schellinx [1993]

▶ LJT, LJQ: Heberlin’s PhD [1995]

▶ LJF, LKF: Liang & M [CSL 2007]: generalizes the others

4 / 23

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search).
Left-introduction rules are not invertible (backward chaining rules).

▶ L0 = {⊤,&,⇒,∀} captures the core of intuitionistic logic.

▶ L1 = L0 ∪ {⊸} corresponds to a linear intuitionistic logic.

▶ L2 = L1 ∪ {⊥,`} is a complete set for linear logic.

0 ≡ ⊤ ⊸ ⊥ B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥
1 ≡ ⊥ ⊸ ⊥ B ⊗ C ≡ (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥

?B ≡ (B ⊸ ⊥) ⇒ ⊥ !B ≡ (B ⇒ ⊥) ⊸ ⊥
∃x .B ≡ (∀x .B ⊸ ⊥) ⊸ ⊥

The ` connective is redundant: B ` C ≡ (B ⊸ ⊥) ⊸ C .

5 / 23

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search).
Left-introduction rules are not invertible (backward chaining rules).

▶ L0 = {⊤,&,⇒,∀} captures the core of intuitionistic logic.

▶ L1 = L0 ∪ {⊸} corresponds to a linear intuitionistic logic.

▶ L2 = L1 ∪ {⊥,`} is a complete set for linear logic.

0 ≡ ⊤ ⊸ ⊥ B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥
1 ≡ ⊥ ⊸ ⊥ B ⊗ C ≡ (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥

?B ≡ (B ⊸ ⊥) ⇒ ⊥ !B ≡ (B ⇒ ⊥) ⊸ ⊥
∃x .B ≡ (∀x .B ⊸ ⊥) ⊸ ⊥

The ` connective is redundant: B ` C ≡ (B ⊸ ⊥) ⊸ C .

5 / 23

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search).
Left-introduction rules are not invertible (backward chaining rules).

▶ L0 = {⊤,&,⇒,∀} captures the core of intuitionistic logic.

▶ L1 = L0 ∪ {⊸} corresponds to a linear intuitionistic logic.

▶ L2 = L1 ∪ {⊥,`} is a complete set for linear logic.

0 ≡ ⊤ ⊸ ⊥ B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥
1 ≡ ⊥ ⊸ ⊥ B ⊗ C ≡ (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥

?B ≡ (B ⊸ ⊥) ⇒ ⊥ !B ≡ (B ⇒ ⊥) ⊸ ⊥
∃x .B ≡ (∀x .B ⊸ ⊥) ⊸ ⊥

The ` connective is redundant: B ` C ≡ (B ⊸ ⊥) ⊸ C .

5 / 23

The focused proof system ⇓L0

Ψ ⊢ ⊤
⊤R

Ψ ⊢ B Ψ ⊢ C

Ψ ⊢ B & C
&R

B,Ψ ⊢ C

Ψ ⊢ B ⇒ C
⇒R

Ψ,B ⇓ B ⊢ A

Ψ,B ⊢ A
decide ! (A is atomic)

Ψ ⇓ A ⊢ A
init

Ψ ⊢ B Ψ ⇓ C ⊢ A

Ψ ⇓ B ⇒ C ⊢ A
⇒L

Ψ ⇓ Bi ⊢ A

Ψ ⇓ B1 & B2 ⊢ A
&Li

6 / 23

The focused proof system ⇓L0

Ψ ⊢ ⊤
⊤R

Ψ ⊢ B Ψ ⊢ C

Ψ ⊢ B & C
&R

B,Ψ ⊢ C

Ψ ⊢ B ⇒ C
⇒R

Ψ,B ⇓ B ⊢ A

Ψ,B ⊢ A
decide ! (A is atomic)

Ψ ⇓ A ⊢ A
init

Ψ ⊢ B Ψ ⇓ C ⊢ A

Ψ ⇓ B ⇒ C ⊢ A
⇒L

Ψ ⇓ Bi ⊢ A

Ψ ⇓ B1 & B2 ⊢ A
&Li

6 / 23

The focused proof system ⇓L0

Ψ ⊢ ⊤
⊤R

Ψ ⊢ B Ψ ⊢ C

Ψ ⊢ B & C
&R

B,Ψ ⊢ C

Ψ ⊢ B ⇒ C
⇒R

Ψ,B ⇓ B ⊢ A

Ψ,B ⊢ A
decide ! (A is atomic)

