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Foreword

This manual documents the release 1.4 of the Bedwyr prover. It is organized as follows:

• Part I, a user’s guide

• Part II, a collection of tutorials and examples

• Part III, a deeper system description

For a faster start, please refer to the Quick-Start Guide to Bedwyr and then read the
examples in Part II.

The source code documentation can be found here.
The Bedwyr system is copyright c© 2005-2013 Slimmer project. It is free software,

licensed under the version 2 of the GNU General Public License. More details about
the development can be found on the website of the Slimmer project.

The complete distribution of the system, including documentation, examples, doc-
umentation sources and links to related publications can be found on the same website.
Development versions and old releases are available.
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Part I

A User’s Guide to Bedwyr

1 Overview

Some recent theoretical work in proof search has illustrated that it is possible to com-
bine the following two computational principles into one computational logic:

1. a symmetric treatment of finite success and finite failure – this allows capturing
both aspects of may and must behavior in operational semantics, and mixing
model checking and logic programming;

2. direct support for λ-tree syntax, as in λProlog, via term-level λ-binders, higher-
order pattern unification, and the ∇ quantifier.

All these features have a clean proof theory. The combination of these features allow,
for example, specifying rather declarative approaches to model checking syntactic ex-
pressions containing bindings. The Bedwyr system is intended as an implementation
of these computational logic principles.

Why the name Bedwyr? In the legend of King Arthur and the round table, several
knights shared in the search for the holy grail. The name of one of them, Parsifal, is
used for an INRIA team where Bedwyr is currently developed. Bedwyr was another
one of those knights. Wikipedia (using the spelling “Bedivere”) mentions that Bedwyr
appears in Monty Python and the Holy Grail where he is “portrayed as a master of the
extremely odd logic of ancient times”. Bedwyr is a re-implementation and rethinking
of an earlier system called Level 0/1 written by Alwen Tiu and described in [TNM05].
It was an initial offering from “Slimmer”, a jointly funded effort between INRIA and
the University of Minnesota on “Sophisticated logic implementations for modeling
and mechanical reasoning” from 2005 to 2010. For more information, see http://
slimmer.gforge.inria.fr/.

What is the difference between hoas and λ-tree syntax? The term “higher-order
abstract syntax” (hoas) was originally coined by Pfenning and Elliott in [PE88] and
names the general practice (that was common then in, say, λProlog [MN87]) of using an
abstraction in a programming or specification language to encode binders in an object-
language. Since the choice of “meta-language” can vary a great deal, the term “hoas”
has come to mean different things to different people. When hoas is used directly within
functional programming or constructive type systems, syntax with bindings contains
functional objects, which make rich syntactic manipulations difficult. Bedwyr, on the
other hand, follows the λ-tree approach [Mil00] to hoas: in particular, Bedwyr’s use of
λ-abstraction is meant to provide an abstract form of syntax in which only the names
of bindings are hidden: the rest of the structure of syntactic expressions remains.

Is Bedwyr efficient? Some care has been taken to implement the novel logical prin-
ciples that appear in Bedwyr. In particular, the system makes extensive use of the
implementation of the suspension calculus [Nad99] and other implementation ideas
developed within the Teyjus [NM99] implementation of λProlog [NM88]. Aspects
of tabled deduction have also been added to the system [RRR+97, Pie05]. We have
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found that Bedwyr’s performance is good enough to explore a number of interesting
examples. It is not likely, however, that the current implementation will support large
examples. For example, the system implements the occur-check within logic: this is,
of course, necessary for sound deduction but it does slow unification a lot. As a result,
the append program is quadratic in the size of its first argument. There are a num-
ber of well-known improvements to unification that make it possible to remove many
instances of the occur-check (and making append linear). As of this time, such an
improvement has not been added to Bedwyr.

An open source effort: Can I help? The Bedwyr system was conceived as a proto-
type that could help validate certain proof theory and proof search topic. In the end,
this prototype has illustrated the main principles that we hoped that it would. It has
also pointed out a number of new topics to be explored. If you are interested in con-
tributing examples, features, or performance enhancements, or if you are interested in
considering the next generation of a system like this, please let an author of this guide
know: we are looking for contributions.

