
CSL04, 22 September 2004 1/27

Bindings, mobility of bindings, and the

∇-quantifier

Dale Miller, INRIA-Futurs and LIX, École Polytechnique

Based on technical results in:

“A Proof Theory for Generic Judgments”, LICS2003 & ACM ToCL
“A Proof Search Specification of the π-Calculus”, Workshop on the

Foundations of Global Ubiquitous Computing, 2004.

Papers and work are joint with Alwen Tiu
(PhD 2004; soon post doc at Loria, Nancy)

CSL04, 22 September 2004 2/27

Outline

1. Abstract syntax for binders

2. Generic judgments and the ∇-quantification

3. Inference rules for non-logical constants and equality

4. Example: π-calculus

CSL04, 22 September 2004 3/27

Two slogans

(I) From Alan Perlis’s Epigrams on Programming: As Will Rogers
would have said, “There is no such thing as a free variable.”

Thus: all variables will be bound somewhere.

(II) We treat the names of binders as the same kind of fiction as
we treat white space: they are artifacts of how we write expressions
and have zero semantic content.

Thus: we focus on bindings abstractly and not on how they are
named.

CSL04, 22 September 2004 4/27

Higher-Order Abstract Syntax

“If your object-level syntax (formulas, programs, types, etc) contain
binders, then map these binders to binders in the meta-language.”

Functional Programming & Constructive type theories: the binder
available is the one for function spaces.

Proof Search (a modern update to logic programming): the binders
available are typed λ-expressions with equality (and, hence,
unification) modulo α, β, and η conversions.

These approaches are different. Consider ∀wi. λx.x 6= λx.w (∗).
FP: (∗) is not a theorem, since the identity and the constant valued
function coincide on singleton domains.

Proof search: (∗) is a theorem since no instance of λx.w can equal
λx.x.

λ-tree syntax: HOAS in the proof search setting.

CSL04, 22 September 2004 5/27

Dynamics of binders during proof search

During computation, binders can be instantiated

Σ : ∆, typeof c (int → int) −→ C

Σ : ∆,∀α(typeof c (α → α)) −→ C
∀L

or they can move.

Σ, x : ∆, typeof x α −→ typeof dBe β

Σ : ∆ −→ ∀x(typeof x α ⊃ typeof dBe β) ∀R
Σ : ∆ −→ typeof dλx.Be (α → β)

In this case, the binder named x moves from term-level (λx) to
formula-level (∀x) to proof-level (as an eigenvariable in Σ, x).

Note: The variables in Σ within Σ : ∆ −→ C are eigenvariables and
are bound over the sequent. Σ is the sequent’s signature.

CSL04, 22 September 2004 6/27

The collapse of eigenvariables

An attempt to build a cut-free proof of ∀x∀y.P x y first introduces
two new and different eigenvariables c and d and then attempts to
prove P c d.

Eigenvariables have been used to encode names in π-calculus
[Miller93], nonces in security protocols [Cervesato, et.al. 99],
reference locations in imperative programming [Chirimar95], etc.

Since ∀x∀y.P x y ⊃ ∀z.P z z is provable, it follows that the
provability of ∀x∀y.P x y implies the provability of ∀z.P z z. That
is, there is also a cut-free proof where the eigenvariables c and d are
identified.

Thus, eigenvariables are unlikely to capture the proper logic behind
things like nonces, references, names, etc.

CSL04, 22 September 2004 7/27

Quiz

Consider a simple “object-logic” with a pairing constructor 〈x, y〉.
If the formula ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉] follows from the
assumptions

∀x∀y[q x x y] ∀x∀y[q x y x] ∀x∀y[q y x x]

what can we say about the terms t1, t2, and t3?

CSL04, 22 September 2004 8/27

Quiz

Consider a simple “object-logic” with a pairing constructor 〈x, y〉.
If the formula ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉] follows from the
assumptions

∀x∀y[q x x y] ∀x∀y[q x y x] ∀x∀y[q y x x]

what can we say about the terms t1, t2, and t3?

