
A Look at TPS

Dale A. Mil ler Eve Longini Cohen
Department of Mathematics Jet Propulsion Laboratory
Carnegie-Mellon University California Institute of Technology

Pittsburgh, PA 15213 Pasadena, CA 91109
Peter B. Andrews

Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

A b s t r a c t

Certain aspects of the theorem proving system TPS are described. Type theory with

X-abstraction has been chosen as the logical language of TPS so that statements from

many fields of mathematics and other disciplines can be expressed in terms accessible to

the system.

Considerable effort has been devoted to making TPS a useful research tool with which

interaction is efficient and convenient. Numerous special characters are available on the

terminals and printer used by TPS, and many of the traditional notations of mathematics

and logic can be used in interactions with the system. When constructing a proof

interactively, the user needs to specify only essential information, and can often construct

needed wffs from others already present with the aid of a flexible editor for wffso

TPS constructs proofs in natural deduction style and as p-acceptable matings. Proofs in

the latter style can be automatically converted to the former. TPS can be used in a mixture

of interactive and automatic modes, so that human input need be given only at critical

points in the proof.

The implementations of the algorithms which search for matings and perform higher

order unification are described, along with some associated search heuristics. One

heuristic used in the search for matings, of special value for dealing with wffs containing

equality, considers in close sequence vertical paths on which mating processes are likely

to interact. A very useful heuristic for pruning unification trees involves deleting nodes

subsumed by other nodes. It is shown how the unification procedure deals with

unification problems which keep growing as the search for a mating progresses.

It has been found that although unification of literals is more complicated for higher

order logic than for first order logic, this is not a major source of difficulty.

An example i~s given to show how TPS constructs a proof.

This work is supported by NSF Grants MCS78-01462 and MCS81-02870.

50

w Introduction

In this paper we shall describe certain features of an automated theorem-proving

system called TPS which is under development at Carnegie-Mellon University, and which

implements the ideas in [1] and [2], with which we assume familiarity.

w L o n g t e r m g o a l s and d e s i g n p h i l o s o p h y

There is abundant evidence of the need for new intellectual tools to aid mankind in

dealing with the complexities of the modern world. Among these tools must surely be

some designed to facilitate logical reasoning. Since the construction of proofs is one of

the best understood aspects of logic, work on automated theorem proving provides a

natural starting point for research on the more general problem of automating logical

reasoning.

Naturally, one must expect that the early stages of work on automating reasoning will

produce systems which can be successful only on fairly simple problems. Nevertheless, in

designing such a system it is helpful to keep in mind the features and capabilities which

one would like it to have in the long run, and to provide an adequate framework for the

long term developments which are anticipated. One of the important decisions which

must be made at an early stage concerns the language of logic to be used.

As one envisions the sophisticated question-answering systems of the future, it seems

clear that scientific knowledge at various levels of abstraction will gradually be

incorporated into them. Since mathematics is the language of science, artificial

intelligence systems which use logic in a sophisticated way will surely come to be

regarded as severely limited if they cannot handle mathematics on a conceptual as well as

a computational level. Even if mathematics is not used explicitly, the sort of logical

abilities needed for mathematics are vital for many sophisticated applications of logic. For

this reason, one of the objectives in the development of TPS is to obtain a system in which

mathematics can be expressed naturally and in which mathematical reasoning can be

(partially) automated.

Of course, mathematics provides an ideal environment for research on logical

reasoning. Mathematical statements are customarily expressed in ways which make their

logical structure very clear, and mathematical arguments are customarily carried out with

an attention to logical detail unparalleled in any other field. The theorems of mathematics

exhibit an enormous variety of subject matter and complexity. Thus mathematics

provides a wealth of ready-made examples which can be used in the study of ways to

51

increase the efficiency of a computer's deductive apparatus.

In order to provide for a wide variety of possible future applications, TPS needs a

universal language of logic in which virtually any mathematical statement can be

expressed. For reasons which we shall discuss only briefly here, a formulation of type

theory with X-notation due to Church [3] has been chosen as the logical language used by

TPS. Mathematical statements can be translated rather directly into this language, and

many sets and functions have names in the language, so no axioms concerning set

existence (except an Axiom of Infinity and the Axiom of Choice, where appropriate) are

needed. Of course, to use type theory one must assign a type to each mathematical

entity, but mathematicians naturally do make intuitive distinctions between different types

of mathematical entities. Indeed, type symbols provide important syntactic clues which

enable an automated theore.m-prover automatically to eliminate from consideration

expressions which would be permitted in languages such as axiomatic set theory, but not

in type theory, and which a working mathematician would reject almost immediately as

meaningless. This is particularly valuable for the unification algorithm, where many

inappropriate substitutions are avoided via type considerations.