Background assumed To read this guide, we shall assume that the reader is famil-
iar with the implementation of proof search that is found in, say, Prolog, λProlog,
or Twelf. While familiarity with various foundations-oriented papers (particularly,
[MMP03, MT05, Tiu04, Bae08b, TM10]) is important for understanding fully this sys-
tem, much can be learned from studying the examples provided in the distribution.

2 Getting Bedwyr

Different means of getting Bedwyr are listed on Slimmer’s INRIA Gforge project site:
http://slimmer.gforge.inria.fr/bedwyr/#download. You can either down-
load tarballs, get any development version using SVN, or use Slimmer’s unofficial Apt
repository – instructions are provided on the project page. The development of Bed-
wyr is meant to be an open source project. If you are keen to work on the source code
and/or examples, please contact one of the “Project Admins” of the project (as listed at
https://gforge.inria.fr/projects/slimmer/).

2.1 Distribution layout

The Bedwyr distribution is organized as follows:
src/ Source code
doc/ Documentation – you’re reading it

contrib/ Auxiliary files – e.g. Emacs and Vim support
examples/ Examples – reading them helps

2.2 Build

Bedwyr’s main build dependency is on the OCaml compiler suite. You also need some
standard tools you probably already have, especially the GNU build system (a.k.a. the
autotools, especially autoconf and GNU make), bash, tar, gzip, bzip2, etc. Most of
these are looked for by the configuration step.

Then, the procedure is quite simple:
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$ make

You’ll get a link to the Bedwyr executable as ./bedwyr. You can also use the
expanded form to choose your building options:

$ autoconf

$ ./configure <configure-options>

$ make <make-targets>

The available options and targets are listed with

$ ./configure --help

$ make help

By default, Bedwyr is built using the bytecode compiler ocamlc, since compilation
with it is much faster. If you don’t want this (no frequent recompilation, no need for
debugging), you can generate more efficient native-code instead with ocamlopt by
passing the option --enable-nativecode to ./configure.

You can also enable the documentation generation by using --enable-doc and
then make doc. This userguide, the quick-start guide the ocamldoc documentation
will be generated in doc/.

Last, --with-xmlm/--without-xmlmwill add/remove a dependency on the xmlm
OCaml library, needed to produce XML output. By default, the library is not required,
and the feature is included if and only if the library is found.

2.3 Test

Individual components can be tested for bugs with individual targets:

$ make test_ndcore

$ make test_batyping

$ make test_input

$ make test_prover

This longer test runs the complete program on a set of example files:

$ make test_bedwyr

The test target runs all the previous tests, and serves as a correctness and perfor-
mance test.

3 User interface

When you run Bedwyr, you specify a list of definition files, which contain objects to
be declared and defined. You can then use the toplevel to ask queries against those
definitions.

There is also a special brand of commands, meta-commands, which can appear
anywhere.

As a general rule, any kind of input ends with a full-stop. Commands start with
uppercase letters, meta-commands with hashes, and queries are just formulae.
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3.1 Definition files

Definition files are usually named with a .def extension. You can find several of them
in the examples/ directory of the Bedwyr distribution. They contain declarations for
types (Kind <id> type.), declarations for constants (Type <id> type.), declarations
and definitions for predicates (Define <id> : <type> by <definitions>.), and the-
orems (Theorem <id> : <formula>.).

The only meta-command that is really intended for definition files is the include
command: #include "another/file.def". This can really be seen as the plain inclu-
sion of another file, as Bedwyr doesn’t have any namespace or module system. If the
path is not absolute, it is relative to the path of the current file, or the execution path for
the toplevel.

3.1.1 Emacs mode

Assuming Bedwyr is installed in standard Linux system folders, you can use the Emacs
mode for Bedwyr by adding these two lines to your ~/.emacs file:

(load "/usr/share/bedwyr/contrib/emacs/bedwyr.el")

(setq bedwyr-program "/usr/bin/bedwyr")

;; Of course you can change both locations to wherever you want.