Answer: the terms t2 and t3 are equal.

Does not matter the domain of the quantifiers ∀u∀v. This
conclusion holds for internal reasons instead of external reasons.

Such an internal treatment does not seem possible if the binders
named u and v move to the meta-level as eigenvariables.

CSL04, 22 September 2004 9/27

Generic judgments and a new quantifier

Gentzen’s introduction rule for ∀ on the left is extensional: ∀x
mean a (possibly infinite) conjunction indexed by terms.

The quantifier ∇x.B x provides a more “intensional”, “internal”,
or “generic” reading. We also need a new local context in sequents.

Σ : B1, . . . , Bn −→ B0

⇓
Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0

Σ is a list of distinct eigenvariables, scoped over the sequent and σi

is a list of distinct variables, locally scoped over the formula Bi.

The expression σi . Bi is called a generic judgment. Equality
between judgments is defined up to renaming of local variables.

CSL04, 22 September 2004 10/27

The ∇-quantifier

The left and right introductions for ∇ (nabla) are the same.

Σ : (σ, x : τ) . B, Γ −→ C
Σ : σ . ∇τx.B, Γ −→ C

Σ : Γ −→ (σ, x : τ) . B

Σ : Γ −→ σ . ∇τx.B

Standard proof theory design: Enrich context and add connectives
dealing with these context.

Quantification Logic: Add the eigenvariable context; add ∀ and ∃.
Linear Logic: Add multiset context; add multiplicative connectives.

Also: hyper-sequents, calculus of structures, etc.

Such a design, augmented with cut-elimination, provides
modularity of the resulting logic.

CSL04, 22 September 2004 11/27

Properties of ∇
The following are theorems: ∇ moves through all propositional
connectives:

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x.> ≡ > ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x.⊥ ≡ ⊥ ∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx

The ∇ moves through the quantifiers by raising them.

∇xα∀yβ .Bxy ≡ ∀hα→β∇x.Bx(hx)

∇xα∃yβ .Bxy ≡ ∃hα→β∇x.Bx(hx)

Consequence: ∇ can always be given atomic scope within formulas,
at the “cost” of raising quantifiers.

CSL04, 22 September 2004 12/27

Non-theorems and not-yet-theorems

Some non-theorems:

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

Once we introduce inference rules for definitions and equality, the
following can be proved.

∇xBx ⊃ ∀xBx ∇xB ≡ B ∇x∇yB x y ≡ ∇y∇xB xy

CSL04, 22 September 2004 13/27

A proof theoretic notion of definitions

Introduce non-logical constants (predicate) via definitions.

∀x̄.p x̄
4= B x̄

The introduction rules for defined atoms are immediate.

Σ : ∆, σ . Bt̄ −→ C

Σ : ∆, σ . pt̄ −→ C
defL Σ : ∆ −→ σ . Bt̄

Σ : ∆ −→ σ . pt̄
defR

Writing several clauses is sometimes more convenient than writing
one. For example, the clauses

∀ū.p t1
4= B1 ∀v̄.p t2

4= B2 . . .

denote the single clause

∀x.p x
4= (∃ū.x = t1 ∧B1) ∨ (∃v̄.x = t2 ∧B2) ∨ . . .

CSL04, 22 September 2004 14/27

Introduction rules for equality

Σ : ∆ −→ σ . t = t

{Σθ : Γθ −→ Cθ | θ ∈ csu(λx̄.s, λx̄.t)}
Σ : ∆, σ . s = t −→ C

where csu stands for “complete set of unifiers.” In many cases, this
can be replaced by mgu (most general unifier).

The set of premises might be empty, finite, or infinite. Each
member of this set is a premise.

The signature Σθ is obtained from Σ by removing variables in the
domain of θ, and adding free variables in the range of θ.

Notice that it is eigenvariables that get unified and instantiated.

If the premise set is empty, the proof search is complete. That is: a
unification failure yields a proof search success.

