
Submitted to:
LFMTP 2020

c© Blanco, Manighetti, and Miller
This work is licensed under the
Creative Commons Attribution License.

Linking a λProlog proof checker to the Coq kernel
An extended abstract

Roberto Blanco
INRIA Paris, France

Matteo Manighetti and
INRIA Saclay

LIX, École Polytechnique, France

Dale Miller
INRIA Saclay

LIX, École Polytechnique, France

Synopsis. The Coq kernel works with a specific form of proof structure, and that proof structure is fully
detailed. In particular, the Coq kernel performs type-checking on a dependently typed λ -term. If type
checking succeeds, the formula corresponding to its type is, in fact, a theorem of intuitionistic logic.
Most external-to-Coq theorem provers do not generally build such detailed, dependently typed λ -terms
for proofs. To the extent that theorem provers output proof objects (called proof certificates here), their
structure can vary a great deal. Also, since some details can be reconstructed, they are seldom traced
and inserted into proof certificates. In this extended abstract, we describe the design of the FPC-Coq
system that can take externally generated proof certificates and elaborate them into the kind of proof
structures required by the Coq kernel. This elaboration system is built using three technologies: (1) the
foundational proof certificate (FPC) framework [3] that allows for the specification of a wide range of
proof certificates, (2) the λProlog programming language [9] that can interpret a given FPC definition
and then perform both proof checking and proof reconstruction [1, 2], and (3) the Coq-Elpi plugin [10],
which embeds the Elpi implementation [4] of λProlog into Coq.

Consider an external (to Coq) prover capable of exporting its proofs as certificates in some particular
format. Such a theorem prover (for intuitionistic logic) is unlikely to build the detailed λ -term required
by the Coq kernel. More likely, its notion of a proof certificate is, instead, a trace of some key aspects of
a proof: some proof details might not be captured in such a trace. For example:

1. Substitution instances of quantifiers might not be recorded in a proof since such instances can, in
principle, be reconstructed using unification.

2. Detailed typing information might not need to be stored within a proof certificate since types can
often be reconstructed during proof checking.

3. Some simplifications steps might be applied within a proof without recording which rewrites were
used. A simple non-deterministic proof-search engine might be expected to reconstruct an equiv-
alent simplification.

The FPC framework can be used to formally define the proof evidence of many different formats [3]
including those with such details missing. Combining such a definition, which is a simple logic program,
with an FPC proof checking kernel yields a complete logic programming proof kernel. During proof
checking, unification and backtracking search can infer missing proof details. The FPC framework also
allows for the convenient capture and reorganization of such details and, as a result, it can be used to
build proof structures appropriate for the Coq kernel.

Given its origins in the theory of focused sequent calculus, our first FPC proof checker implements
a purely declarative sequent calculus proof checker, along the lines described in [3]. We have also
developed a second approach to building a proof checker based on dependent types in the style of [7].
This second approach allows for a more concise implementation, where there is no translation needed

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Linking a λProlog proof checker to the Coq kernel

from Coq formulas to intuitionistic formulas since the kernel directly operates with dependent types. The
usual FPC definitions of proof certificates remain directly usable also in this context.

The code for both of these implementations is available at https://github.com/proofcert/
fpc-elpi. It is important to recognize that both λProlog and Coq-Elpi can be seen as parts of a tool
chain, connecting an external prover to the Coq kernel and that these two pieces of technology do not
need to be trusted by the Coq kernel.

The current version of FPC-Coq only works on proving theorems in first-order intuitionistic logic.
We also assume that external proof certificates are in a format that is formally defined by some given
FPC: examples of such formats which have already been developed are resolution refutations, Hilbert
proofs, de Bruijn notation, and natural deduction [3]. Given that the λProlog proof checker internally
implements LJF (a focused version of intuitionistic sequent calculus [8]), it can also serve as a proof
checker for LKF (its classical counterpart). As a result, FPC-Coq can be used to prove double-negation
translations of a formula for which there is a proof certificate in classical logic [3]. Extending the FPC
framework to involve inductive and coinductive reasoning has also been considered [5, 6], and a future
version of FPC-Coq could include proof certificates that are output from inductive theorem provers as
well as model checkers.

References
[1] Roberto Blanco (2017): Applications for Foundational Proof Certificates in theorem proving. Ph.D. thesis,

Université Paris-Saclay. Available at https://tel.archives-ouvertes.fr/tel-01743857.
[2] Roberto Blanco, Zakaria Chihani & Dale Miller (2017): Translating Between Implicit and Explicit Versions

of Proof. In Leonardo de Moura, editor: Automated Deduction - CADE 26 - 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, Lecture Notes in Computer
Science 10395, Springer, pp. 255–273, doi:10.1007/978-3-319-63046-5_16.

[3] Zakaria Chihani, Dale Miller & Fabien Renaud (2017): A semantic framework for proof evidence. J. of
Automated Reasoning 59(3), pp. 287–330, doi:10.1007/s10817-016-9380-6. Available at https://doi.
org/10.1007/s10817-016-9380-6.

[4] Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen & Enrico Tassi (2015): ELPI: Fast, Embeddable,
λProlog Interpreter. In Martin Davis, Ansgar Fehnker, Annabelle McIver & Andrei Voronkov, editors:
Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20
2015, LNCS 9450, Springer, pp. 460–468, doi:10.1007/978-3-662-48899-7_32.

[5] Quentin Heath & Dale Miller (2015): A framework for proof certificates in finite state exploration.
In Cezary Kaliszyk & Andrei Paskevich, editors: Proceedings of the Fourth Workshop on Proof eX-
change for Theorem Proving, Electronic Proceedings in Theoretical Computer Science 186, pp. 11–26,
doi:10.4204/EPTCS.186.4.

[6] Quentin Heath & Dale Miller (2019): A proof theory for model checking. J. of Automated Reasoning 63(4),
pp. 857–885, doi:10.1007/s10817-018-9475-3.

[7] Stéphane Lengrand, Roy Dyckhoff & James McKinna (2011): A Focused Sequent Calculus Framework
for Proof Search in Pure Type Systems. Logical Methods in Computer Science 7(1). Available at http:
//www.lix.polytechnique.fr/~lengrand/Work/Reports/TTSC09.pdf.

[8] Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logics.
Theoretical Computer Science 410(46), pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.

[9] Dale Miller & Gopalan Nadathur (2012): Programming with Higher-Order Logic. Cambridge University
Press, doi:10.1017/CBO9781139021326.

[10] Enrico Tassi (2020): Coq plugin embedding ELPI. https://github.com/LPCIC/coq-elpi.

https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
https://tel.archives-ouvertes.fr/tel-01743857
http://dx.doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
http://dx.doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.4204/EPTCS.186.4
http://dx.doi.org/10.1007/s10817-018-9475-3
http://www.lix.polytechnique.fr/~lengrand/Work/Reports/TTSC09.pdf
http://www.lix.polytechnique.fr/~lengrand/Work/Reports/TTSC09.pdf
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1017/CBO9781139021326
https://github.com/LPCIC/coq-elpi

