
Notation for focused proof systems

Dale Miller

17 October 2022

Standardized notation can be helpful, especially after a topic has matured.
For example, Gentzen used −→ as an infix symbol to build sequents from lists
of formulas. While one also sees ⇒ used, it seems that in recent years, ` has
become the standard, especially when proof theory is applied to type theory
(where ` is invariably used) and computational logic (where −→ is often used
for other purposes). This notation is overloaded: the expression Γ ` B is both a
syntactic object (a sequent) and the mathematics-level judgment that Γ entails
B. Nonetheless, we seem to be able to live with such overloading.

1 The many notations for focused sequents

Since I am working with various focused proof systems, I want a coherent and
appealing way to present the sequents and rules involved with building the two
focusing phases. This notation should be consistent over various sequent cal-
culus systems, including one-sided and two-sided; single-conclusion and multi-
conclusion; single-focus and multi-focus. I have come up with the following
notation and terminology. I share these here since others might find this nota-
tion convenient.

Let us first list some of the notations used to present focused sequents.

1. Andreoli’s original format was only for single-sided sequents for linear
logic. His triadic sequent system Σ3 [1] had sequents of the form ` Θ: Γ ⇑ L
and ` Θ: Γ ⇓ F where F denotes a formula, Γ, ∆, and L are multisets of
formulas, weakening and contraction are allowed in Θ (i.e., the classical
zone), weakening and contraction are not allowed in Γ (i.e., the linear
zone), and introduction rules take place in L and with F .

2. Girard used zones (with one acting as the stoup) in LU and LC [9, 10]
with the classical zones closest to the `. Herbelin, Curien, and Munch-
Maccagnoni used similar notation [5, 6, 11] as did Zeilberger [18]. In their
presentation of LKT/LKQ, Danos et al. [7] also used sequents with various
zones, one of which denotes the stoup.

3. LJQ by Dyckhoff and Lengrand [8] used the two arrows ⇒ and −→ to
denote the sequents used in the two separate phases.

1



4. Chaudhuri et al. [4] used Γ; ∆ >> B and Γ; ∆;B << C in focused linear
logic systems.

5. In some early writing of mine [14], I put a formula above or below the
sequent arrow to denote the formula in focus (denoting the left or right
focus). Chuck Liang and I in [12] continued that practice and added

brackets to denote different zones: e.g., ` [Γ],Θ −→ [R], ` [Γ]
B−→[C], etc.

The terminology associated with focused proof systems varies a lot as well.
For example, Andreoli referred to the two phases of focus-proof construction
using the adjectives asynchronous and synchronous. Describing these phases as
the invertible and non-invertible phases seems natural, although sometimes an
inference rule in the synchronous phase can be invertible (see the ∧+r rule in the
LJF proof system below). So these days I favor calling these phases simply the
negative and positive phases.

As another example, there is the religious term “stoup” (i.e., “blessed”) used
by Girard and others to denote the formula under focus. More dynamic ter-
minology was used by Andreoli (e.g., reaction rules) and the Carnegie Mellon
group (e.g., active, neutral, passive, focus, blur). I have settled on terminol-
ogy that is more motivated by an administrative perspective of focusing as a
process for building synthetic inference rules. This perspective suggests the fol-
lowing terminology. (I assume we are building proofs in a conclusion-to-premise
fashion.)

1. The first step in building a synthetic inference rule is to decide on which
formula in storage should be selected to provide the material from which
the synthetic rule is built. That formula is placed into a temporary part
of the sequent (the staging area).

2. Applications of non-invertible (positive) introduction rules in the staging
area form the first phase of this process. When this phase is exhausted,
the focus phase ends with either an initial or release rule.

3. Applications of invertible (negative) inference rules in the staging area
forms the second phase. Any formula an invertible rule cannot introduce
is stored, meaning it is moved from the staging area to a storage zone.

For these reasons, I prefer using the terms decide, store, and release to
describe certain administrative inference rules in a focused proof system.