Then you should be able to load any .def file and have syntax highlighting and
some rough auto-indenting. Also if you do C-c C-c it will start Bedwyr and load the
current file you are working on.

3.1.2 Vim syntax highlighting

There is also a basic syntax highlighting file for Vim. With a standard system
installation, the files /usr/share/vim/vimfiles/[ftdetect|syntax]/bedwyr.
vim should suffice; otherwise do the following:

• copy contrib/vim/syntax/bedwyr.vim to your ~/.vim/syntax/ to make
highlighting available

• copy contrib/vim/ftdetect/bedwyr.vim to your ~/.vim/ftdetect/ to
have it used automatically for all .def files

3.2 Toplevel

The interactive toplevel is automatically launched once the files have been parsed, un-
less the flag -I is passed to Bedwyr. In it, you can either query a formula, or run a
meta-command. In queries, free and bound variables are the only objects that can be
used without prior declaration, and the solutions are displayed as instantiations of free
variables.

Queries can also be given in batch mode, to a non-interactive toplevel, via the
command-line option -e (e.g. bedwyr -e ’X = 0.’). In this case, they are processed
after the files and before the interactive toplevel.

In Listing 1 we load a set of definitions and prove (twice) that the untyped λ-term
λx.x x has no simple type.

Notice that we had to use the term (abs x\ app x x) instead of (x1\ x1 x1): the
former encodes the untyped λ-term λx.x x by mapping object-level abstraction to abs
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Listing 1: Run on examples/lambda.def.

?= (exists T, wt void (abs x\ app x x) T).

No.

?= (exists T, wt void (abs x\ app x x) T) -> false.

Yes.

More [y] ?

No more solut ions.

?=

and object-level application to app, while the latter would map them directly to logic-
level abstraction and application, and therefore is not a legal term in Bedwyr. (Prior to
version 1.3, this was allowed as Bedwyr did not use simple typing on its own terms.)

Most of the errors that can stop the reading of a file (parsing or typing error, un-
declared object, etc.) are correctly caught by the toplevel, though the line number
reported for the error is often not useful.

3.2.1 Line editing

Bedwyr has no line editing facilities at all. Thus, we recommend using ledit or
rlwrap, which provides such features. Get one of them from your usual package
manager or at http://pauillac.inria.fr/~ddr/ledit/ or http://utopia.
knoware.nl/~hlub/rlwrap/#rlwrap.

Then you can simply run ledit bedwyr. One can also define an alias in his ~/
.bashrc, such as the following which also makes use of ~/.bedwyr_history to
remember history from one session to another:

alias bedwyr="ledit -h ~/.bedwyr_history -x /path/to/bedwyr"

3.3 Meta-commands

Meta-commands are used to change the state or the program, or for non-logical tasks.
They can be used any time a command or query is allowed.

3.3.1 Session management

Those commands alter the set of definitions the current session of Bedwyr holds. An
empty session actually means that only pervasive types, constants and predicates are
known. The session’s initial state is the list of files given on the command-line, and it
can grow anytime with the use of #include. It should be noted that, although Bedwyr
has no solid notion of what a module is, it tries to do the smart thing by ignoring the
request to include a file if it appears to be already loaded in the current session, as
failure to do this would result in fatal multiple declarations. This only works if the
same path is used for each inclusion; for instance, ./file.def and file.def will be
seen as different files.

• #include adds a .def file to the current session. It is designed to be used in
definition files.

8

http://pauillac.inria.fr/~ddr/ledit/
http://utopia.knoware.nl/~hlub/rlwrap/#rlwrap
http://utopia.knoware.nl/~hlub/rlwrap/#rlwrap


• #session is an advanced #includemeant for query mode. It accepts any number
of filenames as parameters, and this set of files will be remembered as the new
session. When you pass filenames on Bedwyr’s command line, it is equivalent
to a call to #session with these definition files.

• #reload clears all the definitions, and then reloads the session’s initial state, i.e.
the definition files given on the command-line. It is useful if they have been
changed.

• #reset clears all the definitions and empties the session. It is synonymous to
#session with no arguments.

