Linear Logic Using Negative Connectives

Dale Miller

Inria Saclay & LIX, Institut Polytechnique de Paris Partout Team

FSCD 2025 15-18 July 2025 Birmingham, UK

Art by Nadia Miller

Invertibility

A rule is *invertible* if whenever the conclusion is provable, the premises are provable.

$\Gamma, B \vdash C$	$\Gamma, B \vdash E \Gamma, C \vdash E$
$\Gamma \vdash B \supset C$	$\Gamma, B \lor C \vdash E$

Invertibility is an important property of inference rules to observe.

- When searching for proofs, invertible rules yield don't-care non-determinism (no backtracking needed).
- Gentzen never considered this property in his publications.
- Ketonen [1944] recognized its importance and restructured Gentzen's LK calculus around invertible rules.
- The popular G3 sequent calculus proof system is designed to maximize the presence of invertible rules.

Polarity

A logical connective is

- negative if its right-introduction rule is invertible.
- positive if its left-introduction rule is invertible.

This classification can be *ambiguous* (a connective can be both positive and negative) or *partial* (a connective might not be either).

Polarity

A logical connective is

- negative if its right-introduction rule is invertible.
- positive if its left-introduction rule is invertible.

This classification can be *ambiguous* (a connective can be both positive and negative) or *partial* (a connective might not be either).

Two striking facts about linear logic.

This classification is unambiguous and total.

NegativePositive \perp , \Im , \top , &, \forall , ?1, \otimes , 0, \oplus , \exists , !

De Morgan duality flips polarity.

Polarity and focused proofs

Focused proofs organize proofs into two phases.

- the invertible or negative phase
- the non-invertible or positive phase

Uniform proofs [LICS 1987] used goal reduction and backward chaining as two phases (for a subset of intuitionistic logic).

Andreoli [JLC 1992] provided the first comprehensive focused proof system by using polarization and working with linear logic.

Polarity and focused proofs

Focused proofs organize proofs into two phases.

- the invertible or negative phase
- the non-invertible or positive phase

Uniform proofs [LICS 1987] used goal reduction and backward chaining as two phases (for a subset of intuitionistic logic).

Andreoli [JLC 1992] provided the first comprehensive focused proof system by using polarization and working with linear logic.

Focused proof systems for classical and intuitionistic logics.

- LKT, LKQ: Danos, Joinet, and Schellinx [1993]
- LJT, LJQ: Heberlin's PhD [1995]
- ▶ LJF, LKF: Liang & M [CSL 2007]: generalizes the others

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search). Left-introduction rules are not invertible (backward chaining rules).

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search). Left-introduction rules are not invertible (backward chaining rules).

L₀ = {⊤, &, ⇒, ∀} captures the core of intuitionistic logic.
L₁ = L₀ ∪ {−∘} corresponds to a linear intuitionistic logic.
L₂ = L₁ ∪ {⊥, 𝔅} is a complete set for linear logic.

Here, we use only negative connectives

Right-introduction rules are invertible (goal-directed search). Left-introduction rules are not invertible (backward chaining rules).

L₀ = {⊤, &, ⇒, ∀} captures the core of intuitionistic logic.
L₁ = L₀ ∪ {−∘} corresponds to a linear intuitionistic logic.
L₂ = L₁ ∪ {⊥, ℜ} is a complete set for linear logic.

$$\begin{array}{lll}
\mathbf{0} & \equiv \top \multimap \bot & B \oplus C & \equiv ((B \multimap \bot) \& (C \multimap \bot)) \multimap \bot \\
\mathbf{1} & \equiv \bot \multimap \bot & B \otimes C & \equiv (B \multimap \bot) \multimap (C \multimap \bot) \multimap \bot \\
?B & \equiv (B \multimap \bot) \Rightarrow \bot & !B & \equiv (B \Rightarrow \bot) \multimap \bot \\
& \exists x.B & \equiv (\forall x.B \multimap \bot) \multimap \bot
\end{array}$$

The \Re connective is redundant: $B \Re C \equiv (B \multimap \bot) \multimap C$.

$$\frac{}{\Psi \vdash \top} \top R \qquad \frac{\Psi \vdash B \quad \Psi \vdash C}{\Psi \vdash B \& C} \& R$$
$$\frac{B, \Psi \vdash C}{\Psi \vdash B \Rightarrow C} \Rightarrow R$$

 $\frac{\Psi, B \Downarrow B \vdash A}{\Psi, B \vdash A} decide! \qquad (A \text{ is atomic})$