2 Selecting the notation

The notation I settled on is simply the following. I write one-sided sequents as

` ∆ ⇑ ∆′ and ` ∆ ⇓ ∆′

and two-sided sequents as

Γ′ ⇑ Γ ` ∆ ⇑ ∆′ and Γ′ ⇓ Γ ` ∆ ⇓ ∆′.

2



The outer zones Γ′ and ∆′ are the storage areas, while the inner zones, namely Γ
and ∆, are the staging areas. Also, Γ′ and ∆′ might be further decomposed into
multiple zones with different structural rules available (as Andreoli did in his
original focused proof system). When these sequents are used with intuitionistic
logic, the right side of sequents are restricted so that the multiset union of ∆
and ∆′ contains exactly one formula. A sequent never contains an occurrence
of both ⇑ and ⇓.

There are several positive points of this notation. It only employs the special
symbols ⇑ and ⇓, and these symbols have seldom been used in proof theory
outside focusing. This notation also supports multifocusing [15]: that is, a
⇓-sequent can have more than one formula in the staging area (Γ ∪ ∆). The
only downside I see with this notation is that (with two-sided sequents) always
writing two occurrences of an up or down arrow seems heavy. For this reason,
I also adopt the following conventions (assuming that an empty zone is written
using the dot ·). We can drop writing · ⇓ and · ⇑ when they appear on the
right, and we drop writing ⇓ · and ⇑ · when they appear on the left. Thus, a
border sequent Γ′ ⇑ · ` · ⇑ ∆′ (i.e., a sequent with an empty staging area) can
be written as Γ′ ` ∆′. In this way, a border sequent can be confused with a
sequent without focusing markings, and such confusion is a happy accident since
border sequents appear as both premises and conclusions of synthetic inference
rules. This way, focusing notation only appears in sequents used to build the
internals of a synthetic inference rule. In the proof systems I have considered,
sequents of the form Γ′ ⇓ Γ ` ∆ ⇓ ∆′ are such that the multiset union Γ ∪∆ is
never empty.

3 LJF: A focused version of LJ

To illustrate this proposed notation, I present below my preferred way to write
the LJF proof system [12]. Here, P is positive, N is negative, C is a negative
formula or positive atom, D a positive formula or negative atom, Na is a negative
atom, Pa is a positive atom, and B is an arbitrary formula. In the rules ∨+r and
∧−l , i is either 1 or 2. In the rules ∀r and ∃l, the eigenvariable y does not
occur free in any formula of the conclusion. The display of these rules can be
simplified somewhat using the conventions mentioned before that allow some
up and down arrows next to empty zones to be elided.