3.3.2 Assertions

Three kinds of assertions can be used in definition files. These tests are not executed
unless the -t flag has been passed on Bedwyr’s command-line, in which case any
assertion failure is fatal.

• #assert checks that a formula has at least one solution.

• #assert_not checks that a formula has no solution.

• #assert_raise checks that the proof-search for a formula triggers a runtime
error.

Our examples include a lot of assertions, to make sure that definitions have (and
keep) the intended meaning. These assertions are also the basis of Bedwyr’s correct-
ness and performance tests ran using make test.

3.3.3 Other commands

• Output

– #env displays the current session (types, constants and predicates).

– #typeof displays the (monomorphic) type of a formula and of its free vari-
ables.

– #show_def displays the definition of a predicate.

– #show_table displays the content of the table of an inductive of co-
inductive predicate.

– #save_table writes the table of an inductive of co-inductive predicate in a
fresh definition file.

– #export exports a structured aggregate of all tables in a file. This function-
ality has to be enabled at compile-time.

• Tabling (i.e. memoization or caching)

– #equivariant enables an alternative tabling mode.

– #clear_table clears the results cached for a predicate.

– #clear_tables clears all cached results.

– #freezing sets the depth of backward-chaining during proof-search.

– #saturation sets the depth of forward-chaining during proof-search.
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• General purpose

– #debug adds a lot of output during the proof search.

– #time displays computation times between two results.

– #help is what you should type first.

– #exit is what you should type last.
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Part II

Tutorials

4 Released examples

Few things are harder to put up with
than the annoyance of a good example.

– Mark Twain

The distribution of Bedwyr comes with several examples of its use. These examples
can be classified roughly as follows.

Basic examples These examples are small and illustrate some simple aspects of the
system.

Model checking Some simple model-checking-style examples are provided.

Games Bedwyr allows for a simple approach to explore for winning strategies in some
simple games, such as tic-tac-toe.

λ-calculus Various relations and properties of the λ-calculus are developed in some
definition files.

Simulation and bisimulation These relationships between processes where an im-
portant class of examples for which the theory behind Bedwyr was targeted.
Examples of checking simulation is done for abstract transition systems, value-
passing CCS, and the π-calculus. The π-calculus examples are of particular note:
all side-conditions for defining the operational semantics and bisimulation are
handled directly and declaratively by the logic underlying Bedwyr. See section 6
below for some more details about the π-calculus in Bedwyr.

5 Hypothetical reasoning

For those familiar with λProlog, a key difference between Bedwyr and λProlog is that
the latter allows for “hypothetical” reasoning and such reasoning is central to the way
that λProlog treats bindings in syntax. Bedwyr treats implication and universals in goal
formulas in a completely different way: via the closed world assumption.

Sometimes, when dealing with λ-tree syntax in Bedwyr, one wishes to program
operations as one might do in λProlog. This is possible in the sense that one can write in
Bedwyr an interpreter for suitable fragments of λProlog. This is done, for example, in
the seq.def definition file. There is a goal-directed proof search procedure for a small
part of hereditary Harrop formulas (in particular, the minimal theory of the fragment
based on ⊤, ∧, ⊃, and ∀). This interpreter is prepared to use a logic program that is
stored as a binary predicate. For example, in λProlog, one would write type checking
for simple types over the untyped λ-calculus encoded using app and abs as in Listing 2.
The hypothetical reasoning that is involved in typing the object-level λ-binder in the
second clause above is not available directly in Bedwyr. One can, however, rewrite
these clauses as simply “facts” in Bedwyr (Listing 3).

The first definition describes a logic program called simple that directly en-
codes the above λProlog program; the second definition tells the interpreter

11



Listing 2: Simple typing in Teyjus.

typeof (app M N) B :- typeof M (arrow A B), typeof N A.

typeof (abs R) (arrow A B) :- pi x\ typeof x A => typeof (R x) B.

Listing 3: Simple typing in Bedwyr (from examples/progs_small.def).

Define simple : form -> form -> prop by

simple (type_of (app M N) Tb)

(type_of M (Ta ~> Tb) && type_of N Ta);

simple (type_of (abs R) (Ta ~> Tb))

(for_all x\ type_of x Ta --> type_of (R x) Tb).