 $\frac{\Psi \Downarrow A \vdash A}{\Psi \Downarrow A \vdash A} \text{ init } \qquad \frac{\Psi \vdash B \quad \Psi \Downarrow C \vdash A}{\Psi \Downarrow B \Rightarrow C \vdash A} \Rightarrow \mathsf{L}$

$$\frac{\Psi \Downarrow B_i \vdash A}{\Psi \Downarrow B_1 \& B_2 \vdash A} \& \mathsf{L}_i$$

$$\frac{}{\Psi \vdash \top} \top R \qquad \frac{\Psi \vdash B \quad \Psi \vdash C}{\Psi \vdash B \& C} \& R$$
$$\frac{B, \Psi \vdash C}{\Psi \vdash B \Rightarrow C} \Rightarrow R$$

$$\frac{\Psi, B \Downarrow B \vdash A}{\Psi, B \vdash A} decide! \qquad (A \text{ is atomic})$$

$$\frac{\Psi \vdash B \quad \Psi \Downarrow C \vdash A}{\Psi \Downarrow B \Rightarrow C \vdash A} \Rightarrow \mathsf{L}$$

$$\frac{\Psi \Downarrow B_i \vdash A}{\Psi \Downarrow B_1 \& B_2 \vdash A} \& \mathsf{L}$$

$$\frac{}{\Psi \vdash \top} \top R \qquad \frac{\Psi \vdash B \quad \Psi \vdash C}{\Psi \vdash B \& C} \& R$$
$$\frac{B, \Psi \vdash C}{\Psi \vdash B \Rightarrow C} \Rightarrow R$$

$$\frac{\Psi, B \Downarrow B \vdash A}{\Psi, B \vdash A} decide! \qquad (A \text{ is atomic})$$

$$\frac{\Psi \Vdash B \quad \Psi \Downarrow C \vdash A}{\Psi \Downarrow B \Rightarrow C \vdash A} \Rightarrow L$$

$$\Psi \Downarrow B_i \vdash A$$

$$\overline{\Psi \Downarrow B_1 \& B_2 \vdash A} \& L_i$$

$$\frac{\psi \vdash B \quad \forall \vdash C}{\psi \vdash T} \quad \forall \vdash B \& C \& \mathbb{R}$$

$$\frac{B, \Psi \vdash C}{\Psi \vdash B \Rightarrow C} \Rightarrow \mathsf{R}$$

$$\frac{\Psi, B \Downarrow B \vdash A}{\Psi, B \vdash A} \ decide! \qquad (A \text{ is atomic})$$

$$\frac{\Psi \vdash B \quad \Psi \Downarrow C \vdash A}{\Psi \Downarrow B \Rightarrow C \vdash A} \Rightarrow \mathsf{L}$$

$$\frac{\Psi \Downarrow B_i \vdash A}{\Psi \Downarrow B_1 \& B_2 \vdash A} \& \mathsf{L}$$

 $\beta\eta$ -long normal form of simply typed λ -terms

To account for simply typed λ -terms, ignore \top , &, and \forall . Think of Ψ as a typing context and assume that

$$h\colon \beta_1 \Rightarrow \cdots \Rightarrow \beta_m \Rightarrow \beta_0 \in \Psi,$$

where β_0 atomic.

$$\frac{\Psi, \bar{\alpha} \vdash t_{1} : \beta_{1} \cdots \Psi, \bar{\alpha} \vdash t_{m} : \beta_{m}}{\Psi, \bar{\alpha} \Downarrow \beta_{0} \vdash \alpha_{0}} \Rightarrow L*} \frac{(\alpha_{0} = \beta_{0})}{\Psi, \bar{\alpha} \Downarrow \beta_{0} \vdash \alpha_{0}} \Rightarrow L*}$$
$$\frac{\Psi, \bar{x} : \bar{\alpha} \Downarrow h : \beta_{1} \Rightarrow \cdots \Rightarrow \beta_{m} \Rightarrow \beta_{0} \vdash h\bar{t} : \alpha_{0}}{\Psi, x_{1} : \alpha_{1}, \dots, x_{1} : \alpha_{n} \vdash h\bar{t} : \alpha_{0}} \Rightarrow R*}$$

We add a new linear zone to sequents.

$-\vdash C$	$\Psi; \Gamma \vdash B \Psi; \Gamma$	Ч	
С	Ψ; Γ ⊢ <i>B</i> &	$\Psi; \Gamma \vdash op$	
$\frac{\vdash C}{\Rightarrow C}$	$\frac{B,\Psi;\Gamma}{\Psi;\Gamma\vdash B}$	$\frac{\Psi; B, \Gamma \vdash C}{\Psi; \Gamma \vdash B \multimap C}$	
	$\Gamma \Downarrow B \vdash A$	$\Gamma \Downarrow B \vdash A \qquad \Psi;$	$\Psi, B;$
$\overline{\Psi;\cdot\Downarrow A\vdash A}$	$; \Gamma, B \vdash A$	$B; \Gamma \vdash A \qquad \Psi$	Ψ,
Ψ ; $\Gamma_2 \Downarrow C \vdash A$	Ψ ; $\Gamma_1 \vdash B$	Β Ψ;Γ ↓ C ⊢ A	$\Psi; \cdot \vdash E$
$\Downarrow B \multimap C \vdash A$	$\Psi; \Gamma_1, \Gamma_2$	$\Downarrow B \Rightarrow C \vdash A$	Ψ; Γ
	$\Downarrow B_i \vdash A$	Ψ;Γ	
	$B_1 \& B_2 \vdash A$	Ψ;ΓΨ <i>Ε</i>	

We add a new linear zone to sequents.