Actually, it has been found that unification algorithms for type theory ([4], [6]), which

combine }~-conversion with substitution, are powerful tools which enable one to find

proofs of certain intricate theorems (such as Cantor's Theorem for Sets) which are hard to

prove automatically by other means. The availability of these algorithms constitutes a

strong argument for the use of type theory.

The basic logical approach to theorem proving underlying the design of TPS is

discussed in [1] and [2], where the formal discussion is limited to the problem of proving

theorems of first order logic. While TPS is in principle logically complete in automatic

mode only for proving theorems of first order logic at present, it has a number of facilities

for handling wffs of higher order logic, such as the interactive construction of proofs in

natural deduction style, and unification. While it may seem premature to be concerned

with automating type theory when there is still so much to be done to develop systems

which can handle first order logic satisfactorily, the use of type theory has proved to be

very advantageous even at the current stage of research, since there are numerous

theorems, such as Cantor's Theore~n, which can be expressed in type theory much more

naturally than in first order logic even though their proofs involve essentially only the

techniques of first order logic combined with higher order unification.

TPS is both a system under development and a research tool. The program is written in

52

LISP and uses about 18,000 lines of code. In order to maximize its usefulness, we have

tried to make it serve those who. use it, rather than asking them to adapt to its

requirements. Thus, we have devoted considerable effort to making the computer accept

input convenient for people to provide, and provide output convenient for people to use.

Much of the traditional notation of mathematics and Iog!c can be used in communicating

with TPS. In order to achieve this, TPS had to be given the ability to handle the many

special symbols which are used in mathematics and logic. This required a sizable amount

of hardware and software support.

w Support for special characters

TPS is written in CMU LISP, a descendant of UCI LISP. The system uses Concept 100

terminals and a Xerox Dover printer, both of which support multiple character sets. Two

auxiliary sets of 128 characters were developed by us for the terminals. These sets

contain Greek, script and boldface letters, plus many mathematical and logical symbols.

Some characters are available as subscripts and superscripts. The Dover is capable of

printing all these characters and many more. In order to use these characters, several

improvements to the standard LISP input and output facilities have been made. For

example, an input facility called RdC was added to LISP so that special characters could

be entered and translated to a representation suitable for LISP.

The Concept terminals can also define windows, read and write the cursor position,

and insert and delete both characters and lines. These capabilities permitted us to write

two text editors for use in TPS. The scratch pad editor is a very simple editor relying on

the terminal's local screen editing. A second, more powerful editor called VIDI is a

screen-type editor, much like EMACS, which supports special characters, and permits

such text to be stored and retrieved from disk storage.

TPS can also produce hard copy images of text containing special characters by

preparing a manuscript file for the document compiler SCRIBE [7]. This typesetting

language permits access to numerous character sets and many formating features. The

result of compiling such files is a second file which can be printed on the Dover. Files can

be made which permit the user's interaction with TPS to be redisplayed on the terminal

screen.

53

w T i l e T P S i n t e r f a c e w i t h t h e u s e r

TPS has two representations for wffs. The internal representation is a linked list whose

structure mirrors the structure of the wffs found in [3]. This representation is very

convenient for computing, but it does not resemble conventional notation of mathematical

logic because of its syntax and lack of special characters. The TPS user deals with an

external representation of wffs which is much more convenient to read and type.

The external representation uses both brackets and Church's dot convention to specify

scopes of connectives. Function symbols and predicates can be declared to be infix

instead of simply prefix, which permits a more natural rendering of such symbols as (E,

+, and =. Symbols are handled by first assigning each character a name and then giving

each symbol a list of character names, called its face. For example, the quantifier]1 has

the internal name EXISTS1, and this has the face (EXISTS SUB1), for the two

characters used to represent this symbol. TPS can both print this symbol with the correct

characters and find its occurrences within text typed by the user. Text containing special

characters can be input by both RdC and the VIDI editor. The internal name of a symbol

is used if a device is being used on .which special characters are not available.

The fact that wffs are represented within higher order logic proves quite useful, even

when we restrict our attention to first order wffs. Abbreviations can be defined very

conveniently by using ~.-abstraction. For example, SUBSET is defined by the wff [~Poa

,~Qoa V x . Px 3 Qx]. Thus, instantiating SUBSET is done simply by substituting this term

for the occurrences of C_ in the wff, and then doing X-contractions of the expression.

Such definitions can be stored in libraries as polymorphic type expressions. Their actual

type is determined from the context. Individual users of TPS can have their own libraries.

A structure editor is available which permits the user to edit the internal representation

of a wff. In this editor the user can issue commands to move to any subexpression of the

original wff and change it by placing it into various normal forms, changing bound

variables, extracting subformulas, instantiating abbreviations, etc. Although the user is

editing the internal representation, it is the external representation which is printed out to

the user at each level of the editing. This editor also has a convenient way of using the

two text editors on subformulas.