Ψ ⇓ A ⊢ A
init

Ψ ⊢ B Ψ ⇓ C ⊢ A

Ψ ⇓ B ⇒ C ⊢ A
⇒L

Ψ ⇓ Bi ⊢ A

Ψ ⇓ B1 & B2 ⊢ A
&Li

6 / 23

The focused proof system ⇓L0

Ψ ⊢ ⊤
⊤R

Ψ ⊢ B Ψ ⊢ C

Ψ ⊢ B & C
&R

B,Ψ ⊢ C

Ψ ⊢ B ⇒ C
⇒R

Ψ,B ⇓ B ⊢ A

Ψ,B ⊢ A
decide ! (A is atomic)

Ψ ⇓ A ⊢ A
init

Ψ ⊢ B Ψ ⇓ C ⊢ A

Ψ ⇓ B ⇒ C ⊢ A
⇒L

Ψ ⇓ Bi ⊢ A

Ψ ⇓ B1 & B2 ⊢ A
&Li

6 / 23

βη-long normal form of simply typed λ-terms

To account for simply typed λ-terms, ignore ⊤, &, and ∀.
Think of Ψ as a typing context and assume that

h : β1 ⇒ · · · ⇒ βm ⇒ β0 ∈ Ψ,

where β0 atomic.

Ψ, ᾱ ⊢ t1 : β1 · · · Ψ, ᾱ ⊢ tm : βm

(α0 = β0)

Ψ, ᾱ ⇓ β0 ⊢ α0

Ψ, x̄ : ᾱ ⇓ h : β1 ⇒ · · · ⇒ βm ⇒ β0 ⊢ ht̄ : α0
⇒L∗

Ψ, x1 : α1, . . . , x1 : αn ⊢ ht̄ : α0
decide !

Ψ ⊢ λx̄ .ht̄ : α1 ⇒ · · · ⇒ αn ⇒ α0
⇒R∗

7 / 23

The focused proof system ⇓L1

We add a new linear zone to sequents.

Ψ; Γ ⊢ ⊤
Ψ; Γ ⊢ B Ψ; Γ ⊢ C

Ψ; Γ ⊢ B & C

Ψ;B, Γ ⊢ C

Ψ; Γ ⊢ B ⊸ C

B,Ψ; Γ ⊢ C

Ψ; Γ ⊢ B ⇒ C

Ψ,B; Γ ⇓ B ⊢ A

Ψ,B; Γ ⊢ A

Ψ; Γ ⇓ B ⊢ A

Ψ; Γ,B ⊢ A Ψ; · ⇓ A ⊢ A

Ψ; · ⊢ B Ψ; Γ ⇓ C ⊢ A

Ψ; Γ ⇓ B ⇒ C ⊢ A

Ψ; Γ1 ⊢ B Ψ; Γ2 ⇓ C ⊢ A

Ψ; Γ1, Γ2 ⇓ B ⊸ C ⊢ A

Ψ; Γ ⇓ Bi ⊢ A

Ψ; Γ ⇓ B1 & B2 ⊢ A
8 / 23

The focused proof system ⇓L1

We add a new linear zone to sequents.

Ψ; Γ ⊢ ⊤
Ψ; Γ ⊢ B Ψ; Γ ⊢ C

Ψ; Γ ⊢ B & C

Ψ;B, Γ ⊢ C

Ψ; Γ ⊢ B ⊸ C

B,Ψ; Γ ⊢ C

Ψ; Γ ⊢ B ⇒ C

Ψ,B; Γ ⇓ B ⊢ A

Ψ,B; Γ ⊢ A

Ψ; Γ ⇓ B ⊢ A

Ψ; Γ,B ⊢ A Ψ; · ⇓ A ⊢ A

Ψ; · ⊢ B Ψ; Γ ⇓ C ⊢ A

Ψ; Γ ⇓ B ⇒ C ⊢ A

Ψ; Γ1 ⊢ B Ψ; Γ2 ⇓ C ⊢ A

Ψ; Γ1, Γ2 ⇓ B ⊸ C ⊢ A

Ψ; Γ ⇓ Bi ⊢ A

Ψ; Γ ⇓ B1 & B2 ⊢ A
8 / 23

The focused proof system ⇓L1

We add a new linear zone to sequents.