	Ψ	$(\Gamma \vdash B \Psi)$	$\vdash C$
Ψ; Γ	<u></u> ⊢ ⊤	Ψ; Γ ⊢ <i>B</i> &	С
<u>Ψ;</u> Ψ; Γ	$\frac{B, \Gamma \vdash C}{\vdash B \multimap C}$	$\frac{B,\Psi;\Gamma}{\Psi;\Gamma\vdash B}$	$\frac{F}{r} \subset C$
Ψ, <i>B</i> ; Γ ↓ <i>B</i> ⊢	- Α Ψ; Γ	- ↓ <i>B</i> ⊢ A	
Ψ, <i>B</i> ; Γ ⊢ <i>A</i>	Ψ;	$\Gamma, B \vdash A$	$\Psi;\cdot\Downarrow A\vdash A$
$\Psi; \cdot \vdash B \Psi; \Gamma$	$\Downarrow C \vdash A$	Ψ ; $\Gamma_1 \vdash B$	$\Psi; \Gamma_2 \Downarrow C \vdash A$
$\Psi; \Gamma \Downarrow B \Rightarrow C \vdash A$		$\Psi; \Gamma_1, \Gamma_2 \Downarrow B \multimap C \vdash A$	
	Ψ;Γ↓	$B_i \vdash A$	
	Ψ:Γ	$B_2 \vdash A$	

We add a new linear zone to sequents.

	Ψ;	$\Gamma \vdash B \Psi; \Gamma$	$\vdash C$			
Ψ; Γ	— — — F T	Ψ; Γ ⊢ <i>B</i> &	С			
Ψ; <i>Ι</i> Ψ; Γ	$\frac{B, \Gamma \vdash C}{\vdash B \multimap C}$	$\frac{B,\Psi;\Gamma}{\Psi;\Gamma\vdash B}$	$\frac{F}{\Rightarrow C}$			
$\frac{\Psi, B; \Gamma \Downarrow B \vdash}{\Psi, B; \Gamma \vdash A}$	$\frac{A}{\Psi;\Gamma}$	$\frac{\Downarrow B \vdash A}{\Gamma, B \vdash A}$	$\overline{\Psi; \cdot \Downarrow A \vdash A}$			
$\Psi;\cdot\vdash B \Psi; \Gamma \downarrow$	C ⊢ A	Ψ ; $\Gamma_1 \vdash B$	$\Psi; \Gamma_2 \Downarrow C \vdash A$			
Ψ ; $\Gamma \Downarrow B \Rightarrow C$	$\Box \vdash A$	$\Psi; \Gamma_1, \Gamma_2$	$\Downarrow B \multimap C \vdash A$			
$\Psi; \Gamma \Downarrow B_i \vdash A$						
Ψ ; $\Gamma \Downarrow B_1 \& B_2 \vdash A$						

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ ; $\Gamma \vdash A$, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

$$\frac{\Psi_{1}; \Gamma_{1} \vdash A_{1} \cdots \Psi_{n}; \Gamma_{n} \vdash A_{n}}{\vdots} right rules \\ \frac{\Psi; \Gamma' \Downarrow B \vdash A}{\Psi; \Gamma \vdash A} decide$$
 left rules

Cut elimination holds automatically for synthetic rules.

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ ; $\Gamma \vdash A$, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

Cut elimination holds automatically for synthetic rules.

Synthetic inference rules

Synthetic inference rule are defined using focused proof systems.

Border sequents are of the form Ψ ; $\Gamma \vdash A$, where A is atomic.

A proof of a border sequent must end with a decide rule.

Synthetic rules have border sequents as conclusions and premises.

Cut elimination holds automatically for synthetic rules.

Synthetic rules (examples)

Let a, b, c be propositional constants. Assume that Ψ contains the formula $a \multimap b \multimap c$.

$$\frac{\Psi; \Gamma_1 \vdash a \quad \Psi; \Gamma_2 \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \Gamma_1, \Gamma_2 \Downarrow a \multimap b \multimap c \vdash c}{\Psi; \Gamma_1, \Gamma_2 \vdash c}}$$

Instead, assume that Ψ contains the $a \Rightarrow b \Rightarrow c$.

$$\frac{\Psi; \cdot \vdash a \quad \Psi; \cdot \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \cdot \Downarrow a \Rightarrow b \Rightarrow c \vdash c}{\Psi; \cdot \vdash c}}$$

Synthetic rules (examples)

Let a, b, c be propositional constants. Assume that Ψ contains the formula $a \multimap b \multimap c$.

$$\frac{\Psi; \Gamma_1 \vdash a \quad \Psi; \Gamma_2 \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \Gamma_1, \Gamma_2 \Downarrow a \multimap b \multimap c \vdash c}{\Psi; \Gamma_1, \Gamma_2 \vdash c}}$$

Instead, assume that Ψ contains the $a \Rightarrow b \Rightarrow c$.

