
Programming languages based on formal structures

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

Autumn workshop II: Programming Languages and Notations
2 October 2019

Programs should have several properties

We increasingly demand that programs can:

I be efficiently executed (via compilers, interpreters, etc),

I be readable and maintainable,

I support the determination of time and space complexity
I be proved partially correctness,

I decidable static analysis, e.g., types, abstract interpretation
I support testing and model checking to help locate bugs

I be securely executed in adversarial environments, and

I be proved functional correctness (satisfies a specification).

Since we are speaking of properties of code, logic has roles to play.

Roles of logic in computing

I Computation-as-model: Computation happens, registers
change, lights flash, etc. Logic is used to make statements
about the dynamics.

I classical/intuitionistic logic/arithmetic are typically used
I Also, various modal/temporal logics, Hoare triples
I Automated tools: model checkers and testing

I Computation-as-deduction: Computation is based on bits of
logic: formulas, terms, proofs.

I proof normalization (functional programming, Curry-Howard
isomorphism)

I proof search (logic programming, relational programming)

Examples of functional programs

Example languages: LISP, Scheme, ML, Haskell, OCaml,

(add (mult 34 56) 96) : int

(foldr (lambda x y (x + y)) 0

(map sin [0.1, 0.3, 1.2])) : real

--> (sin 0.1) + (sin 0.3) + (sin 1.2)

foldr : (A -> B -> B) -> B -> A list -> B

Code is a proof of its type.

Computation is rewriting to normal form.

An example of a logic program

a

b

c

d

adj(a,b). adj(b,c). adj(c,a). adj(c,d).

path(X,Y) :- adj(X,Y).

path(X,Z) :- adj(X,Y), path(Y,Z).

P ` adj(a, b)

P ` adj(b, c)

P ` adj(c , d)

P ` path(c , d)

P ` path(b, d)

P ` path(a, d)

What is a logic?

Examples: first-order and higher-order versions of classical and
intuitionistic logics.

Logics have rich meta-theory

I soundness and completeness for some collection of models
(proof and truth both describe the set of theorems)

I natural deduction, sequent calculus

I proofs are PTIME checkable

I algorithms exist for proof search (unification, resolution, etc).

At a minimum, a logic should be consistent. Often, we require a
cut-elimination theorem.

Is linear logic a logic?

I No good model theory semantics for full linear logic exists.

I Linear logic has a cut-elimination theorem.

I We return to this question later.

Naive reason for basing a programming language on logic

Using programs made of logic must yield correct programs.

Refutation by picture

From Hofstadter’s
Gödel, Escher, Bach

A wishful perspective

I Kowalski (1979):

Algorithm = Logic + Control

I The Prolog community in the 80s/90s:

Program = Logic + Control + modules + I/O + Meta + . . .

The weak logic of Horn clauses was overwhelmed with
not-so-logical stuff.

I What about
Program = Logic ?

We return to this question later.

Control issues are also familiar in the functional programming
setting: call-by-value, call-by-name, call-by need, etc.

Benefits of the computation-as-deduction paradigms

Logic provides new perspectives on computing: “logic variable”,
multiset rewriting, non-determinism, binder mobility, . . .

Logic has traditionally not concerned itself with resources (memory
allocation, threads, scheduling, etc) so new designs in software
were forced.

For example, when references to memory resources are removed
from the language, one uses a garbage collector. If your GC is
correct, then any program using that collector will not have
memory leakage, buffer overflows, etc.

Part of the success of Java is its use of a garbage collector.
Mismanaging memory was the first on the 2019 CWE Top 25 Most
Dangerous Software Errors.

Logics have various deep properties

Logics generally have a well-developed literature.

I First-order/higher-order and classical/intuitionistic logics are
permanent standards. Fifty years from now, anyone can, in
principle, understand the details of that standard. The
literature will probably improve by then also.

I A collection of rich results exist about various logics: proof
systems, model theories, soundness/completeness,
cut-elimination, Herbrand’s theorem, etc.

I Multiple ways to implement logics have been described:
unification, skolemization, resolution refutations, etc.

If only programming languages were so well developed!

These benefits can come also from other systems

Logic is not alone in providing these benefits. Consider:

I lambda-calculus

I finite state machines, regular languages (tokenizers, search
queries)

I context-free languages, push down automata (parsers,
attribute grammars)

I CSP (Hoare); Occam

I CCS, π-calculus by Milner (specification of concurrency)

I Spi-calculus: security protocols

I Relational calculus, datalog (database programming)

I Petri nets, multiset rewriting

None of these are considered logics although their relationships to
various logics have been studied.

Robin Milner (1934-2010) is an interesting example.

I In CCS and the π-calculus, bisimulation is defined
co-inductively and is taken as an observational equivalent. He
proved that bisimulation is a congruence. Hence, algebraic
style reasoning can be applied to the π-calculus.

I Bigraphs made reference to elementary category theory to
help organize the definitions and results.