Ψ; Γ ⊢ ⊤
Ψ; Γ ⊢ B Ψ; Γ ⊢ C

Ψ; Γ ⊢ B & C

Ψ;B, Γ ⊢ C

Ψ; Γ ⊢ B ⊸ C

B,Ψ; Γ ⊢ C

Ψ; Γ ⊢ B ⇒ C

Ψ,B; Γ ⇓ B ⊢ A

Ψ,B; Γ ⊢ A

Ψ; Γ ⇓ B ⊢ A

Ψ; Γ,B ⊢ A Ψ; · ⇓ A ⊢ A

Ψ; · ⊢ B Ψ; Γ ⇓ C ⊢ A

Ψ; Γ ⇓ B ⇒ C ⊢ A

Ψ; Γ1 ⊢ B Ψ; Γ2 ⇓ C ⊢ A

Ψ; Γ1, Γ2 ⇓ B ⊸ C ⊢ A

Ψ; Γ ⇓ Bi ⊢ A

Ψ; Γ ⇓ B1 & B2 ⊢ A
8 / 23

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ; Γ ⊢ A, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

· · ·

Ψ1; Γ1 ⊢ A1 · · · Ψn; Γn ⊢ An

...

right rules

· · ·

Ψ; Γ′ ⇓ B ⊢ A
left rules

Ψ; Γ ⊢ A
decide

Cut elimination holds automatically for synthetic rules.

9 / 23

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ; Γ ⊢ A, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

· · ·

Ψ1; Γ1 ⊢ A1 · · · Ψn; Γn ⊢ An

...

right rules

· · ·

Ψ; Γ′ ⇓ B ⊢ A
left rules

Ψ; Γ ⊢ A
decide

Cut elimination holds automatically for synthetic rules.

9 / 23

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ; Γ ⊢ A, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

· · ·

Ψ1; Γ1 ⊢ A1 · · · Ψn; Γn ⊢ An

...

right rules

· · ·

Ψ; Γ′ ⇓ B ⊢ A
left rules

Ψ; Γ ⊢ A
decide

Cut elimination holds automatically for synthetic rules.

9 / 23

Synthetic rules (examples)

Let a, b, c be propositional constants.

Assume that Ψ contains the formula a ⊸ b ⊸ c .

Ψ; Γ1 ⊢ a Ψ; Γ2 ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; Γ1, Γ2 ⇓ a ⊸ b ⊸ c ⊢ c

Ψ; Γ1, Γ2 ⊢ c

Instead, assume that Ψ contains the a ⇒ b ⇒ c .

Ψ; · ⊢ a Ψ; · ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; · ⇓ a ⇒ b ⇒ c ⊢ c

Ψ; · ⊢ c

10 / 23

Synthetic rules (examples)

Let a, b, c be propositional constants.

Assume that Ψ contains the formula a ⊸ b ⊸ c .

Ψ; Γ1 ⊢ a Ψ; Γ2 ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; Γ1, Γ2 ⇓ a ⊸ b ⊸ c ⊢ c

Ψ; Γ1, Γ2 ⊢ c

Instead, assume that Ψ contains the a ⇒ b ⇒ c .

Ψ; · ⊢ a Ψ; · ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; · ⇓ a ⇒ b ⇒ c ⊢ c

Ψ; · ⊢ c

10 / 23

Synthetic rules (examples)

Let a, b, c be propositional constants.

Assume that Ψ contains the formula a ⊸ b ⊸ c .

Ψ; Γ1 ⊢ a Ψ; Γ2 ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; Γ1, Γ2 ⇓ a ⊸ b ⊸ c ⊢ c

Ψ; Γ1, Γ2 ⊢ c

Instead, assume that Ψ contains the a ⇒ b ⇒ c .

