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Interests in the sequent calculus

For mathematical logic:
• Gentzen’s proof of consistency of first order logics and Peano

Arithmetic. Ordinal analysis.

For logic more generally:
• One of several frameworks for describing proofs in many logics.

For computer science:
• A framework for computing (a la proof search), model checking, and

theorem proving.
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Two early attempts at Unity in Logic

Gentzen’s sequent calculi (LJ/LK)
• classical and intuitionistic logic differed by restriction on structural rules

on the right of the sequent arrow.
• One cut-elimination procedure worked for both logics.

Church’s Simple Theory of Types (STT)
• One framework for propositional, first-order, and higher-order logics.

Their combination provides a framework that accounts for a great deal
computation logic . . .

. . . but the sequent calculus is too “unstructured” for immediate
employment in computer science.
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A quick primer on the sequent calculus

Sequents are pairs Γ − ∆ where

Γ, the left-hand-side, is a multiset of formulas; and

∆, the right-hand-side, is a multiset of formulas.

N.B. Gentzen used lists instead of multisets.
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Inference rules: two structural rules

There are two sets of these: contraction, weakening.

Γ,B,B − ∆

Γ,B − ∆
cL

Γ − ∆,B,B

Γ − ∆,B
cR

Γ − ∆

Γ,B − ∆
wL

Γ − ∆

Γ − ∆,B
wR

N.B. Gentzen’s use of lists of formulas required him to also have an
exchange rule.
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Inference rules: two identity rules

There are exactly two identity rules: initial, cut.

B − B
init

Γ1 − ∆1,B B, Γ2 − ∆2

Γ1, Γ2 − ∆1,∆2
cut

Notice the repeated use of the variable B in these rules.

In general: all instances of both of these rules can be eliminated except for
init when B is atomic.

In arithmetic, where all predicates are defined, init can be eliminated too.
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Inference rules: introduction rules (some examples)

Γ,Bi − ∆

Γ,B1 ∧ B2 − ∆
∧L

Γ − ∆,B Γ − ∆,C

Γ − ∆,B ∧ C
∧R

Γ,B − ∆ Γ,C − ∆

Γ,B ∨ C − ∆
∨L

Γ − ∆,Bi

Γ − ∆,B1 ∨ B2
∨R

Γ1 − ∆1,B Γ2,C − ∆2

Γ1, Γ2,B ⊃ C − ∆1,∆2
⊃L

Γ,B − ∆,C

Γ − ∆,B ⊃ C
⊃R

Γ,B[t/x ] − ∆

Γ,∀x B − ∆
∀L

Γ − ∆,B[y/x ]

Γ − ∆, ∀x B
∀R†

Γ,B[y/x ] − ∆

Γ, ∃x B − ∆
∃L†

Γ − ∆,B[t/x ]

Γ − ∆, ∃x B
∃R
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Permutations of inference rules

Γ, p, r − s,∆ Γ, q, r − s,∆

Γ, p ∨ q, r − s,∆
∨L

Γ, p ∨ q − r ⊃ s,∆
⊃R

Γ, p, r − s,∆

Γ, p − r ⊃ s,∆
⊃R

Γ, q, r − s,∆

Γ, q − r ⊃ s,∆
⊃R

Γ, p ∨ q − r ⊃ s,∆
∨L
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Provability defined

A C-proof (classical proof ) is any proof using these inference rules.

An I-proof (intuitionistic proof ) is a C-proof in which the right-hand side
of all sequents contain either 0 or 1 formula.

Let ∆ be a finite set of formulas and let B be a formula.

Write ∆ `C B and ∆ `I B if the sequent ∆ − B has, respectively, a
C-proof or an I-proof.
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Cut elimination

Theorem. If a sequent has a C-proof (respectively, I-proof) then it has a
cut-free C-proof (respectively, I-proof).

This theorem was stated and proved by Gentzen 1935.

Gentzen invented the sequent calculus so that he could formulate one
proof of this Hauptsatz for both classical and intuitionistic logic.

Structural rules are used to describe the difference between these logics.

There are many other ways to describe the difference between them
(excluded middle, constructive vs non-constructive, Kripke semantics, etc).
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Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a proof of
B and ¬B.

Proof. Assume that − B and B − have proofs. By cut, − has a proof.
Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only of
subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut. (Assuming first-order
quantification here.)

Should I eliminate cuts in general?

NO! Cut-free proofs of interesting
mathematical statement often do not exists in nature.

If you are using cut-free proofs, you are probably modeling computation or
model checking.
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Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs. Or build next generation
theorem provers than can pick lemmas...