I The meaning of many of his systems used Plotkin’s structural
operational semantics, a kind of logic programming paradigm.

An example: Computing with multisets

Multisets are sets where elements have multiplicities.
Equivalently, lists where the order of elements in the list is ignored.

I {a, a, b} −→ {b}

I {p1, lock} −→ {q1, lock}, {p2, lock} −→ {q2, lock}
There are two sequential ways to rewrite

{p1, p2, lock} −→∗ {q1, q2, lock}

I {a(x), a(y)} −→ {a(x)} if x ≥ y . In general,
{a(x1), . . . , a(xn)} −→∗ {a(x0)} iff x0 = max(x1, . . . , xn).

Foundation of various computing paradigms: Petri nets, Linda
coordination language, security protocols, etc.

Is this logic?

What is a formal structure? First try

A mathematically described structure useful for computing.

Obviously, not all such formal structures are useful for designing
programming languages.

Turing machines are formally defined objects. They have played an
important role in computer science for at least two reasons.

I They obviously capture a notion of computation, which is a
prerequisite for establishing a negative result (the halting
problem).

I Turing machines have been useful for providing formal
definitions of the time and space hierarchies.

Turing machines are not a good starting place for programming
languages. They are too low-level, they are not modular, they
admit almost no abstractions, etc.

What is a formal structure? Second try

Mathematically defined structures involving syntax and which allow
for rich manipulation of and reasoning with such syntax.

I Classical and intuitionistic logics are formal structures in this
sense.

I First-order logic: model theory (truth) = theorems (proofs).
I Provability often has multiple equivalent characterizations

using resolution, natural deduction, sequent calculus, etc.
I Meaningfully manipulated of syntax: logical equivalence, De

Morgan duality, skolemization, conjunctive normal form, etc.

I There are a number of other kinds of formal systems.

I Böhm separation theorem and Church-Rosser confluence
results for the λ-calculus.

I Bisimulation is a congruence (various concurrent formalisms).
I Game theory and category theory contain subtopics that are

such formal structures.

Is Linear Logic a logic?

It has a good proof theory but no matching model theoretic
semantics. It is clearly a formal system with many deep properties
and applications.

I Provability and cut-free provability describe the same provable
formulas.

I LL provides various ways to encode intuitionistic and classical
logic proofs.

I LL has been used to encode Petri nets, multiset rewriting, and
(subsets of) the π-calculus.

“Is it a Logic?” seems to be debatable.
“Is it a formal system useful for computing?” Certainly.

Trade-offs when using formal structures

Being a general-purpose programming language based on a formal
system usually results in some ad hoc (breaking with the formal
system) features being inserted. Recall:

Algorithm = Logic + Control

Program = Logic + Control + modules + I/O + Meta + . . .

To the extent that large parts of code remains “pure”, i.e.,

Program = Logic

is the extent to which

I compiler optimizations can be done,

I static analysis is effective, and

I formal proofs are supported.

Evidence that logic is missing the point

Maybe the design of logic goes a bit too far.

I Assume that the state of a computation is encoded as a
formula. When computation is modelled as state S1 evolving
to S2, which implication should we select? S1 ` S2 or S2 ` S1.
I.e., are we progressing to truth or to false? This choice is
arbitrary.

I Intuitionistic logic forces an asymmetry: multiple inputs but
only one output.

Other approaches where these choices are not imposed.

I Game theory might provide a more neutral approach.
Depending on who has a wining strategy, you have proved or
refuted a formula.

I Linear logic allows for multiple inputs, multiple outputs.

More evidence that logic is missing the point

Assume that a process (in concurrency theory) is encoded as a
formula.

The fact that process P1 is simulated by process P2 can sometimes
be captured by P1 ` P2.

Thus, if P2 is also simulated by process P1, then it must be the
case that P1 and P2 are logically equivalence.

But it is well-known that such mutual simulation is weaker than
bisimulation (a central equivalence in process calculi).

Thus, bisimulation (in the general setting) cannot be encoded
using formulas and logical entailment (without some new
breakthroughs).

A future for logic and programming languages

The story between logic and programming has mostly been one of
making logic more expressive in order to capture more
computational aspects.

classical −→ intuitionistic −→ linear

There does seem to be a push in the opposite direction.
More and more principle of logic seem to be incorporated into
programming languages.

I strong static properties (e.g, typing and abstract
interpretation)

I richer abstractions (abstract datatypes, generic functions)

I equality reasoning via congruences (e.g., bisimulations).

In such a case, programming languages are moving closer to what
one might call logic (but not the conventional logics!).

Conclusions

Modern demands on programming languages and programs has
changed a great deal in recent decades. Formal properties enable
solving many of these demands. (Correctness, security, compilation
targeting multiple architectures, testing, optimizations, etc)

The “computation-as-deduction” approach provides exciting but
limited interchange between logic and computation. That
interchange is likely to expand but probably not a lot.

The change from “logic” to “formal systems” more generally
seems forced.

Some programming languages are likely to evolve so that they
embrace more and more formal properties.