$$\frac{\Psi; \cdot \vdash a \quad \Psi; \cdot \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \cdot \Downarrow a \Rightarrow b \Rightarrow c \vdash c}{\Psi; \cdot \vdash c}}$$

Synthetic rules (examples)

Let a, b, c be propositional constants. Assume that Ψ contains the formula $a \multimap b \multimap c$.

$$\frac{\Psi; \Gamma_1 \vdash a \quad \Psi; \Gamma_2 \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \Gamma_1, \Gamma_2 \Downarrow a \multimap b \multimap c \vdash c}{\Psi; \Gamma_1, \Gamma_2 \vdash c}}$$

Instead, assume that Ψ contains the $a \Rightarrow b \Rightarrow c$.

$$\frac{\Psi; \cdot \vdash a \quad \Psi; \cdot \vdash b \quad \Psi; \cdot \Downarrow c \vdash c}{\frac{\Psi; \cdot \Downarrow a \Rightarrow b \Rightarrow c \vdash c}{\Psi; \cdot \vdash c}}$$

Primer on multiset rewriting

$$\alpha_{1} : \{a, b\} \to \{c, d\}$$

$$\alpha_{2} : \{e, e\} \to \{f\}$$

$$\{a, b, e, e, \Gamma\} \xrightarrow[\alpha_{1}]{\alpha_{2}} \{c, d, f, \Gamma\}$$

$$\alpha_3: \{a, k\} \to \{b, k\}$$

$$\alpha_4: \{c, k\} \to \{d, k\}$$

$$\{a, c, k\} \xrightarrow{\alpha_3; \alpha_4 \\ \alpha_4; \alpha_3} \{b, d, k\}$$

The parallel application $\alpha_3 | \alpha_4$ is not possible here. The symbol k acts as a lock.

Primer on multiset rewriting

$$\begin{aligned} \alpha_1 : \{a, b\} &\to \{c, d\} \\ \alpha_2 : \{e, e\} &\to \{f\} \\ & \{a, b, e, e, \Gamma\} \xrightarrow[]{\alpha_1; \alpha_2} \\ & \underline{\alpha_1; \alpha_2} \\ & \underline{\alpha_2; \alpha_1} \\ & \underline{\alpha_1 | \alpha_2} \\ & \underline{\alpha_1 | \alpha_2} \end{aligned}$$

$$\alpha_3: \{a, k\} \to \{b, k\}$$

$$\alpha_4: \{c, k\} \to \{d, k\}$$

$$\{a, c, k\} \xrightarrow{\begin{array}{c} \alpha_3; \alpha_4 \\ \alpha_4; \alpha_3 \end{array}} \{b, d, k\}$$

The parallel application $\alpha_3 | \alpha_4$ is not possible here. The symbol k acts as a lock.

Primer on multiset rewriting

$$\begin{array}{l} \alpha_{1}: \{a, b\} \rightarrow \{c, d\} \\ \alpha_{2}: \{e, e\} \rightarrow \{f\} \\ \\ \{a, b, e, e, \Gamma\} \xrightarrow[]{\alpha_{1};\alpha_{2}} \\ \xrightarrow[]{\alpha_{1}|\alpha_{2}} \\ \xrightarrow[]{\alpha_{1}|\alpha_{2}} \\ \end{array} \quad \{c, d, f, \Gamma\} \end{array}$$

$$\alpha_3: \{a,k\} \to \{b,k\}$$
$$\alpha_4: \{c,k\} \to \{d,k\}$$

$$\{a, c, k\} \xrightarrow{\begin{array}{c} \frac{\alpha_3; \alpha_4}{\alpha_4; \alpha_3}} \{b, d, k\}$$

The parallel application $\alpha_3 | \alpha_4$ is not possible here. The symbol k acts as a lock.

Rewriting the multiset on the left: $a \otimes b \multimap c \otimes d$

Since we do not have \otimes , we can write it using

$$a \otimes b \equiv (a \multimap b \multimap \bot) \multimap \bot$$

This rule can be written as

$$\begin{array}{c} ((a \multimap b \multimap \bot) \multimap \bot) \multimap ((c \multimap d \multimap \bot) \multimap \bot) \\ (c \multimap d \multimap \bot) \multimap (a \multimap b \multimap \bot) \end{array}$$

Since \mathcal{L}_1 does not have \perp , introduce a new symbol, say q, and encode the rewriting rule as

$$(c \multimap d \multimap q) \multimap (a \multimap b \multimap q) \in \Psi$$

 $\frac{\Psi; \Gamma, c, d \vdash q}{\Psi; \Gamma \vdash c \multimap d \multimap q} \xrightarrow{\Psi; \cdot \Downarrow a \vdash a} \frac{\Psi; \cdot \Downarrow b \vdash b}{\Psi; a \vdash a} \xrightarrow{\Psi; \cdot \Downarrow b \vdash b} \frac{\Psi; \cdot \Downarrow q \vdash q}{\Psi; b \vdash b} \frac{\Psi; \cdot \Downarrow q \vdash q}{\Psi; \Gamma, a, b \Downarrow (c \multimap d \multimap q) \multimap a \multimap b \multimap q \vdash q}$