The user can specify a wff in many different ways. The user can refer to other wffs or

their subformulas, or the result of processing other wffs. For example, all of the following

ASSERT commands will place into the current proof outline a line numbered 4 containing

the wffspecif ied by the second argument:

54

>assert 4 "FORALL X(OA) . [POWERSET X INTERSECT Y(OA)] SUBSET
POWERSE[Y"

>assert 4
RdC>VXo.

>assert 4

>assert 4

>assert 4

>assert 4

rdc
[P . X n Yo~] C_. p Y

pad

thml.

(neg (skelem thml))

(l o c 2)

In the first command, the wff is entered as a string without special characters. In the

second command, the user requests the RdC prompt and then enters the wff. The third

command places the cursor in the scratch pad editor and the user then either edits a wff

already present in the pad or types another one. When the contents of the pad is the

desired wff, pressing the appropriate key on the Concept will send the pad's contents to

the wff parser. In the fourth and fifth commands a previously defined wff called THt41 is

used. The last command calls the LOC function, which is much like the structure editor

but is simply used to locate a subformula of a given wff; in this case, it returns a

subexpression of the wff in line 2 of the proof.

TPS can print wffs in several different fashions. For example, they can be pretty-printed

so that the arguments of infix operators are indented appropriately. Also, TPS can

produce two-dimensional diagrams of wffs in nnf such as are found in [2]. When these are

too big to fit on one sheet of paper, they are laid out so that several sheets can be pasted

together to make one large diagram.

The user of TPS can make many choices about such matters as the way wffs are

displayed, the amount of information that is printed out during the search for a proof, the

search heuristics and parameters that are used, and the degree to which TPS functions in

automatic or interactive mode. These choices are made by changing the values of certain

variables called flags. A command called REVIEW provides help for the user who wishes

to recall what flags are available, what they mean, and what their current values are.

TPS also has help facilities to remind the user of the correct format for various

commands, the commands available in the editor, etc.

The user can cause a status line to be displayed on the terminal screen. This shows

which lines of the proof are sponsored by each planned line, and is automatically updated

as the proof is constructed.

55

w O r g a n i z a t i o n o f t h e p r o o f p r o c e s s

Proofs in TPS can be constructed in natural deduction format or as p-acceptable

matings (see[2]), and both styles of proof can be constructed automatically or

interactively. When constructing natural deduction proofs, TPS builds and progressively

improves proof outlines (see [1]), which are fragments of proofs in which certain lines

called planned lines are not yet justified. The transformation rules described in [1] are

implemented in TPS as commands which can be used interactively to fill out the proof.

Since the context often suggests how these commands should be applied, by setting

appropriate flags and letting TPS compute default arguments for commands, the user can

let this process proceed automatically until decisions are required. When input is needed,

wffs can be specified with minimal effort as described above, and TPS checks for errors

and allows corrections.

Instead of proceeding interactively, one can send the wff to be proved in a planned line

to the mating program. When a p-acceptable mating is found, it is converted into a plan

and used to construct a natural deduction proof of the planned line as described in [1].

This process is illustrated with an example in w Even when a plan is being used, the

user can intervene to make decisions concerning the order in which rules are to be

applied and thus control the structure of the proof.

Thus, the user can construct some parts of the proof interactively or semi-automatically

and others automatically. Plans as well as proofs can be constructed interactively.

The mating program can also be run as an independent entity.

All of the rules of inference of natural deduction mentioned in w of [1] are available a8

deducing rules (see [1]). In addition, there is an ASSERT command which can be used to

insert into a proof a theorem which the interactive user obtains from a library of theorems

or simply asserts. Deducing rules are used to construct proofs down from the top, while

planning rules essentially provide for working backwards to build a proof up from the

bottom. By combining these rules TPS or the interactive user can work both forward and

backward. This facilitates the construction of the proof and the implementation of

heuristics to control its style and structure. Of course, some of the deducing rules (such

as Universal Generalization) are used only in interactive mode, since in automatic mode

TPS inserts the same lines into the proof by the use of appropriate planning rules.