Issue 2: The structural rules of weakening and contraction can be applied
(almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem proving
technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent, which
should be selected for introduction?
Solution: Good question. We concentrate on this issue next using

focused proof systems. .
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Some “focusing” behavior

Given the inference figure (a variant of ⊃L), where A is atomic.

Γ −→ G
Ξ

Γ,D −→ A

Γ −→ A
, provided G ⊃ D ∈ Γ

can we restrict the last inference rule in Ξ?

In intuitionistic logic, we can insist that Ξ ends with either

an introduction rule for D (if D is not atomic) or

an initial rule with A = D (if D is atomic).
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Backchaining as focusing behavior

Let D be the formula (for atomic A′)

∀x̄1(G1 ⊃ ∀x̄2(G2 ⊃ · · · ∀x̄n(Gn ⊃ A′) . . .))

and consider the sequent Γ,D − A, for atomic A.

We can insist that if one applies a left introduction rule on D, then that
choice cascades into a series of ∀L, ⊃L, and initial rule.

Γ,D − G1θ · · · Γ,D − Gnθ A = A′θ

Γ,D − A
backchain

If we have only ∀ and ⊃, then this rule schema can replace all
left-introduction rules.

This cascade of introduction rules is called a focus.
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Backward and forward chaining

Γ −→ a Γ, b −→ G

Γ, a ⊃ b −→ G
a, b are atoms, focus on a ⊃ b

Negative atoms: The right branch is trivial; ı.e., b = G . Continue with
Γ −→ a (backward chaining).
Positive atoms: The left branch is trivial; ı.e., Γ = Γ′, a. Continue with
Γ′, a, b −→ G (forward chaining).

Let Γ contain fib(0, 0), fib(1, 1), and

∀n∀f ∀f ′[fib(n, f ) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].

The nth Fibonacci number is F iff Γ ` fib(n,F ). What’s its complexity?

If fib(·, ·) is negative then the unique proof is exponential in n.
If fib(·, ·) is positive then the shortest proof is linear in n.
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Various focusing-like proof system

Uniform proofs [M, Nadathur, Scedrov, 1987] describes goal-directed
search and backchaining (in higher-order logic).

LLF: [Andreoli, 1992]: a focused proof system for linear logic.

LKT/LKQ/LKη: focusing systems for classical logic [Danos, Joinet,
Schellinx,1993]

LJQ [Herbelin, 1995] permits forward-chaining proof. LJQ′ [Dyckhoff &
Lengrand, 2007] extends it.

λRCC [Jagadeesan, Nadathur, Saraswat, 2005] mixes forward chaining and
backward chaining (in a subset of intuitionistic logic).

LJF [Liang & M, 2009] allows forward and backward proof in all of
intuitionistic logic. LJT, LJQ, λRCC, and LJ are subsystems.

LKF (following) provides focusing for all of classical logic.
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Invertible rules and the negative phase

Some inference rules are invertible, e.g.,

A, Γ −→ B

Γ −→ A ⊃ B
Γ −→ A Γ −→ B

Γ −→ A ∧ B

Γ −→ B[y/x ]

Γ −→ ∀x .B

First focusing principle: when proving a sequent, apply invertible rules
exhaustively and in any order.

This is the negative phase of proof search: if formulas are “processes” in
an “environment,” then these formulas “evolve” without communications
(“asynchronously”) with the environment.
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Non-invertible rules and the positive phase

Some inference rules are not generally invertible, e.g.,

Γ1 −→ A Γ2 −→ B
Γ1, Γ2 −→ A ∧ B

Γ −→ B[t/x ]

Γ −→ ∃x .B

Some backtracking is generally necessary within proof search using these
inference rules.

Second focusing principle: non-invertible rules are applied in a
“chain-like” fashion.

This is the positive phase of proof search.

Dale Miller (INRIA & Ecole Polytechnique) Synthetic connectives and their proof theory 21 July 2011 18 / 43



Extending the neg/pos distinction to atoms

Focusing proof systems extend the neg/pos distinction to atoms but this
extension is arbitrary.

We shall assume that all atoms are assigned a bias, that is, they are either
positive or negative.

A positive formula is either a positive atom or has a top-level connective
whose right-introduction rule is not invertible.

A negative formula is either a negative atom or has a top-level connective
whose right-introduction rules is invertible.
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The full picture behind focusing

Andreoli (1992) was the first to give a focused proof system for a full logic
(linear logic).

The proof system for MALL (multiplicative-additive linear logic) is
remarkably elegant and unambiguous.

Some complexity arises from using the exponentials (!, ?): in particular,
exponentials terminate focusing phases.

We present two focused proof systems:

LKF for classical logic

LKF extended with fixed points and equality (arithmetic).
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Classical logic and one-sided sequents

Two conventions for dealing with classical logic.