Ψ; · ⊢ a Ψ; · ⊢ b Ψ; · ⇓ c ⊢ c

Ψ; · ⇓ a ⇒ b ⇒ c ⊢ c

Ψ; · ⊢ c

10 / 23

Primer on multiset rewriting

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }

α1;α2−−−→
{a, b, e, e, Γ} α2;α1−−−→ {c , d , f , Γ}

α1|α2−−−→

α3 : {a, k} → {b, k}
α4 : {c , k} → {d , k}

α3;α4−−−→
{a, c , k} α4;α3−−−→ {b, d , k}

The parallel application α3|α4 is not possible here.
The symbol k acts as a lock.

11 / 23

Primer on multiset rewriting

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }

α1;α2−−−→
{a, b, e, e, Γ} α2;α1−−−→ {c , d , f , Γ}

α1|α2−−−→

α3 : {a, k} → {b, k}
α4 : {c , k} → {d , k}

α3;α4−−−→
{a, c , k} α4;α3−−−→ {b, d , k}

The parallel application α3|α4 is not possible here.
The symbol k acts as a lock.

11 / 23

Primer on multiset rewriting

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }

α1;α2−−−→
{a, b, e, e, Γ} α2;α1−−−→ {c , d , f , Γ}

α1|α2−−−→

α3 : {a, k} → {b, k}
α4 : {c , k} → {d , k}

α3;α4−−−→
{a, c , k} α4;α3−−−→ {b, d , k}

The parallel application α3|α4 is not possible here.
The symbol k acts as a lock.

11 / 23

Rewriting the multiset on the left: a ⊗ b ⊸ c ⊗ d
Since we do not have ⊗, we can write it using

a⊗ b ≡ (a ⊸ b ⊸ ⊥) ⊸ ⊥
This rule can be written as

((a ⊸ b ⊸ ⊥) ⊸ ⊥) ⊸ ((c ⊸ d ⊸ ⊥) ⊸ ⊥)

(c ⊸ d ⊸ ⊥) ⊸ (a ⊸ b ⊸ ⊥)

Since L1 does not have ⊥, introduce a new symbol, say q, and
encode the rewriting rule as

(c ⊸ d ⊸ q) ⊸ (a ⊸ b ⊸ q) ∈ Ψ

Ψ; Γ, c, d ⊢ q

Ψ; Γ ⊢ c ⊸ d ⊸ q

Ψ; · ⇓ a ⊢ a

Ψ; a ⊢ a

Ψ; · ⇓ b ⊢ b

Ψ; b ⊢ b Ψ; · ⇓ q ⊢ q

Ψ; Γ, a, b ⇓ (c ⊸ d ⊸ q) ⊸ a ⊸ b ⊸ q ⊢ q

Ψ; Γ, a, b ⊢ q

12 / 23

Rewriting the multiset on the left: a ⊗ b ⊸ c ⊗ d
Since we do not have ⊗, we can write it using

a⊗ b ≡ (a ⊸ b ⊸ ⊥) ⊸ ⊥
This rule can be written as

((a ⊸ b ⊸ ⊥) ⊸ ⊥) ⊸ ((c ⊸ d ⊸ ⊥) ⊸ ⊥)

(c ⊸ d ⊸ ⊥) ⊸ (a ⊸ b ⊸ ⊥)

Since L1 does not have ⊥, introduce a new symbol, say q, and
encode the rewriting rule as

(c ⊸ d ⊸ q) ⊸ (a ⊸ b ⊸ q) ∈ Ψ

Ψ; Γ, c , d ⊢ q

Ψ; Γ ⊢ c ⊸ d ⊸ q

Ψ; · ⇓ a ⊢ a

Ψ; a ⊢ a

Ψ; · ⇓ b ⊢ b

Ψ; b ⊢ b Ψ; · ⇓ q ⊢ q

Ψ; Γ, a, b ⇓ (c ⊸ d ⊸ q) ⊸ a ⊸ b ⊸ q ⊢ q

Ψ; Γ, a, b ⊢ q

12 / 23

Rewriting the multiset on the left: a ⊗ b ⊸ c ⊗ d
Since we do not have ⊗, we can write it using

a⊗ b ≡ (a ⊸ b ⊸ ⊥) ⊸ ⊥
This rule can be written as

((a ⊸ b ⊸ ⊥) ⊸ ⊥) ⊸ ((c ⊸ d ⊸ ⊥) ⊸ ⊥)