At least one transformation rule is available to deal with every possible form of an active

or planned line which is not a literal. Thus, a number of special forms of Rule P (see [1])

are available, and are invoked when appropriate. Examples of these are to infer A and B

56

from [A A B], to infer A from ~- -A, and to push in negations. At present, deduced lines of

the form [A ~ B] are replaced by [NA V B], and disjuctions are broken into cases using the

rule P-Cases of [1], though this sometimes yields inelegant proofs. When all quantifiers

and definitions have been eliminated from a planned line and the active lines which it

sponsors, TPS invokes the unrestricted Rule P to infer the planned line, thus providing the

essential link between the top and bottom parts of the proof of the planned line. It is

anticipated that more elegant proofs will be constructed in automatic mode as we learn to

make more sophisticated use of the information in plans, especially the matings.

w Mating search
The mating program first processes the wff to be proved by removing all abbreviations,

negating, miniscoping (when appropriate), skolemizing, and transforming to negation

normal form. The final wff contains only universal quantifiers, conjunctions, disjunctions,

and negations with atomic scopes. TPS then attempts to derive a contradiction from this

wff by searching for a p-acceptable mating for each top-level disjunct in turn. As in [2],

we call any set of pairs of literals a potential mating. A vertical path is fixed if it contains a

pair of mated literals. A potential mating is complete if each vertical path is fixed,

otherwise it is partial. A p-acceptable mating is a complete potential mating for which a

substitution exists, which makes mated literals complementary. Thus, a contradiction is

derived, and by Herbrand's theorem the original wff is valid.

The first step in the mating search is to create a connection graph, which stores

information useful in constructing the mating. As in a strictly first order connection graph,

an arc is directed from literal A to literal B whenever ~A and B are unifiable, i.e., whenever

A and B are c-unifiable. Type theory adds additional complications to the construction of

the graph:

�9 It is not a priori obvious which pairs of literals can be c-unified, or which is to
be the "negative" literal. Because the substitution term may contain ~ , it
may be possible to c-unify A and B when either, neither, or both of the literals
is a negation, or to c-unify the literals in both orientations. Of course, a path
can be fixed by mating the literals in either orientation, but different
orientations produce different substitutions.

�9 Unification in type theory is in general undecidable, so the algorithm may not
terminate. We deal with this problem by limiting the depth of unification
search at the time the grap~ is created.

�9 Even when a unifier exists, there may be no most general unifier of two wffs in

57

type theory. In this case there will be branching in the unification tree.
However, during the construction of the connection graph we pursue only
those parts of the unification problem requiring no branching.

Each arc in the connection graph.is labeled with a partial c-unifier of its two literals.

The next part of the process is to choose a vertical path in the wff containing no mated

pair, choose from the connection graph a pair of literais which fixes that path, add it to the

mating under construction, partially unify (still allowing no branching in the unification

tree) the set of disagreement pairs representing the partial mating, and then iterate the

above process until a complete potential mating is constructed, backtracking as required

by failures of mating or unification. The same partial mating may arise several times in the

search process, but TPS considers it only once. When a completed mating is obtained~

the full power of unification is allowed, occurring in parallel with the construction of a new

mating. After all potential matings of a wff have been considered, TPS replicates certain

quantifiers and their scopes, and seeks a mating for the enlarged wff. Thus it alternates

between the construction of a single mating, and unification work on that partial mating

and on any number of previously constructed completed matings, which may be from any

number of replication levels. The user can control the relative effort devoted to the mating

and unification procedures.

The search for a mating may cause certain quantifiers to be duplicated inappropriately,

so after a p-acceptable mating has been found, TPS simplifies the replication scheme if

possible, and makes appropriate adjustments of the substitutions and mating. Such

simplification avoids certain ambiguities which might otherwise arise when Skolem

functions are eliminated from substitution terms in the process of constructing a plan from

the mating. It also eliminates redundancies which would otherwise occur in proofs

constructed from the mating.

We have tried a number of different heuristics for the choice of an unfixed path and a

pair to fix it. TPS tries to fix first the paths where the choices are most constrained. The

default procedure for choosing paths is to focus on those with the smallest number of

matable pairs with respect to the current partial mating.

Heuristics are also available to deal with certain special situations, such as those in

which equality occurs. Equality is.defined as [~x ~y VQo, . Qx ~ Qy], and a positive

equality statement occurs as vQ[NQX v QY]. When one mates one of these literals, one

constrains the possible substitutions for Q and limits the possible mates for the other

literal. This motivates the following heuristic.

58

Suppose that the wff for which one is seeking a mating contains a subformula [K v L],

where K and L are conjunctions of literals, that P is a path which passes through K, that A

and B are !iterals on P,-with A in K but B not in K, and that the mating process has

tentatively decided to mate A with B. Of course, there is another path P' which is like P

but which passes through.L instead of K. P' must also be given a pair of mated literals,

and we might as well assume that at least one of these is to be in L, since otherwise the

mated pair which fixes P' also fixes P, and the mating of A with B is unnecessary. If each

literal in L has a variable in common with A or with B, then the substitution required to

mate A with B may constrain the possible ways of fixing P ' . Indeed, if this constraint is so

strong that there is no way to fix P ' , then one should not mate A with B. This leads to the

following heuristic: having fixed P by mating A with B, consider next all variant paths P'

which satisfy the given description, and see if they can each be fixed. This may require

repeated calls on this heuristic. In this way, one may be able to reject bad partial matings

sooner rather than later, which is the essence of good heuristic search.