Define atom : form -> prop by

atom (type_of X T).

in seq.def how to recognize an object-level atomic formula. A call to
seq atom simple tt (type_of Term Ty) will now attempt to perform simple type
checking on Term. Specifically, it is possible to prove in Bedwyr the goal

(exists Ty, seq atom simple tt (type_of (abs x\ app x x) Ty))

-> false.

or, in other words, that the self-application λx(xx) does not have a simple type.
This “two-level approach” of specification uses Bedwyr as a meta-language in

which a simple intuitionistic logic is encoded as an object logic: computations can
then be specified in the object-logic in the usual way and then Bedwyr can be used
to reason about that specification. This general approach has been described in more
detail in [Mil06, GMN10].

6 The π-calculus example in more detail

To illustrate another example and how it can be used, consider the implementation of
the π-calculus that is contained in the example file pi/pi.def. Of the several things
defined in that file, the operational semantics for the π-calculus is given using one-step
transitions: for a specific example, see Listing 4.

Beyond the syntactic differences, the operational semantics of λProlog and Bedwyr
differ significantly. If a specification is simply a Horn clause program, the two systems
coincide. They differ in the operational interpretation of implication: in Bedwyr, to
prove A ⊃ B, all possible ways to prove A are explored and for each answer substitution
θ that is found, the goal Bθ is attempted (see subsection 7.5). Bedwyr also contains the
∇-quantifier [MT05].

Returning to the example in Listing 4, notice that two predicates are defined: one
and onep. The first one relates a process, an action, and a process. The second one
relates a process, an abstraction of an action, and an abstraction of a process. The one
predicate is used to capture “free transitions” and the “τ-transition” while the second
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Listing 4: Some one-step transitions (from examples/pi/pi.def).

Define

one : p -> a -> p -> prop,

onep : p -> (name -> a) -> (name -> p) -> prop

by

onep (in X M) (dn X) M;

one (out X Y P) (up X Y) P;

one (taup P) tau P;

one (match X X P) A Q := one P A Q;

onep (match X X P) A M := onep P A M;

Listing 5: (Open) bisimulation (from examples/pi/pi.def).

Define coinductive bisim : p -> p -> prop by

bisim P Q :=

(forall A P1, one P A P1 ->

exists Q1, one Q A Q1 /\ bisim P1 Q1) /\

(forall X M, onep P (dn X) M ->

exists N, onep Q (dn X) N /\

forall w, bisim (M w) (N w)) /\

(forall X M, onep P (up X) M ->

exists N, onep Q (up X) N /\

nabla w, bisim (M w) (N w)) /\

(forall A Q1, one Q A Q1 ->

exists P1, one P A P1 /\ bisim P1 Q1) /\

(forall X N, onep Q (dn X) N ->

exists M, onep P (dn X) M /\

forall w, bisim (M w) (N w)) /\

(forall X N, onep Q (up X) N ->

exists M, onep P (up X) M /\

nabla w, bisim (M w) (N w)).
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Listing 6: Run on examples/pi/pi.def

?= bisim (in a x\ in a y\ z)

(in a x\ nu w\ in a y\ out w w z).

Yes.

More [y] ? y

No more solut ions.

?= bisim (in a x\ nu y\ match x y (out c c z))

(in a x\ z).

Yes.

More [y] ? y

No more solut ions.

?= bisim (nu x\ out a x (in c y\ match x y (out c c z)))

(nu x\ out a x (in c y\ z)).

No.

?=

is used to capture bounded transitions. See [TM04, Tiu05] for more details on this
encoding strategy for the π-calculus.

Listing 5 provides all that is necessary to specify (open) bisimulation for (finite)
π-calculus. The keyword coinductive tells the system that it will be attempting to ex-
plore a greatest fixed point. That keyword also enables tabling, which avoids redundant
computations and accept loops as successes (see section 12). The other cases should
look natural, at least once one understands the λ-tree approach to representing syntax
and the use of the ∇-quantifier. The main thing to point out here is that in the specifi-
cation, no special side conditions need to be added to the system: all the familiar side
conditions from the usual papers on the π-calculus are treated by the implementation of
the Bedwyr logic: the user of the system no longer needs to deal with them explicitly
but implicitly and declaratively (via quantifier scope, αβη-conversion, etc.).