(c ⊸ d ⊸ ⊥) ⊸ (a ⊸ b ⊸ ⊥)

Since L1 does not have ⊥, introduce a new symbol, say q, and
encode the rewriting rule as

(c ⊸ d ⊸ q) ⊸ (a ⊸ b ⊸ q) ∈ Ψ

Ψ; Γ, c , d ⊢ q

Ψ; Γ ⊢ c ⊸ d ⊸ q

Ψ; · ⇓ a ⊢ a

Ψ; a ⊢ a

Ψ; · ⇓ b ⊢ b

Ψ; b ⊢ b Ψ; · ⇓ q ⊢ q

Ψ; Γ, a, b ⇓ (c ⊸ d ⊸ q) ⊸ a ⊸ b ⊸ q ⊢ q

Ψ; Γ, a, b ⊢ q

12 / 23

Full linear logic L2

Multiple conclusion sequents and multifocused sequents.

Ψ; Γ ⊢ ∆ Ψ; Γ ⇓ Θ1 ⊢ Θ2 ⇓∆

▶ Γ, ∆, Θ1, Θ2 are multisets

▶ Θ1, Θ2 are the focused formulas: Θ1 ∪Θ2 is non-empty.

▶ Ψ is the unbounded (left) zone (a multiset treated as a set)

▶ Γ is the left-bounded zone

▶ ∆ is the right-bounded zone

Border sequents are now of the form Ψ; Γ ⊢ A, where A is a
multiset of atomic formulas.

13 / 23

The focused proof system ⇓L2: negative phase

Ψ; Γ ⊢ ⊤,∆

Ψ; Γ ⊢ B,∆ Ψ; Γ ⊢ C ,∆

Ψ; Γ ⊢ B & C ,∆

B,Ψ; Γ ⊢ C ,∆

Ψ; Γ ⊢ B ⇒ C ,∆

Ψ;B, Γ ⊢ C ,∆

Ψ; Γ ⊢ B ⊸ C ,∆

Ψ; Γ ⊢ ∆

Ψ; Γ ⊢ ⊥,∆

Ψ; Γ ⊢ B,C ,∆

Ψ; Γ ⊢ B ` C ,∆

Ψ1,Ψ2; Γ1 ⇓ Ψ2, Γ2 ⊢ · ⇓ A
Ψ1,Ψ2; Γ1, Γ2 ⊢ A

decidem

The restrictions on decidem:

▶ the union Ψ2, Γ2 is non-empty, and

▶ A is a multiset of atomic formulas.

14 / 23

The focused proof system ⇓L2: negative phase

Ψ; Γ ⊢ ⊤,∆

Ψ; Γ ⊢ B,∆ Ψ; Γ ⊢ C ,∆

Ψ; Γ ⊢ B & C ,∆

B,Ψ; Γ ⊢ C ,∆

Ψ; Γ ⊢ B ⇒ C ,∆

Ψ;B, Γ ⊢ C ,∆

Ψ; Γ ⊢ B ⊸ C ,∆

Ψ; Γ ⊢ ∆

Ψ; Γ ⊢ ⊥,∆

Ψ; Γ ⊢ B,C ,∆

Ψ; Γ ⊢ B ` C ,∆

Ψ1,Ψ2; Γ1 ⇓ Ψ2, Γ2 ⊢ · ⇓ A
Ψ1,Ψ2; Γ1, Γ2 ⊢ A

decidem

The restrictions on decidem:

▶ the union Ψ2, Γ2 is non-empty, and

▶ A is a multiset of atomic formulas.