w Unification search

The unification scheme used by TPS is that described by Gerard Huet in [4], with only

minor modifications. Each mating is represented by a list of pairs of wffs which require

unification. We call each such pair a disagreement pair (dpair), and the whole list a

unification node. Each wff of type theory is of the form [Xw 1 Xw". hE t E=] , where n, m

>__ O. We call h the head of the wff, E 1 E m its arguments, and {w 1 w n} its binding. We

cal la wff rigid if its head is either a constant or a member of its binding. Non-rigid wffs are

said to be f/exib/e. The head of a rigid wff cannot be altered by substitution, so if two rigid

wffs are to be unified, the heads must be identical (modulo alphabetic changes of bound

variables). Huet's unification procedure employs two alternating subroutines, S imp 1 and

Match. Simp] reduces a node by breaking up all compatible rigid-rigid dpairs into the

subproblems represented by their arguments, or returns failure upon finding non-

compatible rigid-rigid dpairs. Match suggests a set of substitutions for the flexible head

of a flexible-rigid dpair. If that set contains more than one substitution, it necessitates

branching in the unification tree to create one node for each possibility. The non-unit sets

of substitutions are called branching sets. Since we are only interested in the existence of

a unifying substitution, a node consisting only of flexible-flexible dpairs is considered to

be a terminal success node.

SIMPLIFY is a procedure based on Huet's Simpl with the following additions: 1) we

59

include only one dpair from each equivalence class with respect to alphabetic changes of

bound variables; 2) we recognize the trivial unifiable fixed point problem <x, E> where x

does not occur free in E, with the substitution of the most general unifier x-*E; 3) we

recognize some non-unifiable fixed point problems, including those suggested by Huet in

3.7.3 of [5]. MATCH is precisely Huet's algorithm of the same name, offering a choice of

either the T/-rule or non-~/-rule substitutions.

7.1 . Search heurist ics for full unif icat ion

Once we have a complete description of the unification problem, Le., the potential

mating is complete, we search for a unifier with the full force of Huet's algorithm. For

each variable which is the flexible head of a flexible-rigid dpair, one substitution set is

computed by applying MATCH to the first flexible-rigid dpair in which that variable occurs

as a flexible head. Of course, such substitutions can be stored- between iterations of the

algorithm to avoid recomputing. All substitution sets which reduce to singletons after

SIMPLIFication are applied immediately. If the search must branch because all

substitution sets have multiple members, we choose a set causing the least branching.

Unapplied branching substitution sets are not discarded, but passed on to each

descendant. Each node also has associated with it a list of compound substitutions for the

variables in the original mated pairs.

Surprisingly often, one encounters a unification node M which subsumes another node

N, Le., M is a subset of N (modulo alphabetic changes of bound and free variables): In

this case any unifying substitution for N, with the appropriate alphabetic transformation,

will also unify M; thus, since we are interested only in the existence of a unifier, it is

sufficient to consider M. We detect this relationship between nodes quite efficiently using

a hash table on dpairs. When N is a newly-created node there is no question as to the

right course of action: we simply eliminate N from further consideration. Of course, if N is

the sole descendant of M this terminates attempts to find a unifier for M. However, when

N, a proper superset of M, already exists in the unification tree and possesses

descendants, it may well be that the leaves of the tree under N represent more progress

toward the ultimate unification than does node M. It is not clear that the best action is to

delete N and all its descendants (except, possibly, M), though that is our current strategy.

60

7.2. Search heuristics for unification on partial matings

We also perform unification on nodes representing partial matings. In order not to have

multiple nodes to which a dpair representing a newly mated pair must be added, we allow

no branching during unification until the mating is complete. Since the mating is

incomplete, So also is the unification problem, so a node containing only flexible-flexible

dpairs is not a terminal success node. Also, since the partial mating might well be a subset

of an already completed mating though it in no sense subsumes the complete mating, the

subsumption procedure described in the previous paragraph is applicable only when the

subsuming node represents a complete mating.

In building up a mating, one wants to be sure that the partial unifier for mating a new

pair of literals is consistent with the substitutions associated with the partial mating to

which the new pair is to be added, and one certainly wants to make use of the work

towards unification that one performed in producing the connection graph. When a pair

of literals is added to the mating, therefore, we want to merge the substitutions labeling

the arc between them in the connection graph with the substitutions already associated

with the mating. Fortunately, the substitutions produced by Huet's algorithm are very well

behaved. Given two substitutions (v---~T 1) and (v--~T z) for the same variable v, the

substitutions are compatible iff the dpair <T t, TZ> does not fail under SIMPLIFication,

since T 1 and T z contain only new and distinct variables.