CSL04, 22 September 2004 15/27

Proof System with Definitions and Equality

This approach to definitions and equality in sequent calculus was
first introduced independently by Schroeder-Heister, Girard
(fixpoints), and R. Stärk (1990-92).

It was later elaborated by McDowell/Miller/Tiu (1996-2003).

Closely related to the “Clark completion” studied in logic
programming.

Tiu has generalized definitions so that they are not just discussing
“general fixpoints” but can be used to support induction (least)
and coinduction (greatest).

By imposing certain restriction on definitions, we can prove
cut-elimination. We must not allow, for example, p

4= ¬p.

CSL04, 22 September 2004 16/27

Examples: 1 + 2 = 3 and 1 + 2 6= 1

sum z N N
4= >.

sum (s N) M (s P) 4= sum N M P.

−→ >
−→ sum z (s (s z)) (s (s z)) defR

−→ sum (s z) (s (s z)) (s (s (s z))) defR

sum z (s (s z)) z −→ defL
sum (s z) (s (s z)) (s z) −→ defL

More generally:

Σ, n : Γ(n, n),> −→ G(n, n)
Σ, n, m : Γ(n,m), sum z n m −→ G(n,m) defL

CSL04, 22 September 2004 17/27

Example: computing max

a (s z) 4= >.

a (s (s (s z))) 4= >.

a z
4= >.

maxa N
4= (a N) ∧ ∀x(a x ⊃ x ≤ N).

z ≤ N
4= true.

(s N) ≤ (s M) 4= N ≤ M.

maxa N holds if and only if N is the maximum value for a.

−→ >
−→ a 3 defR

−→ 1 ≤ 3 −→ 3 ≤ 3 −→ 0 ≤ 3
x : a x −→ x ≤ 3 defL

−→ ∀x(a x ⊃ x ≤ 3)
∀R,⊃ R

−→ maxa 3 defR

CSL04, 22 September 2004 18/27

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a
sequent has a proof if and only if it has a cut-free proof. (Tiu 2003:
also when induction and coinduction are added.)

Theorem: Given a noetherian definition and a fixed formula B,

` ∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem: If we restrict to Horn definitions (no implication or
negations in the body of the definitions) then

1. ∀ and ∇ are interchangeable in definitions,

2. For noetherian definitions and fixed B, ` ∇x.B x ⊃ ∀x.B x.

CSL04, 22 September 2004 19/27

LINC

LINC stands for a logic with Lambdas, Induction, Nabla, and
Coinduction.

Also: LINC Is Not Coq.

Extends FOλ∆IN of McDowell/Miller.

It is a big logic, providing a framework for proving properties about
logic specifications (current target: operational semantics).

Allows induction and coinduction on the λ-tree approach of HOAS.

CSL04, 22 September 2004 20/27

Example: encoding π calculus

We write the concrete syntax of π-calculus processes as:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

We use three syntactic types: n for names, a for actions, and p for
processes. The type n may or may not be inhabited.

We assume three constructors for actions: τ : a and ↓ and ↑ (for
input and output actions, resp), both of type n → n → a.

Abstract syntax for processes is the usual. Restriction: (y)Py is
coded using a constant nu : (n → p) → p as nu(λy.Py) or as just
nu P . Input prefix x(y).Py is encoded using a constant
in : n → (n → p) → p as in x (λy.Py) or just in x P . Other
constructors are done similarly.

CSL04, 22 September 2004 21/27

π-calculus: one step transitions

The “free action” arrow · ·−−→ · relates p and a and p.

The “bound action” arrow · ·−−⇀ · relates p and n → a and n → p.

P
A−−→ Q free actions, A : a (τ , ↓ xy, ↑ xy)

P
↓x−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x−−⇀ M bound output action, ↑ x : n → a, M : n → p

Consider encoding a few one-step rules as definition clauses.