14 / 23

The focused proof system ⇓L2: positive phase

Ψ; · ⇓ A ⊢ · ⇓ A
init

Ψ; Γ ⊢ Θ,A
Ψ; Γ ⇓ · ⊢ Θ ⇓ A

release

Ψ; · ⊢ B Ψ; Γ ⇓ C ,Θ ⊢ Θ′ ⇓ A
Ψ; Γ ⇓ B ⇒ C ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ Θ1 ⊢ Θ3,B ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ⊸ C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
Ψ; Γ ⇓ Bi ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ ⇓ B1 & B2,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ B,Θ1 ⊢ Θ3 ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ` C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

The focused zones are treated linearly. Release is not incremental.

15 / 23

The focused proof system ⇓L2: positive phase

Ψ; · ⇓ A ⊢ · ⇓ A
init

Ψ; Γ ⊢ Θ,A
Ψ; Γ ⇓ · ⊢ Θ ⇓ A

release

Ψ; · ⊢ B Ψ; Γ ⇓ C ,Θ ⊢ Θ′ ⇓ A
Ψ; Γ ⇓ B ⇒ C ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ Θ1 ⊢ Θ3,B ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ⊸ C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
Ψ; Γ ⇓ Bi ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ ⇓ B1 & B2,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ B,Θ1 ⊢ Θ3 ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ` C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

The focused zones are treated linearly. Release is not incremental.

15 / 23

The focused proof system ⇓L2: positive phase

Ψ; · ⇓ A ⊢ · ⇓ A
init

Ψ; Γ ⊢ Θ,A
Ψ; Γ ⇓ · ⊢ Θ ⇓ A

release

Ψ; · ⊢ B Ψ; Γ ⇓ C ,Θ ⊢ Θ′ ⇓ A
Ψ; Γ ⇓ B ⇒ C ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ Θ1 ⊢ Θ3,B ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ⊸ C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
Ψ; Γ ⇓ Bi ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ ⇓ B1 & B2,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ B,Θ1 ⊢ Θ3 ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ` C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

The focused zones are treated linearly. Release is not incremental.

15 / 23

The focused proof system ⇓L2: positive phase

Ψ; · ⇓ A ⊢ · ⇓ A
init

Ψ; Γ ⊢ Θ,A
Ψ; Γ ⇓ · ⊢ Θ ⇓ A

release

Ψ; · ⊢ B Ψ; Γ ⇓ C ,Θ ⊢ Θ′ ⇓ A
Ψ; Γ ⇓ B ⇒ C ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ Θ1 ⊢ Θ3,B ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ⊸ C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
Ψ; Γ ⇓ Bi ,Θ ⊢ Θ′ ⇓ A

Ψ; Γ ⇓ B1 & B2,Θ ⊢ Θ′ ⇓ A

Ψ; Γ1 ⇓ B,Θ1 ⊢ Θ3 ⇓ A1 Ψ; Γ2 ⇓ C ,Θ2 ⊢ Θ4 ⇓ A2

Ψ; Γ1, Γ2 ⇓ B ` C ,Θ1,Θ2 ⊢ Θ3,Θ4 ⇓ A1,A2

The focused zones are treated linearly. Release is not incremental.
15 / 23

Conservativity results

Proposition: Let Ξ be a ⇓L2 proof of the sequent ·; · ⊢ B.

▶ If B is in L1 then every sequent in Ξ is a single-conclusion
and single-focused sequent.

▶ If B is in L0 then every sequent in Ξ has an empty
left-bounded zone.

Thus, ⇓L0 and ⇓L1 arise as simple restrictions on ⇓L2.

The single-conclusion nature of proofs in ⇓L1 is not imposed (as
Gentzen did to get LJ from LK) but is a consequence.

16 / 23

Conservativity results

Proposition: Let Ξ be a ⇓L2 proof of the sequent ·; · ⊢ B.

▶ If B is in L1 then every sequent in Ξ is a single-conclusion
and single-focused sequent.

▶ If B is in L0 then every sequent in Ξ has an empty
left-bounded zone.

Thus, ⇓L0 and ⇓L1 arise as simple restrictions on ⇓L2.

The single-conclusion nature of proofs in ⇓L1 is not imposed (as
Gentzen did to get LJ from LK) but is a consequence.

16 / 23

Cut admissibility

Theorem: The following cut rules are admissible in ⇓L2.