It is now possible to test some simple examples in the system, for example
Listing 6. These query prove that a(x).a(y).0 and a(x).(νw).a(y).w!w.0 are bisimilar,
that a(x).(νy).[x = y].c!c.0 and a(x).0 are bisimilar, and that (νx).a!x.c(y).[x = y].c!c.0
and (νx).a!x.c(y).0 are not bisimilar.

Several other aspects of the π-calculus are explored in the examples files of the
distribution. For example, the file pi/pi_modal.def contains a specification of the
modal logics for mobility described in [MPW93], the file pi/corr-assert.def spec-
ifies the checking of “correspondence assertions” for the π-calculus as described in
[GJ03], and the file pi/pi_abscon.def specifies the polyadic π-calculus following
[Mil99].
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Listing 7: Computing the maximum of a defined predicate (λProlog).

% The predicate a holds for 3, 5, and 2.

a (s (s (s z))).

a (s (s (s (s (s z))))).

a (s (s z)).

% The less-than-or-equal relation

leq z N.

leq (s N) (s M) :- leq N M.

% Compute the maximum of a

maxa N :- a N, pi x\ a x => leq x N.

Part III

System Description

7 The logic LINC

The logic behind Bedwyr, named LINC, is an extension to a higher-order version of
intuitionistic logic that has been developed over the past few years. The acronym LINC,
which stands for “lambda, induction, nabla, and co-induction”, lists the main novel
components of the logic. In particular, λ-terms are supported directly (and, hence, the
λ-tree syntax approach to higher-order abstract syntax is supported [Mil00]). Induction
and co-induction are also available. The nabla (∇) quantifier has been added to this
logic in order to increase the expressiveness of programs using λ-tree syntax in negated
situations. The proof theory of LINC is given in [MT05, Tiu04]. Since this earlier work
on LINC, more recent work on the logic G [GMN10, GMN11] and with fixed points
in linear logic [Bae08a, Bae12] has further improved our understanding of using fixed
points, induction, co-induction, and ∇-quantification.

Below we provide a high-level overview of the logical aspects of Bedwyr. More ex-
plicit information on this system can be found in [TNM05]. (N.b. the name “Level 0/1”
in that paper has now been replaced by Bedwyr) Next, we describe the two orthogonal
extensions to higher-order intuitionistic logic that have been incorporated into Bedwyr.

7.1 Built-in treatment of bindings

Bedwyr treats λ-abstractions within terms as primitives as well as allowing for variables
of function type and quantifiers within formulas (∀, ∃, ∇). The system implements
“higher-order pattern unification” (see section 8). This kind of unification appears to
be the weakest extension to first-order unification that treats bindings as a primitive. A
number of automated deduction systems implement this kind of unification (e.g. Twelf,
Teyjus, Coq, and Minlog). Full β-conversion is implemented by Bedwyr as well.

7.2 Syntax and semantics of definitions

Some systems implementing aspects of higher-order logic programming, such as
λProlog, accept the “open-world assumption”: any conclusion drawn in their logic
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Listing 8: Computing the maximum of a defined predicate (Bedwyr).

Kind ch type.

Type z ch.

Type s ch -> ch.

% The predicate a holds for 3, 5, and 2.

Define a : ch -> prop by

a (s (s (s z))) ;

a (s (s (s (s (s z))))) ;

a (s (s z)).

% The less-than-or-equal relation

Define inductive leq : ch -> ch -> prop by

leq z N ;

leq (s N) (s M) := leq N M.

% Compute the maximum of a

Define maxa : ch -> prop by

maxa N := a N /\ forall x, a x -> leq x N.

will hold in any extension of the underlying logic programming language. For exam-
ple, consider the λProlog program in Listing 7 (the signature has been left out), where
the last clause has an implication => in the goal. During proof search, this implication
causes λProlog to add a new eigenvariable, say c, to the runtime signature and to extend
the current program with an atomic fact about it: (a c). In such a new world, however,
the leq relation does not have any information about this “non-standard” number c.