7.3. Experience with higher-order unification

Because the higher order unification algorithm constructs a search tree with potentially

infinite branches, it might be expected to place an unreasonable computational burden on

a theorem prover. However, our experience suggests that this is not the case when the

algorithm is implemented as described above. The difficulties we have encountered in

trying to prove various theorems have generally been attributable more to the complexity

of the search for a mating than to the complexity of the unification process.

61

w An example
We shall now demonstrate several features of TPS by having it prove THM87:

3w V̀1 3q .[`1 E .[P a .h 1̀ ~ u .P w .k 1̀] ~ .̀ 1 E .P w q

Here E is an abbreviation for [}kX }kP . P X] and U is an abbreviation for [~kP ;kQ }~X

�9 [P X] v .Q x]. This theor(~m is neither interesting nor challenging, but permits us

to briefly illustrate various features of TPS in the space available. Here h and k are

function symbols and [h .i] denotes the value of h on the argument j. For this example,

we have suppressed the printing of type symbo/s. A dot denotes-a left bracket whose

mate is as far to the right as is consistent with the pairing of brackets already present.

Except for the comments in italics, the remaining text of this section is essentially what the

user sees when TPS processes this theorem.

The PLAN command inffiates the proof process by creating a proof outline whose only

line is the theorem to be proved.
*PLAN THM87
(100) I-- 3w Vj 3q . [j E . [P a .h j] u .P w .k j]

.̀ 1 E .P w q PLAN1

At this stage the justification PLAN 1 for line 100 is just an empty label. TPS chooses 100

to be the number of the last line in the proof. This choice is easily changed, and if a given

choice does not leave enough room for the complete proof, all the lines can easily be

renumbered.

The mating search program now attacks the theorem in line 100. TPS takes the wff in

line 100, instantiates all definitions, places it in negation normal form, skotemizes it, and

attaches names to the literals. The result is represented as a vertical path diagram:

Vw q

P
LIT3 LIT4

a [h . jA w] [j A w/ V P w [k . jA w] . j A w

LIT6
.P w q . j A w

Here dis/unctions are displayed horizonally and conjunctions are displayed vertically so

that this diagram represents the wff:

VwVq . l i p a [h .`1A w].`1A w].V .P w [k .`1A w].jA w/ ^ ~ .P w q .̀ 1A w

TPS now searches for an acceptable mating for this wff.

Path with no mates: (LIT3 LIT6)
t r y th is arc: (LIT3 LI I6)

Par t ia l Mating O:

62

(L I I 3) - (L I T 6)

Path w i t h no mates: (L IT4 LIT6)
Path w i t h no mates: (L I t 3 L IT6)
No p roo f on t h i s l e v e l

TPS has found that there ~ no acceptable mating for this particu~r amplification of the

theorem. Hence, R must duplicate some quantifiers. It was proved m ~] that duplicating

outer quant~ers ~ a complete although not sophisticated method to duplicate quantff~rs.

In the diagram below, variables and fiterals are given a suffix to show which copy of the

orginal variable or fiteral they represent.
Duplicate outer quan t i f i e rs .

Vwt l q~l
LIT3*I L IT4t l

P a [h . jA w*1] [jA w i l l V P w*1 [k .jA w*1] . j A w*1

LIT6r
.P wt l q t l . jA w*1

Vwt2 qt2
LIT3t2 LIT4t2

P a [h . jA wr] [jA wt2] V P wt2 [k .jA wt2] . j A w*2

LIT6*2
.P wt2 qr . jA wr

In this expanded wff, TPS quickly finds an acceptable mating.

Path with no mates: (L IT3t l L IT6t l LIT3t2 LIT6r
t ry th is arc: (LIT3t2 L IT6t l)

Par t ia l Mating 0:
(L I T 3 t 2) - (L I I 6 t I)

Path with no mates: (LIT3r .LIT6tl LIT4t2 LIT6f2)
t ry th is arc: (LIT4r LIT6t2)

Par t ia l Mating 0:
(L I T 3 t 2) - (L I I 6 t l) , (L I I4 r

qZ ~k . jA a ql ~h .jA a w z ~a w I ~a

At this point, an acceptable mating and its associated substitution have been found.

l-he r e p l i c a t i o n has been s i m p l i f i e d .
Old: (w 2) New: (q 2)
The s u b s t i t u t i o n has a l so been changed.
Old: qZ ~k . jA a ql ~h .jA a w z ~a w I ~a

New: .w ~a ql ~h .jA a qZ ~k . jA a

63

TPS now displays the new replicated wff and the result of instantiating its quantifiers

using the new substitution.