Rewriting the multiset on the left: $a \otimes b \multimap c \otimes d$

Since we do not have \otimes , we can write it using

$$a \otimes b \equiv (a \multimap b \multimap \bot) \multimap \bot$$

This rule can be written as

$$\begin{array}{c} ((a \multimap b \multimap \bot) \multimap \bot) \multimap ((c \multimap d \multimap \bot) \multimap \bot) \\ (c \multimap d \multimap \bot) \multimap (a \multimap b \multimap \bot) \end{array}$$

Since \mathcal{L}_1 does not have \perp , introduce a new symbol, say q, and encode the rewriting rule as

$$(c \multimap d \multimap q) \multimap (a \multimap b \multimap q) \in \Psi$$

 $\frac{\Psi; \Gamma, c, d \vdash q}{\Psi; \Gamma \vdash c \multimap d \multimap q} \quad \frac{\Psi; \cdot \Downarrow a \vdash a}{\Psi; a \vdash a} \quad \frac{\overline{\Psi; \cdot \Downarrow b \vdash b}}{\Psi; b \vdash b} \quad \frac{\Psi; \cdot \Downarrow q \vdash q}{\Psi; \Gamma, a, b \Downarrow (c \multimap d \multimap q) \multimap a \multimap b \multimap q \vdash q}$

Rewriting the multiset on the left: $a \otimes b \multimap c \otimes d$

Since we do not have \otimes , we can write it using

$$a \otimes b \equiv (a \multimap b \multimap \bot) \multimap \bot$$

This rule can be written as

$$\begin{array}{c} ((a \multimap b \multimap \bot) \multimap \bot) \multimap ((c \multimap d \multimap \bot) \multimap \bot) \\ (c \multimap d \multimap \bot) \multimap (a \multimap b \multimap \bot) \end{array}$$

Since \mathcal{L}_1 does not have \perp , introduce a new symbol, say q, and encode the rewriting rule as

$$(c \multimap d \multimap q) \multimap (a \multimap b \multimap q) \in \Psi$$

 $\frac{\Psi; \Gamma, c, d \vdash q}{\Psi; \Gamma \vdash c \multimap d \multimap q} \xrightarrow{\Psi; \cdot \Downarrow a \vdash a} \frac{\Psi; \cdot \Downarrow b \vdash b}{\Psi; a \vdash a} \xrightarrow{\Psi; \cdot \Downarrow b \vdash b} \overline{\Psi; \cdot \Downarrow q \vdash q}$ $\frac{\Psi; \Gamma, a, b \Downarrow (c \multimap d \multimap q) \multimap a \multimap b \multimap q \vdash q}{\Psi; \Box \downarrow a \vdash a} \xrightarrow{\Psi; \cdot \Downarrow q \vdash q} \overline{\Psi; \cdot \Downarrow q \vdash q}$

 Ψ ; Γ , $a, b \vdash q$

Full linear logic \mathcal{L}_2

Multiple conclusion sequents and multifocused sequents.

 Ψ ; $\Gamma \vdash \Delta$ Ψ ; $\Gamma \Downarrow \Theta_1 \vdash \Theta_2 \Downarrow \Delta$

 \triangleright Γ, Δ, Θ_1 , Θ_2 are multisets

▶ Θ_1 , Θ_2 are the focused formulas: $\Theta_1 \cup \Theta_2$ is non-empty.

- Ψ is the *unbounded* (left) zone (a multiset treated as a set)
- Γ is the *left-bounded* zone
- Δ is the *right-bounded* zone

Border sequents are now of the form Ψ ; $\Gamma \vdash A$, where A is a multiset of atomic formulas.

 $\frac{\Psi; \Gamma \vdash T, \Delta}{\Psi; \Gamma \vdash T, \Delta} = \frac{\Psi; \Gamma \vdash B, \Delta \quad \Psi; \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \& C, \Delta} \\
\frac{B, \Psi; \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \Rightarrow C, \Delta} = \frac{\Psi; B, \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \multimap C, \Delta} \\
\frac{\Psi; \Gamma \vdash \Delta}{\Psi; \Gamma \vdash \bot, \Delta} = \frac{\Psi; \Gamma \vdash B, C, \Delta}{\Psi; \Gamma \vdash B \stackrel{2}{\longrightarrow} C, \Delta}$

 $\frac{\Psi_{1},\Psi_{2};\Gamma_{1} \Downarrow \Psi_{2},\Gamma_{2} \vdash \cdot \Downarrow \mathcal{A}}{\Psi_{1},\Psi_{2};\Gamma_{1},\Gamma_{2} \vdash \mathcal{A}} \ decide_{m}$

The restrictions on *decide*_m:

- the union Ψ_2, Γ_2 is non-empty, and
- \mathcal{A} is a multiset of atomic formulas.