• Formulas are in negation normal form.

B ⊃ C is replaced with ¬B ∨ C ,

negations are pushed to the atoms

• Sequents will be one-sided. In particular, the two sided sequent

B1, . . . ,Bn − C1, . . . ,Cm

will be converted to

− ¬B1, . . . ,¬Bn,C1, . . . ,Cm.
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LKF: Focusing for Classical Logic

Formulas are polarized as follows.

atoms are assigned bias (either + or −), and

∧ ∨, t, and f are annotated with either + or −.
Thus: ∧−, ∧+, ∨−, ∨+, t−, t+, f −, f +.

LKF is a focused, one-sided sequent calculus with the sequents

` Θ ⇑ Γ and ` Θ ⇓ B

Here, Θ is a multiset of positive formulas and negative literals, Γ is a
multiset of formulas, and B is a formula.
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LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇑ Γ,A[y/x ]

` Θ ⇑ Γ, ∀xA

` Θ ⇓ t+
` Θ ⇓ A ` Θ ⇓ B

` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨+ A2

` Θ ⇓ A[t/x ]

` Θ ⇓ ∃xA

Init

` ¬Pa,Θ ⇓ Pa

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P positive; Pa positive literal; N negative;
C positive formula or negative literal.
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About the structural rules in LKF

The only form of contraction is in the Decide rule

` P,Θ ⇓ P

` P,Θ ⇑ ·

The only occurrence of weakening is in the Init rule.

` ¬Pa,Θ ⇓ Pa

Thus negative non-atomic formulas are treated linearly (in the sense of
linear logic).

Only positive formulas are contracted.
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Results about LKF

Let B be a first-order logic formula and let B̂ result from B by placing +
or − on t, f , ∧, and ∨ (there are exponentially many such placements).

Theorem. B is a first-order theorem if and only if B̂ has an LKF proof.
[Liang & M, TCS 2009]

Different polarizations do not change provability but can radically change
proofs.

Recall the Fibonacci series example: an exponential time algorithm or a
linear time algorithm depending only on bias assignment for atoms.
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The abstraction behind focused proofs

If we ignore the internal structure of phases and consider only their
boundaries, then we have moved from micro-rules (introduction rules) to
macro-rules (pos or neg phases).

The decide depth of an LKF proofs is the maximum number of Decide
rules along any path starting from the end-sequent.

This measurement counts “bi-poles”: one positive phase followed by a
negative phase.
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An example

Let a, b, c be positive atoms and let Θ contain the formula a ∧+ b ∧+ ¬c .

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus, the
“macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·
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Two certificates for propositional logic: negative

Use ∧− and ∨−. Their introduction rules are invertible. The initial
“macro-rule” is huge, having all the clauses in the conjunctive normal form
of B as premises.

. . .

` L1, . . . , Ln ⇓ Li
Init

` L1, . . . , Ln ⇑ · Decide
. . .

...

` · ⇑ B

A proof “certificate” can specify the complementary literals for each
premise or it can ask the checker to search for such pairs.

Proof certificates can be tiny but require exponential time for checking.
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Of course, good proofs contain “information”

Let B be a propositional formula with a large conjunctive normal form.

Consider the tautology C = (p ∨ B) ∨ ¬p.

A negative focused proof computes the conjunctive normal form of C and
then observing that each disjunct contains p and ¬p.

The use of positive polarities allows us to provide a more clever proof.
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Two certificates for propositional logic: positive

Below is a proof involving positive biased connectives.

` (p ∨+ B) ∨+ ¬p,¬p ⇓ p

` (p ∨+ B) ∨+ ¬p,¬p ⇓ (p ∨+ B) ∨+ ¬p
∗

` (p ∨+ B) ∨+ ¬p,¬p ⇑ · Decide

` (p ∨+ B) ∨+ ¬p ⇑ ¬p

` (p ∨+ B) ∨+ ¬p ⇓ ¬p

` (p ∨+ B) ∨+ ¬p ⇓ (p ∨+ B) ∨+ ¬p
∗

` (p ∨+ B) ∨+ ¬p ⇑ · Decide

` · ⇑ (p ∨+ B) ∨+ ¬p

Clever choices ∗ are injected twice. The structure of B is avoided.
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Herbrand’s Theorem is a simple corollary

Herbrand’s Theorem.
Let B be a quantifier-free first-order formula. ∃x̄ .B is a theorem
if and only if there is an n ≥ 1 and substitutions θ1, . . . , θn such
that Bθ1 ∨ · · · ∨ Bθn is tautologous.