Bedwyr on the contrary accepts the “closed-world assumption”: the notion of pro-
grams is replaced by definitions that capture the “if-and-only-if” closure of logic pro-
grams (Listing 8). One of the syntactic difference between the syntax of clauses and
that used in λProlog is that the head and body of clauses are separated from each other
using the := instead of the :- (turnstile). The former symbol is used to remind the
Bedwyr user of that “if and only if” completion of specifications.

Bedwyr takes the assumption (a c) and asks “Given the assumption that (a c) is
true, how could have it been proved?” The natural answer to this is that that assumption
could have been proved if cwas either 3 or 5 or 2. Thus, this will cause a case analysis:
in particular, the query (maxa N) will cause the following goals to be considered:

(a N) (leq 3 N) (leq 5 N) (leq 2 N)

Here we use the numeric symbols ‘2’, ‘3’, etc., as abbreviations of the corresponding
terms formed using z and s. The usual approach to unification and depth-first proof
search will now produce the proper maximum value. This change allows Bedwyr to
give a computational interpretation to finite failure and to do deduction that encodes
model checking.

7.3 Symmetry of finite success and finite failure

The underlying logic of fixed points (also known as definitions) [Gir92, SH93, MMP03,
MT03] contains an inference rule that allows for failure in unification (and, hence, in
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simple proof search) to be turned into a success. Thus, simple forms of “negation-
as-failure” can be naturally captured in Bedwyr and the underlying logic. It is also
possible to describe both may and must behaviors in process calculi. For example, not
only can one code reachability in process calculus but bisimulation is also possible.
One way to view this enhancement to proof search is the following: Let A and B be
two atomic formulas. Then, finite success is captured by proving the sequent −→ A,
finite failure is captured by proving the sequent A −→, and simulation is captured by
proving the sequent A −→ B.

7.4 The ∇ quantifier

In order to treat specifications using λ-tree syntax properly, it appears that a new quan-
tifier, called ∇, is necessary. If finite success is all that is needed, the ∇ can be replaced
with the universal quantifier. When finite failure is involved, however, the ∇ quantifier
plays an independent role. See [MT05, Tiu04, Tiu05] for more on this quantifier. It is
worth pointing out that we know of no examples involving ∇ that do not also involve
λ-tree syntax.

7.5 Proof search within LINC

Bedwyr is a proof search engine for a small fragment of the LINC logic. In princi-
ple, Bedwyr uses two provers. Prover-1 is similar to the depth-first interpreter used in
λProlog. The main difference is in the proof of an implication. To prove an implication
A ⇒ B, prover-1 calls prover-0 to enumerate all possible solutions {θi | i = 1, . . . , n}
for A, and then prover-1 tries to prove Bθ1 ∧ · · · ∧ Bθn. If A has no solution (that is,
if n = 0), the implication is true. The substitutions generated by prover-1 are for exis-
tential1 variables, as usual in logic programming. On the other hand, the substitutions
generated by prover-0 are for universal variables.

To illustrate this, consider the following goal:

∀x . (∃y . x = s y)⇒ x = 0⇒ f alse

(This formula formalizes the fact that if x is the successor of some number then x is
not zero.) Bedwyr will call prover-1 on it. The prover introduces a universal variable
and reaches the first implication. It then calls prover-0 on (∃y . x = s y). Prover-0
introduces an existential variable y, and the unification instantiates x to get the only
solution. Back to prover-1, we have to prove (s y = 0 ⇒ f alse) where y is still an
existential variable. Prover-0 is given s y = 0 to prove and fails to do so: that failure is
a success for prover-1.

We’ve seen in section 7 with the maxa example (Listing 8) how this treatment of
the implication allows Bedwyr to check formulas which are not provable in traditional
(pure) logic programming languages such as λProlog. As often, this novelty has a
price. The systematic enumeration leads to infinite search for simple formulas like
(A⇒ A) as soon as A does not have a finite number of solutions. Further development
of Bedwyr may provide real support for induction and co-induction.