 $\frac{\Psi; \Gamma \vdash T, \Delta}{\Psi; \Gamma \vdash T, \Delta} = \frac{\Psi; \Gamma \vdash B, \Delta \quad \Psi; \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \& C, \Delta}$ $\frac{B, \Psi; \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \Rightarrow C, \Delta} = \frac{\Psi; B, \Gamma \vdash C, \Delta}{\Psi; \Gamma \vdash B \to C, \Delta}$ $\frac{\Psi; \Gamma \vdash \Delta}{\Psi; \Gamma \vdash \bot, \Delta} = \frac{\Psi; \Gamma \vdash B, C, \Delta}{\Psi; \Gamma \vdash B \And C, \Delta}$

$$\frac{\Psi_{1},\Psi_{2};\Gamma_{1} \Downarrow \Psi_{2},\Gamma_{2} \vdash \cdot \Downarrow \mathcal{A}}{\Psi_{1},\Psi_{2};\Gamma_{1},\Gamma_{2} \vdash \mathcal{A}} \ \textit{decide}_{\textit{m}}$$

The restrictions on *decide*_m:

- the union Ψ_2, Γ_2 is non-empty, and
- \mathcal{A} is a multiset of atomic formulas.

$$\frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow \Gamma \vdash \Theta \Downarrow \mathcal{A}} \text{ release}$$

$$\frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow A \vdash \cdot \Downarrow A} \text{ init } \frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow \cdot \vdash \Theta \Downarrow \mathcal{A}} \text{ release}$$
$$\frac{\Psi; \cdot \vdash B \quad \Psi; \Gamma \Downarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}{\Psi; \Gamma \Downarrow B \Rightarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}$$

$$\frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow A \vdash \cdot \Downarrow A} \text{ init } \frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow \cdot \vdash \Theta \Downarrow \mathcal{A}} \text{ release}$$
$$\frac{\Psi; \cdot \vdash B \quad \Psi; \Gamma \Downarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}{\Psi; \Gamma \Downarrow B \Rightarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}$$

 $\frac{\Psi; \Gamma_1 \ \Downarrow \Theta_1 \vdash \Theta_3, B \Downarrow \mathcal{A}_1 \ \Psi; \Gamma_2 \ \Downarrow C, \Theta_2 \vdash \Theta_4 \Downarrow \mathcal{A}_2}{\Psi; \Gamma_1, \Gamma_2 \ \Downarrow B \multimap C, \Theta_1, \Theta_2 \vdash \Theta_3, \Theta_4 \Downarrow \mathcal{A}_1, \mathcal{A}_2}$

$$\frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow A \vdash \cdot \Downarrow A} \text{ init } \frac{\Psi; \Gamma \vdash \Theta, \mathcal{A}}{\Psi; \Gamma \Downarrow \cdot \vdash \Theta \Downarrow \mathcal{A}} \text{ release}$$
$$\frac{\Psi; \cdot \vdash B \quad \Psi; \Gamma \Downarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}{\Psi; \Gamma \Downarrow B \Rightarrow C, \Theta \vdash \Theta' \Downarrow \mathcal{A}}$$
$$\Psi; \Gamma_1 \Downarrow \Theta_1 \vdash \Theta_3, B \Downarrow \mathcal{A}_1 \quad \Psi; \Gamma_2 \Downarrow C, \Theta_2 \vdash \Theta_4 \Downarrow \mathcal{A}_2$$

 $\Psi; \Gamma_1, \Gamma_2 \hspace{0.2cm} \Downarrow \hspace{0.2cm} B \multimap \hspace{0.2cm} C, \Theta_1, \Theta_2 \hspace{0.2cm} \vdash \hspace{0.2cm} \Theta_3, \Theta_4 \Downarrow \hspace{0.2cm} \mathcal{A}_1, \mathcal{A}_2$

 $\frac{\Psi; \Gamma \Downarrow B_i, \Theta \vdash \Theta' \Downarrow \mathcal{A}}{\Psi; \Gamma \Downarrow B_1 \& B_2, \Theta \vdash \Theta' \Downarrow \mathcal{A}}$

 $\Psi; \Gamma_1 \Downarrow B, \Theta_1 \vdash \Theta_3 \Downarrow \mathcal{A}_1 \quad \Psi; \Gamma_2 \Downarrow C, \Theta_2 \vdash \Theta_4 \Downarrow \mathcal{A}_2$

 $\Psi; \Gamma_1, \Gamma_2 \Downarrow B \And C, \Theta_1, \Theta_2 \vdash \Theta_3, \Theta_4 \Downarrow \mathcal{A}_1, \mathcal{A}_2$

The focused zones are treated linearly. Release is not incremental.

Conservativity results

Proposition: Let Ξ be a $\Downarrow \mathcal{L}_2$ proof of the sequent $\cdot; \cdot \vdash B$.

- If B is in L₁ then every sequent in Ξ is a single-conclusion and single-focused sequent.
- If B is in L₀ then every sequent in Ξ has an empty left-bounded zone.

Thus, $\Downarrow \mathcal{L}_0$ and $\Downarrow \mathcal{L}_1$ arise as simple restrictions on $\Downarrow \mathcal{L}_2$.