Vw
Vqr

LIT7t l LIT8r
P a [h .jA w] [jA w] V P w [k . jA w] . jA w

L I T g t l
.P w q t l . j A w

Vqt2
L IT7 t2 L IT8 t2

P a [h . j a w] [j A w] V P w [k . j A w] . j A w

LIT9t2
.P w qt2 . j A w

LIT7t l L IT8 t l
P a [h .jA a] [jA a] V P a [k .jA a] . jA a

LIT9t l
.P a [h . jA a] . j A a

LIT7t2 LIT8t2
P a [h .jA a] [jA a] V P a [k .jA a] . jA a

LITgt2
.P a [k .jA a] . j A a

An acceptable mating is:
(LIT8 z LIT9 z) (LIT91 LIT72) (LIT81 LIT92) (LII71 LIT9 I)

Now PLAN1 must be constructed by removing skolem functions from the substitution

terms and computing ancestory information for variables and atoms as mentioned in [1].

PLANt is:
3w Vj [3q I . [[P a ~h j] j] v .P w [k j] j] ~ .P w ql j]

ATM3 ~ ATM41 ATM61
v .3q 2 . l I P a ~h j] j] v .P w [k j] j] ~ .P w qZ j

ATM3 ~ ATM4 2 ATM6 z

The subst i tu t ion is: w ~ a

The mating is:
(ATM62 ArM42) (ATM32 ATM6 I)

The rep l ica t ion scheme is: (q

ql ~ [h j]

(ATM6 z ATM4 I)

2)

TPS now proceedsto bui ldtheproofout l inefromthisplan.
>P-EXISTS a 100
(99)

q2 ~ [k j]

(ATM61 ATM3 I)

I-- Vj 3q . [j E .[P a .h j] U .P a .k j] ~ . j E .P a q
PLAN2

64

(t0o) I-- 3w Vj 3q . [j E .[P a .h j] u .P w .k j]
.J E ,P w q

3G: a 99

The Plan for l ine 99, PLAN2, is:
Vj [3q I . [[P a [h j] j] v .P a [k j] j] ~ ,P a qt j]

.ATM31 AIM7 ATM8
V .3q 2 . [[P a ~h j] j] v .P a [k j] j]] .P a q2 j

AIM3 ~ ATM9 ATMI0

The subst i tu t ion is : qt ~ [h j] qZ ~ [k j]

The mating is :
(ATMI0 ATMg) (ATM3 z ATM8) (ATMI0 A I M 7) (ATM8 AIM3 I)

The rep l ica t ion scheme is: (q 2)

>P-ALL 99
(98)

(99)

F- 3q . [j E ,[P a .h .j] u .P a .k j] D . j E .P a q

PLAN3
F- Vj 3q . [j E .[P a .h j] u .P a .k j] D . j E .P a q

VG: 98

PLAN3 has been omitted since it differs only slightly from PLAN2. The reader may wish

to construct it. TPS now recognizes that the present plan is existentially complex (see

[1]), so the proof must now proceed in an indirect fashion. The symbol I is used to

denote falsehood.
>P-INDIRECT 98
(I) t I-- ~ .3q . [j E . [P a .h j] u .P a .k j] D . j E .P a q

Hyp
(97) 1 I-- .L PLAN4

(98) 3q . [j E .[P a .h j] u .P a .k j] D . j E .P a q

Indirect: 97

The Plan for l ine 97, PLAN4, is:
[~ . [3q I . [[P a ~h j] j] v .P a [k j] j] ~ .P a qt j]

ATM3 ~ ATM7 ATM8
v .3q 2 . [[P a ~h j] j] v .P a [k j] j] D .P a qZ j]

ATM3 ~ AIM0 ATMI0
~ J .

The subst i tu t ion is : ql ~ [h j] qZ ~ [k j]

The mating is :
(ATMI0 ATM9) (ATM3 z AIM8) (ATMI0 ATM7) (ATM8 ATM3 t)

The r e p l i c a t i o n scheme i s : (q 2)

>B-NEG 1

65

T
T

T
T

T
T

o
)

~
,,

.
r-

~
<

~
.~

.

�9

o
~

,

�9

r'
~

~)

C

~
C

~
C

~.

-,
,

.

O

~
,'

>

c.
..~

.
~

"

�9

o r
~

.

r~

rn

~"

.
.

.
.

.
.

.
-
%
"

~
.
.
.
.

V

P'
m

T
'2

P
~

C

o~

f~

T

I.
_

J

< I..
.~

 ~

r1
76

o0

A

V

T

"O

C

l..
..J

.

II
.J

II

.I

r ~
17

6

~
v

v
~

T

r r.
.~

.

~
17

6

I -
~

O

I

O

T
T

I
r

m
~ C

l..
..J

.

O

O

0o

~

v m
'l

co

T I-
-1

r I.
..

J

I.
iI

< "O

I'
--

I

c.
.~

.