Negative Introduction Rules

Γ ⇑ B1,Θ ` B2 ⇑ ·
Γ ⇑ Θ ` B1 ⊃ B2 ⇑ ·

⊃r
Γ ⇑ B1,Θ ` ∆1 ⇑ ∆2 Γ ⇑ B2,Θ ` ∆1 ⇑ ∆2

Γ ⇑ B1 ∨+ B2,Θ ` ∆1 ⇑ ∆2
∨+l

Γ ⇑ B1, B2,Θ ` ∆1 ⇑ ∆2

Γ ⇑ B1 ∧+ B2,Θ ` ∆1 ⇑ ∆2
∧+l

Γ ⇑ Θ ` B1 ⇑ · Γ ⇑ Θ ` B2 ⇑ ·
Γ ⇑ Θ ` B1 ∧− B2 ⇑ ·

∧−r

Γ ⇑ f+,Θ ` ∆1 ⇑ ∆2
f+
l Γ ⇑ Θ ` t− ⇑ ·

t−r
Γ ⇑ Θ ` ∆1 ⇑ ∆2

Γ ⇑ t+,Θ ` ∆1 ⇑ ∆2
t+l

3



Γ ⇑ Θ ` [y/x]B ⇑ ·
Γ ⇑ Θ ` ∀x.B ⇑ ·

∀r
Γ ⇑ [y/x]B,Θ ` ∆1 ⇑ ∆2

Γ ⇑ ∃x.B,Θ ` ∆1 ⇑ ∆2
∃l

Positive Introduction Rules

Γ ⇓ · ` B1 ⇓ · Γ ⇓ B2 ` · ⇓ D

Γ ⇓ B1 ⊃ B2 ` · ⇓ D
⊃l

Γ ⇓ · ` Bi ⇓ ·
Γ ⇓ · ` B1 ∨+ B2 ⇓ ·

∨+r

Γ ⇓ Bi ` · ⇓ D

Γ ⇓ B1 ∧− B2 ` · ⇓ D
∧−l

Γ ⇓ · ` B1 ⇓ · Γ ⇓ · ` B2 ⇓ ·
Γ ⇓ · ` B1 ∧+ B2 ⇓ ·

∧+r

Γ ⇓ · ` t+ ⇓ ·
t+r

Γ ⇓ [t/x]B ` · ⇓ D

Γ ⇓ ∀x.B ` · ⇓ D
∀l

Γ ⇓ · ` [t/x]B ⇓ ·
Γ ⇓ · ` ∃x.B ⇓ ·

∃r

Identity rules: Initial

Γ ⇓ Na ` · ⇓ Na
Il

Γ, Pa ⇓ · ` Pa ⇓ ·
Ir

Structural rules: Decide, Release, Store

Γ, N ⇓ N ` · ⇓ D

Γ, N ⇑ · ` · ⇑ D
Dl

Γ ⇓ · ` P ⇓ ·
Γ ⇑ · ` · ⇑ P

Dr
Γ ⇑ P ` · ⇑ D

Γ ⇓ P ` · ⇓ D
Rl

Γ ⇑ · ` N ⇑ ·
Γ ⇓ · ` N ⇓ ·

Rr

C,Γ ⇑ Θ ` ∆1 ⇑ ∆2

Γ ⇑ C,Θ ` ∆1 ⇑ ∆2
Sl

Γ ⇑ · ` · ⇑ D

Γ ⇑ · ` D ⇑ ·
Sr

Since the order in which the negative introduction rules are applied does not
matter (don’t care nondeterminism), it is sometimes convenient to modify this
proof system so that a negative, right-introduction rule is applied only when
the left staging area is empty.

If one is only interested in using some negative connectives (i.e., t−, ∧−, ⊃,
and ∀), then LJF can be simplified to the point where every two-sided sequent
only needs to display at most one arrow symbol. In such a setting, it makes
sense to call these two phases the right phase and the left phase.

4 Additional observations

I would argue that the adjective “focused” should be used only with proof
systems: in particular, a formula and a logic are not focused. However, it make
sense to say that an occurrence of a formula in the staging area of a ⇓ sequent
is called a focus of that sequent.

Focusing is a way to take the micro-rules given by Gentzen and arrange
them into macro or synthetic rules. In particular, a synthetic rule is the result
of taking a (partial) derivation built using micro-rules with border sequents as
its premises and conclusion, with no border sequents elsewhere, and then hiding

4



all of the micro-rules. Cut-elimination can be an automatic consequence for
synthetic inference rules built using focusing [13].

The style of focusing described here is sometimes called strong focusing: that
is, the decide rule is not selected until the staging area of the ⇑-phase is empty.
A weak focusing proof system would allow the decide rule to select a focus even
if not all invertible rules have been applied. The notation given here does not
immediately accommodate weak focusing proof rules.

A synthetic inference rule is bipolar : its internal structure is defined by
both positive and negative phases. If we are to introduce a notion of synthetic
connectives, we would probably insist that they are monopolar, i.e., composed
of either only negative or only positive connectives.

Focusing has also been applied in natural deduction [2, 16, 17] and deep
inference [3]. I have not considered how the notational conventions mentioned
above might be applied in those settings.

References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. J. of Logic and Computation, 2(3):297–347, 1992.

[2] Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduc-
tion. In Christian Fermüller and Andrei Voronkov, editors, LPAR 17, vol-
ume 6397 of LNCS, pages 157–171, Yogyakarta, Indonesia, 2010. Springer.

[3] Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The Focused
Calculus of Structures. In Computer Science Logic: 20th Annual Con-
ference of the EACSL, Leibniz International Proceedings in Informatics
(LIPIcs), pages 159–173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
September 2011.