This theorem is easily proved by the completeness of LKF.
• Polarize the propositional connectives all negatively.
• Replace Decide on ∃x̄ .B followed by substitution θiB with a Decide on

Bθ1 ∨+ · · · ∨+ Bθn and select θiB.
• The rest of the macro-level inference rules are unchanged.
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Arithmetic via equality and fixed points

We shall add

first-order term equality and

fixed points (for recursive definitions)

We follow developments by Girard [1992], Schroeder-Heister [1993], and
Baelde, McDowell, M, & Tiu [1996-2008].

Both equality (=, 6=) and fixed point definition (µ, ν) are logical
connectives: that is, they are defined by introduction rules.
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Equality as logical connective

Introductions rules

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

N.B. Unification was used before to implement inference rules: here,
unification is in the definition of the rule.
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Some theorems about equality

Equality is an equivalence relation...

• ∀x [x = x ]
• ∀x , y [x = y ⊃ y = x ]
• ∀x , y , z [x = y ∧ y = z ⊃ x = z ]

and a congruence.

• ∀x , y [x = y ⊃ (f x) = (f y)]
• ∀x , y [x = y ⊃ (p x) ⊃ (p y)]

Let 0 denote zero and s denote successor.

• ∀x [0 6= (s x)]
• ∀x , y [(s x) = (s y) ⊃ x = y ]
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A hint of model checking

Encode a non-empty set of first order terms S = {s1, . . . , sn} (n ≥ 1) as
the one-place predicate

Ŝ = [λx . x = s1 ∨+ · · · ∨+ x = sn]

If S is empty, then define Ŝ to be [λx . f +]. Notice that

s ∈ S if and only if ` Ŝ s.

The statement

∀x ∈ {s1, . . . , sn}.P(x) becomes ∀x .[Ŝx ⊃ Px ].

` P(s1) ⇑ ·
` P(x) ⇑ x 6= s1 · · ·

` P(sn) ⇑ ·
` P(x) ⇑ x 6= sn

` · ⇑ ∀x .[x 6= s1 ∧− · · · ∧− x 6= sn] ∨− P(x)
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Fixed Points as connectives

The fixed points operators µ and ν are De Morgan duals and simply unfold.

` Θ ⇑ Γ,B(νB)t̄

` Θ ⇑ Γ, νBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n terms.

µ and ν denotes neither the least nor the greatest fixed point. That
distinction arises if we add the rules of induction and co-induction.
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Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two ways to
define predicates over numbers.

nat 0 :- true.

nat (s X ) :- nat X .

leq 0 Y :- true.

leq (s X ) (s Y ) :- leq X Y .

These logic programs can be given as fixed point expressions.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0) ∨+ ∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clause specifications correspond to purely positive fixed points
(mutual recursions requires standard encoding techniques).
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Putting computation into an inference rule

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style computation.
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Example: One step transitions in CCS

As inference rules in SOS (structured operational semantics):

A.P
A−→ P

P
A−→ R

P + Q
A−→ R

Q
A−→ R

P + Q
A−→ R

P
A−→ P ′

P|Q A−→ P ′|Q
Q

A−→ Q ′

P|Q A−→ P|Q ′

These can be written as Prolog clauses and as a fixed point definition for
the three place predicate · ·−→ ·
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Example: a proof system for simulation

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[ P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′ ]].

Here, P
A−→ P ′ is a purely positive fixed point expression.

The definition of simulation is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ · ] is a negative “macro connective”.

There are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ · ] is a positive “macro connective”.

There can be choices for continuation Q ′.

These macro-rules now match exactly the sense of simulation (similar also
to winning strategies).
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Maximal multifocusing

Allowing multiple foci is a trivial extension:

` ∆,Θ ⇓∆

` ∆,Θ ⇑ ·

where ∆ is a non-empty multiset of positive formulas.

This rule allows modeling “parallel actions” in proofs. Instead of just
α ; β and β ; α, we also have α | β.

Maximal multifocusing leads to natural candidates for canonical proof
structures: e.g., proof nets for MALL [Chaudhuri, M, Saurin, 2008].
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Future work: broad spectrum proof certificates

Sequent calculus and focusing proof systems provide:
• The atoms of inference (the introduction rules)
• The structure of focusing provides us with the rules of chemistry:

which atoms stick together and which do not.
• Engineered proofs system can be made form molecules of inference.

An approach to a general notion of proof certificate:
• The world’s provers print their proof evidence using appropriately

engineered molecules of inference.
• A universal proof checker implements only the atoms of inference and

the rules of chemistry.

See the two recent draft submissions:
• “Communicating and trusting proofs: The case for broad spectrum

proof certificates”
• “A proposal for broad spectrum proof certificates”
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The end

Thank you
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