OUTPUT–ACT: x̄y.P
↑xy−−→ P

4
= >

INPUT–ACT: x(y).My
↓x−−⇀ M

4
= >

MATCH: [x = x]P
α−−→ Q

4
= P

α−−→ Q

RES: (x)Px
α−−→ (x)Qx

4
= ∀x.(Px

α−−→ Qx)

Should that last ∀ be a ∇? To know, we must leave Horn clauses.

CSL04, 22 September 2004 22/27

The process (y)[x = y]x̄z.0 cannot make any transition. Thus the
following statement should be provable.

∀x∀z∀Q∀α.[((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥]

Given the encoding of restriction using ∀, this reduces to proving
the sequent

{x, z,Q′, α} : ∀y.([x = y](x̄z.0)
α−−→ Q′y) −→ ⊥

No matter what is used to instantiate the ∀y, the eigenvariable x

can instantiated to the same thing (say, w), and this case leads to
the non-provable sequent

{z} : ([w = w](w̄z.0)
w̄z−−→ 0) −→ ⊥

The universal quantifier was not the correct choice.

CSL04, 22 September 2004 23/27

Scoping is captured precisely by ∇. Change RES to use ∇.

RES : (x)P
α−−→ (x)Q 4= ∇x.(P

α−−→ Q)

{x, z, Q, α} : y . ([x = y](x̄z.0)
α−−→ Q′y) −→ ⊥

defL

{x, z,Q, α} : . .∇y.([x = y](x̄z.0)
α−−→ Q′y) −→ ⊥

∇L

{x, z, Q, α} : . . ((y)[x = y](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} :−→ . . ((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥

⊃ R

The success of defL depends on the unification failure of

λy.x = λy.y.

CSL04, 22 September 2004 24/27

π-calculus: encoding (bi)simulation

sim P Q
4= ∀A∀P ′ [P

A−−→ P ′ ⊃ ∃Q′.Q A−−→ Q′ ∧ sim P ′ Q′] ∧
∀X∀P ′ [P

↓X−−⇀ P ′ ⊃ ∃Q′.Q ↓X−−⇀ Q′ ∧ ∀w.sim(P ′w)(Q′w)] ∧
∀X∀P ′ [P

↑X−−⇀ P ′ ⊃ ∃Q′.Q ↑X−−⇀ Q′ ∧∇w.sim(P ′w)(Q′w)]

This definition clause is not Horn and helps to illustrate the
differences between ∀ and ∇.

Bisimulation (bisim) is easy to write: it has 6 cases.

The early version of bisimulation is a change in quantifier scope.

CSL04, 22 September 2004 25/27

Learning something from our encoding

Theorem: Assume the finite π-calculus and the bisimulation
definition.

`I ∀x̄.bisim P Q if and only if P is open bisimilar to Q.

`C ∇x̄.bisim P Q if and only if P is late bisimilar to Q.

The gap can be isolated to be the following instance of the
excluded middle:

∀w∀y.(w = y ∨ w 6= y)

A straightforward application of proof search principles provides
symbolic open bisimulation. A prototype built by Tiu uses
Lλ-unification (a.k.a. higher-order pattern unification), which has
MGUs.

CSL04, 22 September 2004 26/27

Conclusions

Extended the sequent calculus with the notion of generic judgment
and the ∇ quantifier. Proof rules used standard aspects of
λ-calculus.

Provided a completely declarative presentation of the operational
semantics of the π-calculus without side conditions.

That presentation was so good that we learned something from it:

• a new characterization of open and late bisimulation, and

• a new approach to symbolic open bisimulation using standard
(higher-order) logic programming techniques.

CSL04, 22 September 2004 27/27

Future Work

Generalize the results concerning GSOS and congruence of
bisimulation for mobile and for higher-order process calculi?

How to implement late bisimulation? How to automate effectively
the instances of the excluded middle for equality? Hint: unification
failures can tell us which instances we should use.

Clearly, the π-calculus is just one application. What can we do
with other topics?

What is a good model theoretic semantics for ∇? In classical
and/or intuitionistic logic?