The single-conclusion nature of proofs in $\Downarrow \mathcal{L}_1$ is not imposed (as Gentzen did to get LJ from LK) but is a consequence.

Conservativity results

Proposition: Let Ξ be a $\Downarrow \mathcal{L}_2$ proof of the sequent $\cdot; \cdot \vdash B$.

- If B is in L₁ then every sequent in Ξ is a single-conclusion and single-focused sequent.
- If B is in L₀ then every sequent in Ξ has an empty left-bounded zone.

Thus, $\Downarrow \mathcal{L}_0$ and $\Downarrow \mathcal{L}_1$ arise as simple restrictions on $\Downarrow \mathcal{L}_2$.

The single-conclusion nature of proofs in $\Downarrow \mathcal{L}_1$ is not imposed (as Gentzen did to get LJ from LK) but is a consequence.

Cut admissibility

Theorem: The following cut rules are admissible in $\Downarrow \mathcal{L}_2$. $\frac{\Psi; \cdot \vdash B \quad \Psi, B; \Gamma \vdash \Delta}{\Psi; \Gamma \vdash \Delta} \quad \frac{\Psi; \Gamma_1 \vdash B, \Delta_1 \quad \Psi; \Gamma_2, B \vdash \Delta_2}{\Psi; \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2}$

This theorem is proved as a cut-elimination theorem in the extended version of the paper and in Chapter 7 of [Miller, 2025].

Cut admissibility

Theorem: The following cut rules are admissible in $\Downarrow \mathcal{L}_2$. $\frac{\Psi; \cdot \vdash B \quad \Psi, B; \Gamma \vdash \Delta}{\Psi; \Gamma \vdash \Delta} \quad \frac{\Psi; \Gamma_1 \vdash B, \Delta_1 \quad \Psi; \Gamma_2, B \vdash \Delta_2}{\Psi; \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2}$

This theorem is proved as a cut-elimination theorem in the extended version of the paper and in Chapter 7 of [Miller, 2025].

Completeness of $\Downarrow \mathcal{L}_2$: If *B* is an \mathcal{L}_2 formula provable in linear logic, then the sequent $\cdot; \cdot \vdash B$ has a $\Downarrow \mathcal{L}_2$ -proof.

Proved as a simple consequence of the cut-elimination theorem.

Rewriting the right-bounded zone

$$\alpha_{1} : \{a, b\} \rightarrow \{c, d\}$$

$$\alpha_{2} : \{e, e\} \rightarrow \{f\}$$
Encoding α_{1} using $c \ \mathcal{N} \ d \multimap a \ \mathcal{N} \ b$ yields the synthetic rule.
$$\frac{\Psi; \Gamma \vdash \Delta, c, d}{\Psi; \Gamma \vdash \Delta, c \ \mathcal{N} \ d} \quad \frac{\overline{\Psi; \cdot \Downarrow a \vdash a}}{\Psi; \cdot \Downarrow a \ \mathcal{N} \ b \vdash a, b}$$

$$\frac{\Psi; \Gamma \Downarrow c \ \mathcal{N} \ d \multimap a \ \mathcal{N} \ b \vdash \Delta, a, b}{\Psi; \Gamma \vdash \Delta, a, b}$$

Focusing on α_1 and α_2 simultaneously yields the synthetic rule

$$\frac{\Psi; \Gamma \vdash \Delta, c, d, f}{\Psi; \Gamma \vdash \Delta, a, b, e, e} \alpha_1 | \alpha_2.$$

Parallel rule application yields new synthetic rules.

Rewriting the right-bounded zone

 $\alpha_{1}: \{a, b\} \rightarrow \{c, d\}$ $\alpha_{2}: \{e, e\} \rightarrow \{f\}$ Encoding α_{1} using $c \ \Re \ d \multimap a \ \Re \ b$ yields the synthetic rule. $\underbrace{\Psi; \Gamma \vdash \Delta, c, d}_{\Psi; \Gamma \vdash \Delta, c \ \Re \ d} = \underbrace{\Psi; \cdot \Downarrow a \vdash a}_{\Psi; \cdot \Downarrow a \ \Re \ b \vdash a, b}$

 Ψ ; $\Gamma \vdash \Delta, a, b$

Focusing on α_1 and α_2 simultaneously yields the synthetic rule

$$\frac{\Psi; \Gamma \vdash \Delta, c, d, f}{\Psi; \Gamma \vdash \Delta, a, b, e, e} \alpha_1 | \alpha_2.$$

Parallel rule application yields new synthetic rules.