[4] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical charac-
terization of forward and backward chaining in the inverse method. J. of
Automated Reasoning, 40(2-3):133–177, March 2008.

[5] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In
ICFP ’00: Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, pages 233–243, New York, NY, USA, 2000.
ACM Press.

[6] Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of
computation under focus. In Cristian S. Calude and Vladimiro Sassone,
editors, Theoretical Computer Science - 6th IFIP TC 1/WG 2.2 Interna-
tional Conference, TCS 2010, volume 323 of IFIP Advances in Information
and Communication Technology, pages 165–181. Springer, 2010.

[7] V. Danos, J.-B. Joinet, and H. Schellinx. LKT and LKQ: sequent calculi
for second order logic based upon dual linear decompositions of classical

5



implication. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances
in Linear Logic, number 222 in London Mathematical Society Lecture Note
Series, pages 211–224. Cambridge University Press, 1995.

[8] R. Dyckhoff and S. Lengrand. LJQ: a strongly focused calculus for intu-
itionistic logic. In A. Beckmann and et al., editors, Computability in Europe
2006, volume 3988 of LNCS, pages 173–185. Springer, 2006.

[9] Jean-Yves Girard. A new constructive logic: classical logic. Math. Struc-
tures in Comp. Science, 1:255–296, 1991.

[10] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic,
59:201–217, 1993.

[11] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style
sequent calculus structure. In Computer Science Logic, 8th International
Workshop, CSL ’94, volume 933 of Lecture Notes in Computer Science,
pages 61–75. Springer, 1995.

[12] Chuck Liang and Dale Miller. Focusing and polarization in linear, intu-
itionistic, and classical logics. Theoretical Computer Science, 410(46):4747–
4768, 2009. Abstract Interpretation and Logic Programming: In honor of
professor Giorgio Levi.

[13] Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms
to synthetic inference rules via focusing. Annals of Pure and Applied Logic,
173(5):1–32, 2022.

[14] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201–232, September 1996.

[15] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular
proof of focalization in linear logic. In J. Duparc and T. A. Henzinger,
editors, CSL 2007: Computer Science Logic, volume 4646 of LNCS, pages
405–419. Springer, 2007.

[16] Gabriel Scherer. Deciding equivalence with sums and the empty type.
In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017, pages 374–386.
ACM, 2017.

[17] Wilfried Sieg and John Byrnes. Normal natural deduction proofs (in clas-
sical logic). Studia Logica, 60(1):67–106, 1998.

[18] Noam Zeilberger. Focusing and higher-order abstract syntax. In George C.
Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7-12, 2008, pages 359–369.
ACM, 2008.

6



5 Additional observations

Some observations that appear as comments on the blog or occurred to me later.
27 October 2022: In my original post, I should have pointed out that

Girard used this “inner/outer rather than left/right” distinction in his paper
on On the unity of logic (APAL, 1993). In that paper, he had two zones on
both the left and the right: the inner zones are the classical-maintenance zones,
and the outer zones are the linear-maintenance zones. I switch these zones
around in my writing: inner zones are linear, and outer zones are classical. I
do this since linear resources (switches, registers, tokens, etc.) seem to be the
center of the action, while the classical zone (the logic program) does not change
much during proof search. The “center of action” means near the center of the
sequent, which is the turnstile. Putting the linear zone next to the turnstile in
(unfocus) sequents is similar to putting the ⇑ and ⇓ staging areas next to the
turnstile in focused systems: the staging area is a linear maintenance zone as
well.

Regarding other kinds of sequent arrows, I should mention that both Girard
and Jean Gallier tried to introduce (in the early 1990s) a new turnstile symbol,
where the foot was shorter and thicker, as a replacement for the sequent arrow
(see Gallier’s ”On the Correspondence Between Proofs and Lambda-Terms,” p.
10, (UPenn MS-CSE report MS-CIS-93-01). But, unfortunately, it doesn’t seem
that that symbol has caught on.

1 November 2022: Also, note that when working only with negative con-
nectives, it is possible to avoid the ⇑ entirely since it is easy to tell when a
formula on the right-hand side is stored or not: a right-hand side formula oc-
currence is stored if and only if it is atomic.

7


