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Abstract

Logic programming implementations of the foundational proof certificate (FPC) framework are
capable of checking a wide range of proof evidence. Proof checkers based on logic programming can
make use of both unification and backtracking search to allow varying degrees of proof reconstruction
to take place during proof checking. Such proof checkers are also able to elaborate proofs lacking full
details into proofs containing much more detail. We outline here our use of the Coq-Elpi plugin, which
embeds an implementation of λProlog into Coq, to check proof certificates supplied by external (to
Coq) provers and to elaborate them into the fully detailed proof terms that are needed for checking
by the Coq kernel.

The trusted base of Coq is its kernel, which is a type-checking program that certifies that a depen-
dently typed λ-term has a given type. If type checking succeeds, we accept that the formula corresponding
to that type is, in fact, a theorem of intuitionistic logic. The rest of the Coq system, especially its tactic
language, is designed to help a human user build proofs-cum-λ-terms that can be checked by the kernel.
Of course, there are many theorem provers for intuitionistic logic for which a completed proof is not the
kind of detailed λ-term required by the Coq kernel but is, instead, a trace of some key aspects of a proof:
some proof details might not be captured in such a trace. For example:

1. Substitution instances of quantifiers might not be recorded in a proof since such instances can, in
principle, be reconstructed using unification.

2. Detailed typing information might not need to be stored within a proof certificate since types can
often be reconstructed during proof checking.

3. Some simplifications steps might be applied within a proof without recording which rewrites were
used. A simple non-deterministic proof-search engine might be expected to reconstruct an equiva-
lent simplification.

The Foundational Proof Certificate (FPC) framework [4] has been designed for formally defining a
rich collection of proof certificates that do not necessarily contain full details. Proof checkers for FPC
certificates can be written using simple logic programs: the standard implementation mechanisms of
unification and backtracking search can then be used to reconstruct missing proof details [10]. Such
proof checking kernels can also be used to elaborate such certificates into fully detailed proofs [2, 3].

We built the FPC-Coq system to demonstrate the feasibility of using logic programming to check
proof certificates produced by external provers and to elaborate such certificates into proofs with sufficient
details that they can be given directly to Coq’s kernel to check. Note that one does not need to trust
the external prover nor the FPC-Coq tool-chain: one only needs to trust the Coq kernel.

Because of the need to represent and compute with quantificational formulas and dependently-typed
λ-terms, we chose λProlog [11] as our implementation language since it has a direct and elegant treatment
of binding in data structures. The ELPI implementation [5] of λProlog has been embedded recently into
the Coq-Elpi plugin [13], and we have used this plugin to implement a system that checks proof certificates
in the FPC framework and elaborates them into proof terms that can be submitted to the Coq kernel.

The FPC-Coq system can be seen as part of the larger effort to use λProlog within a type theory
setting [6], in general, and within Coq [12], in particular. In doing so, the first step is to define how
to consume Coq terms as proof evidence for a formula, i.e., to program a type checker in the FPC
framework. Initially, the presentation of connectives as inductive types in Coq is translated to the usual
connectives of intuitionistic first-order logic, the only ones known to the FPC checker.

The current version of FPC-Coq only works on proving theorems in first-order intuitionistic logic.
Given that the λProlog proof checker, based on LJF (a focused version of intuitionistic sequent calculus),
can also serve as a proof checker for LKF (its classical counterpart), FPC-Coq can be used to prove



double-negation translations of a formula for which there is a proof certificate in classical logic [4].
Extending the FPC framework to involve inductive and coinductive reasoning has also been considered
[7, 8], and a future version of FPC-Coq could well include proof certificates that are output from inductive
theorem provers as well as model checkers.

Given its origins in the theory of focused sequent calculus, our first FPC proof checker only implements
a minimalistic sequent calculus in a purely declarative fashion. We have also developed a second approach
to building a proof checker based on dependent types in the style of [9]. This second approach allows
for a much more concise implementation, where there is no translation needed from Coq formulas to
intuitionistic formulas since the kernel directly operates with dependent types. The usual definitions of
proof certificates remain directly usable also in this context.

In particular, when the user loads the λProlog code for an FPC definition named, say fpc, into the
system, that FPC definition is made available as a Coq-Elpi tactic that takes a proof certificate, say
cert, as an argument. Inside Coq’s proof mode, that tactic can be invoked by elpi fpc cert.

The code for both of these implementations is available at https://github.com/proofcert/fpc-elpi.
Although FPC-Coq currently targets the construction of proofs for the Coq kernel, it should be

straightforward to use the same setup described here to build Dedukti proofs as well [1]. Our development
could also provide the facilities for cleanly and easily building Coq tactics based on proof certificates and
written in λProlog.
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