Ψ; · ⊢ B Ψ,B; Γ ⊢ ∆

Ψ; Γ ⊢ ∆

Ψ; Γ1 ⊢ B,∆1 Ψ; Γ2,B ⊢ ∆2

Ψ; Γ1, Γ2 ⊢ ∆1,∆2

This theorem is proved as a cut-elimination theorem in the
extended version of the paper and in Chapter 7 of [Miller, 2025].

Completeness of ⇓L2: If B is an L2 formula provable in linear
logic, then the sequent ·; · ⊢ B has a ⇓L2-proof.

Proved as a simple consequence of the cut-elimination theorem.

17 / 23

Cut admissibility

Theorem: The following cut rules are admissible in ⇓L2.

Ψ; · ⊢ B Ψ,B; Γ ⊢ ∆

Ψ; Γ ⊢ ∆

Ψ; Γ1 ⊢ B,∆1 Ψ; Γ2,B ⊢ ∆2

Ψ; Γ1, Γ2 ⊢ ∆1,∆2

This theorem is proved as a cut-elimination theorem in the
extended version of the paper and in Chapter 7 of [Miller, 2025].

Completeness of ⇓L2: If B is an L2 formula provable in linear
logic, then the sequent ·; · ⊢ B has a ⇓L2-proof.

Proved as a simple consequence of the cut-elimination theorem.

17 / 23

Rewriting the right-bounded zone

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }
Encoding α1 using c ` d ⊸ a ` b yields the synthetic rule.

Ψ; Γ ⊢ ∆, c , d

Ψ; Γ ⊢ ∆, c ` d

Ψ; · ⇓ a ⊢ a Ψ; · ⇓ b ⊢ b

Ψ; · ⇓ a ` b ⊢ a, b

Ψ; Γ ⇓ c ` d ⊸ a ` b ⊢ ∆, a, b

Ψ; Γ ⊢ ∆, a, b

Focusing on α1 and α2 simultaneously yields the synthetic rule

Ψ; Γ ⊢ ∆, c, d , f

Ψ; Γ ⊢ ∆, a, b, e, e
α1|α2.

Parallel rule application yields new synthetic rules.

18 / 23

Rewriting the right-bounded zone

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }
Encoding α1 using c ` d ⊸ a ` b yields the synthetic rule.

Ψ; Γ ⊢ ∆, c , d

Ψ; Γ ⊢ ∆, c ` d

Ψ; · ⇓ a ⊢ a Ψ; · ⇓ b ⊢ b

Ψ; · ⇓ a ` b ⊢ a, b

Ψ; Γ ⇓ c ` d ⊸ a ` b ⊢ ∆, a, b

Ψ; Γ ⊢ ∆, a, b

Focusing on α1 and α2 simultaneously yields the synthetic rule

Ψ; Γ ⊢ ∆, c, d , f

Ψ; Γ ⊢ ∆, a, b, e, e
α1|α2.

Parallel rule application yields new synthetic rules.

18 / 23

Rewriting the right-bounded zone

α1 : {a, b} → {c , d}
α2 : {e, e} → {f }
Encoding α1 using c ` d ⊸ a ` b yields the synthetic rule.

Ψ; Γ ⊢ ∆, c , d

Ψ; Γ ⊢ ∆, c ` d

Ψ; · ⇓ a ⊢ a Ψ; · ⇓ b ⊢ b

Ψ; · ⇓ a ` b ⊢ a, b

Ψ; Γ ⇓ c ` d ⊸ a ` b ⊢ ∆, a, b

Ψ; Γ ⊢ ∆, a, b

Focusing on α1 and α2 simultaneously yields the synthetic rule

Ψ; Γ ⊢ ∆, c, d , f

Ψ; Γ ⊢ ∆, a, b, e, e
α1|α2.

Parallel rule application yields new synthetic rules.

18 / 23

Maximally multifocusing proofs

The interesting results surrounding multifocusing proofs are related
to maximally multifocused proofs (MMF): these often correspond
to canonical proof structures.

▶ βη-long normal λ-terms as MMF proofs (since single-focused
proofs in L0 are multifocused proofs)

▶ proof nets for MALL as MMF proofs [Chaudhuri, M, &
Saurin, 2008]

▶ expansion proof for classical first-order logic as MMF LKF
proofs [Chaudhuri, Hetzel, & M, 2012].