I..
.M

~O

oo

O
o

v
co

l~
 r-

m

T ~
r

l,
_

J

C

c~

~

v p
-

P
o

T
~-

f,.

~.

r.-
-~

.

cr
~

C

li
t > ~ -o

I~
O

v

v
i

.-m

o-
1

T r-
-i

co

o~

O

Z

I.
~

i-

.i

f.
~

T
T

<
lh

f_
.d

.

r.-
-1

�9
 "o

I~

f..
~

ii
i C
 -o

o
o

r
4.

..~
.

0~

.o

o
o

o

b

C
~

r'
-

r~

i-
--

i

T=
~

cr
~

I-
-1

c.
_~

.

i.
_.

l

C r > ri
~

.

'~

,.
.

~

I'O

r~
 T

Ii
I C

~.
_J

.

> Q
.J

,

C
h

Z f,
Q

�9

 -
c.

~

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(97)

(98)

(99)

(lOO)

[j E .[P a .h j] u .P a .k j] A .~ . j E .P a .k j

I-- [[P a .h j] u [P a .k j]] j

I-- [P a [h j] j] v .P a [k j] j

1 l-- j E .[P a .h j] U .P a .k j

-- . j E .P a .k j

~ . P a [k j] j

[[P a .h j] u [P a .k j]] j

[P a [h j] j] v .P a [k j] j

•

1 b-

1 b-

1 b-

1 b-

1 b--

Vl:2
Def: 4

Def: 8

Conj: 7

Conj: 7

Def: 11

D e f : 10

D e f : 13

R u l e P : 14 9 6 12

I-- 3q . [j E .[P a .h j] u .P a .k j] ~ . j E .P a q

Indirect: 97
I-- Vj 3q . [j E .[P a .h j] u .P a .k j] D . j E .P a q

VG: 98
I-- 3w Vj 3q . [j E .[P a .h j] u .P w .k j]

. j E .P w q 3G: a 99

w Sample theorems
We here present some examples of theorems which have been proved automatically by

TPS. Other examples were presented in Appendix B of [2]. First we give several

definitions which are used in the theorems below.

r# F=#] Do# is the image of the set Do# under the function F#. # is defined as:

~F# ADo# ~Ya 3X# .[O X] A .Y : .F X

C1_ (set inclusion) is defined as:

~Po= XOoa VX= .[P X] D .Q X

= is defined as:

2~X XY VQoa [Q x] D ; Q Y

67

Theorems

THM30A

[go# C Vo#] ~ . [# F# U] C .# .F V

THM47A

VX, VY .[X = Y] ~ .VRo,, .[VZ, .R Z Z] D .R X Y

THM62

[[VU, "Po,, A U] v .VV .P V B]] .3X .P X X

THM76
[VPo, . [P Y] D .P X,] .VRo, .[R X] D .R Y

THM82

[[V x 3y, .Fo, ' x y]

A [3x Ve 3n Vw .[So, ̀ n w] :) .Do,,, w x e]
A . r e 38 V x l Vx2, [D x l x2 8]

D .Vy l Vy2 . [[F x l yl]A .F x2 y2]

D .D y l y2 e]

D .3y Ve 3m Vw .[S m w] D .Vz .[F w z] D .D z y e

THM83

[VX 3Y "[Po, X] D .VZ, .ERo, ' x Y] A .P Z]

.3U, VV, .[P V] ~ .R W U

w Acknowledgments

We would like to acknowledge the valuable assistance provided by Frank Pfenning,

Edward Pervin, and Harry Porta.

Refe rences

1. Peter B. Andrews, "Transforming Matings into Natural Deduction Proofs," in 5th
Conference on Automated Deduction, Les Arcs, France, edited by W. Bibel and
R. Kowalski, Lecture Notes in Computer Science, No. 87, Springer-Verlag, 1980, 281-292.

2. Peter B. Andrews, Theorem P'rovfng via General Matings, Journal of the Association
for Computing Machinery 28 (1981), 193-214.

68

3. Alonzo Church, A Formulation of the Simple Theory of Types, Journal of Symbolic
Logic 5 (1940), 56-68.

4. G~rard P. Huet, A Unification Algorithm for Typed X-Calculus; Theoretical Computer
Science 1 (1975), 27-57.

5. GSrard Huet, Resolution d'Equations dans les Languages d'Ordre 1,2 ~, ThSse de
Doctorat D'Etat, Universit~ Paris VII, 1976.

6. D. C. Jensen and T. Pietrzykowski, Mechanizing co-Order Type Theory Through
Unification, Theoretical Computer Science 3 (1976), 123-171.

7. Brian K. Reid and Janet H. Walker, SCRIBE Introductory User's Manual, Third edition,
UNILOGIC, Ltd., 160 N. Craig St., Pittsburgh, PA 15213, 1980.

69