Rewriting the right-bounded zone

 $\begin{aligned} \alpha_{1} : \{a, b\} &\to \{c, d\} \\ \alpha_{2} : \{e, e\} &\to \{f\} \\ \text{Encoding } \alpha_{1} \text{ using } c \ \mathfrak{N} \ d &\multimap a \ \mathfrak{N} \ b \text{ yields the synthetic rule.} \\ \\ \underline{\Psi; \Gamma \vdash \Delta, c \ \mathfrak{N} \ d} \quad \underline{\Psi; \cdot \Downarrow a \vdash a} \quad \overline{\Psi; \cdot \Downarrow b \vdash b} \\ \underline{\Psi; \Gamma \vdash \Delta, c \ \mathfrak{N} \ d} \quad \underline{\Psi; \cdot \Downarrow a \ \mathfrak{N} \ b \vdash a, b} \end{aligned}$

 Ψ ; $\Gamma \Downarrow c \ \% d \multimap a \ \% b \vdash \Delta, a, b$

 Ψ ; $\Gamma \vdash \Delta, a, b$

Focusing on α_1 and α_2 simultaneously yields the synthetic rule

$$\frac{\Psi; \Gamma \vdash \Delta, c, d, f}{\Psi; \Gamma \vdash \Delta, a, b, e, e} \alpha_1 | \alpha_2.$$

Parallel rule application yields new synthetic rules.

Maximally multifocusing proofs

The interesting results surrounding multifocusing proofs are related to *maximally multifocused proofs* (MMF): these often correspond to *canonical proof structures*.

- βη-long normal λ-terms as MMF proofs (since single-focused proofs in L₀ are multifocused proofs)
- proof nets for MALL as MMF proofs [Chaudhuri, M, & Saurin, 2008]
- expansion proof for classical first-order logic as MMF LKF proofs [Chaudhuri, Hetzel, & M, 2012].

A canonical treatment of \lor and \exists in natural deduction

The negative connectives of intuitionistic logic directly translate into $\mathcal{L}_{\mathbf{0}}.$

$$\mathsf{t}^\circ = \top \qquad (B \wedge C)^\circ = B^\circ \And C^\circ \qquad (B \supset C)^\circ = B^\circ \Rightarrow C^\circ$$

 $(\forall x.B)^{\circ} = \forall x.B^{\circ}$ $A^{\circ} = A$ for atomic formulas A

Focused proofs for negative connectives correspond to *natural deduction*: Herbelin [CSL 1994] & Espírito Santo [TLCA 2007].

A canonical treatment of \lor and \exists in natural deduction

The negative connectives of intuitionistic logic directly translate into $\mathcal{L}_{\mathbf{0}}.$

$$\mathsf{t}^\circ = op (B \wedge C)^\circ = B^\circ \And C^\circ \qquad (B \supset C)^\circ = B^\circ \Rightarrow C^\circ$$

 $(\forall x.B)^{\circ} = \forall x.B^{\circ}$ $A^{\circ} = A$ for atomic formulas A

Focused proofs for negative connectives correspond to *natural deduction*: Herbelin [CSL 1994] & Espírito Santo [TLCA 2007]. We can translate the positive connectives into \mathcal{L}_2 using \perp .

$$f^{\circ} = \top \multimap \bot$$
$$(B \lor C)^{\circ} = ((B^{\circ} \Rightarrow \bot) \& (C^{\circ} \Rightarrow \bot)) \multimap \bot$$
$$(\exists x.B)^{\circ} = (\forall x.(B^{\circ} \Rightarrow \bot)) \multimap \bot$$

Extending the correspondence to natural deduction permits a new treatment for positive connectives.

Parallel elimination rules

Let $p \geq 1$ and $a_1, \ldots, a_p, b_1, \ldots, b_p$ be atomic formulas.

An example: The parallel application of the V-elimination rule is:

$$\frac{a_1 \lor b_1 \quad \cdots \quad a_p \lor b_p}{D} \quad \begin{pmatrix} \{a_i \mid i \in I\} \cup \{b_i \mid i \notin I\} \\ \vdots \\ D \end{pmatrix}_{I \subseteq \{1, \dots, p\}}$$

This rule has $p + 2^p$ premises.

Maximal multifocusing (maximal use of parallel elimination rules) corresponds to Prawitz's *maximal segments*.

Anyone know a citation for this style rule?

Proof Theory and Logic Programming: Computation as proof search, by Dale Miller

To be published by Cambridge University Press by December 2025.

Preprint available from my web page. https://www.lix.polytechnique. fr/Labo/Dale.Miller/ptlp/ (317 pages, 90 exercises).

Organizes everything I learned about the intersection of proof theory and logic programming during four decades (1985-2025).

Uses classical, intuitionistic, and linear logic (first-order and higher-order) to design and reason about logic programs.

Conclusions

- 1. Decomposed linear logic into \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_2 .
- 2. Proved that the multifocused, multiple-conclusion sequent proof system $\Downarrow \, \mathcal{L}_2$
 - satisfies cut-elimination and is complete for linear logic;
 - captures both $\Downarrow \mathcal{L}_0$ and $\Downarrow \mathcal{L}_1$; and
 - Supports parallel rule application via the presence of ⊥.
- 3. Showed that adding multifocusing or multiple conclusions to $\Downarrow \mathcal{L}_0$ and $\Downarrow \mathcal{L}_1$ does not change provability.
- 4. Demonstrated that synthetic rules
 - are formally defined using focused proofs,
 - automatically satisfy cut-elimination, and
 - can capture parallel rule application.
- 5. Provided a candidate for canonical proof format for natural deduction with positive connectives.