19 / 23

A canonical treatment of ∨ and ∃ in natural deduction

The negative connectives of intuitionistic logic directly translate
into L0.

t◦ = ⊤ (B ∧ C)◦ = B◦ & C ◦ (B ⊃ C)◦ = B◦ ⇒ C ◦

(∀x .B)◦ = ∀x .B◦ A◦ = A for atomic formulas A

Focused proofs for negative connectives correspond to natural
deduction: Herbelin [CSL 1994] & Esṕırito Santo [TLCA 2007].

We can translate the positive connectives into L2 using ⊥.

f◦ = ⊤ ⊸ ⊥
(B ∨ C)◦ = ((B◦ ⇒ ⊥) & (C ◦ ⇒ ⊥)) ⊸ ⊥
(∃x .B)◦ = (∀x .(B◦ ⇒ ⊥)) ⊸ ⊥

Extending the correspondence to natural deduction permits a new
treatment for positive connectives.

20 / 23

A canonical treatment of ∨ and ∃ in natural deduction

The negative connectives of intuitionistic logic directly translate
into L0.

t◦ = ⊤ (B ∧ C)◦ = B◦ & C ◦ (B ⊃ C)◦ = B◦ ⇒ C ◦

(∀x .B)◦ = ∀x .B◦ A◦ = A for atomic formulas A

Focused proofs for negative connectives correspond to natural
deduction: Herbelin [CSL 1994] & Esṕırito Santo [TLCA 2007].

We can translate the positive connectives into L2 using ⊥.

f◦ = ⊤ ⊸ ⊥
(B ∨ C)◦ = ((B◦ ⇒ ⊥) & (C ◦ ⇒ ⊥)) ⊸ ⊥
(∃x .B)◦ = (∀x .(B◦ ⇒ ⊥)) ⊸ ⊥

Extending the correspondence to natural deduction permits a new
treatment for positive connectives.

20 / 23

Parallel elimination rules

Let p ≥ 1 and a1, . . . , ap, b1, . . . , bp be atomic formulas.

An example: The parallel application of the ∨-elimination rule is:

a1 ∨ b1 · · · ap ∨ bp

({ai | i ∈ I} ∪ {bi | i /∈ I}...
D

)
I⊆{1,...,p}

D

This rule has p + 2p premises.

Maximal multifocusing (maximal use of parallel elimination rules)
corresponds to Prawitz’s maximal segments.

Anyone know a citation for this style rule?

21 / 23

Proof Theory and Logic Programming:
Computation as proof search, by Dale Miller

To be published by Cambridge University Press by December 2025.

Preprint available from my web page.
https://www.lix.polytechnique.

fr/Labo/Dale.Miller/ptlp/

(317 pages, 90 exercises).

Organizes everything I learned about
the intersection of proof theory and
logic programming during four
decades (1985-2025).

Uses classical, intuitionistic, and linear
logic (first-order and higher-order) to
design and reason about logic
programs.

Art by Nadia Miller

Proof Theory
and Logic

Programming
Computation as Proof Search

DALE MILLER

22 / 23

https://www.lix.polytechnique.fr/Labo/Dale.Miller/ptlp/
https://www.lix.polytechnique.fr/Labo/Dale.Miller/ptlp/
https://nadiaamiller.wixsite.com/website

Conclusions

1. Decomposed linear logic into L0, L1, L2.

2. Proved that the multifocused, multiple-conclusion sequent
proof system ⇓L2

▶ satisfies cut-elimination and is complete for linear logic;
▶ captures both ⇓L0 and ⇓L1; and
▶ supports parallel rule application via the presence of ⊥.

3. Showed that adding multifocusing or multiple conclusions to
⇓L0 and ⇓L1 does not change provability.

4. Demonstrated that synthetic rules
▶ are formally defined using focused proofs,
▶ automatically satisfy cut-elimination, and
▶ can capture parallel rule application.

5. Provided a candidate for canonical proof format for natural
deduction with positive connectives.

23 / 23