Prover-0 is similar to prover-1. The first difference is this dual treatment of vari-
ables; soundness requires another one. Because it needs to completely destruct for-

1We avoid the usual names (logic variables for existential variables and eigenvariables for universal
variables) in order to clearly separate the high-level description given here from the implementation, which
is not detailed here, but in which the class of a variable isn’t static.

17



mulas in order to enumerate solutions, prover-0 requires its connectives to be asyn-

chronous on the left: they can be immediately destructed (introduced, in sequent cal-
culus terminology) without restricting provability. This means that implication and
universal quantification are forbidden on the left of implications.

Prover-1 instantiates existential variables, and considers universal variables as
(scoped) constants. Prover-0 produces substitutions for universal variables, considers
existential variables introduced in prover-0 as constants, but we have no satisfactory
answer for existential variables introduced in prover-1. As a consequence, in prover-0,
unification raises an run-time error when the instantiation of an existential variable is
needed. More details about that can be found in Section 13.2.

8 Unification

A subset of λProlog, called Lλ, was presented in [Mil91] where it was shown that an
implementation of proof search could be written in which only a small subset of higher-
order unification was required. Furthermore, that subset was decidable, unary, and did
not need typing information. This subset of unification was called Lλ-unification in
[Mil91] but is now more commonly referred to as higher-order pattern unification

[Nip93, NL05]. In that subset, variables in functional position are applied to distinct
variables which must be bound in the scope of the binding of the functional variable.

For instance,

exists X, forall y z, X y z = y

can be solved, but

exists X, forall y, X y y = y

can’t, as it violates the first constraint (so that X can take at least two values, x1\ x2\ x1
and x1\ x2\ x2), and

forall y, exists X, forall z, X y z = y

can’t either, as it violates the second constraint and therefore could be rewritten

exists X’, forall y z, (X’ y) y z = y

Bedwyr uses an extension of this higher-order pattern unification which handles ∇.

9 Typing

Terms in Bedwyr form a strongly typed language with polymorphism and type con-
structors. This language is statically type-checked; once definition files are loaded
and queries are read, types are discarded and the prover handles only untyped terms.
Therefore, to ensure that “well-typed formulae don’t go wrong”, a form of the Hindley-
Milner type system is used instead of the full System Fω. The polymorphism has there-
fore those properties:

parametric type parameters are given as uppercase letters in constant or predicate
declarations
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Listing 9: Polymorphism in Bedwyr.

Kind option type -> type.

Type none option A.

Type some A -> option A.

Define print? : option A -> prop by

print? none ;

% print? (some 42) ;

print? (some X) := println X.

predicative terms are always monomorphic (apart from definitions), so the type pa-
rameters of a polymorphic object have to be instantiated with monotypes when-
ever it is used in a term

prenex type quantifiers can only occur at the outermost level of a type, and therefore
can be omitted

As the language is fairly specific, what we have is not let-polymorphism but “define-

polymorphism”: while it is not possible to give a polytype to a bound variable (whether
it is bound by an abstraction or a quantifier), a definition can be polymorphic, and must
be if the predicate was declared so. With the syntax Bedwyr uses for clauses, this
means that the type of the occurence of a predicate at the head of the application that
is itself the head of a clause is not instantiated. In Listing 9, the commented out clause
wouldn’t type-check as it assumes print? has type option int instead of option A,
and the last clause type-checks as println is itself polymorphic and adds no constraints
on the type of X.

The only two constraints on type parameters are that they must be of kind type,
and therefore cannot appear at the head of an type application, and that types must be
definite, i.e. a type parameter that appears in a type must appear in the goal of that type,
so as to forbid heterogeneous wrappers like Type c A -> t.

Recursive algebraic types are de facto available via constant declarations, e.g. the
predeclared type constructor list is morally defined as

list A = nil | (::) of (A * list A)

in pseudo-OCaml notation. It is even possible to emulate type deconstruction (match-
ing) by using clause heads that cannot unify simultaneously with a ground term, as is
done in Listing 9 with the constants none and some.

10 Definition files

Type declarations only use type and ->, and as type constructors can only be applied
on proper types, type never appears under more than one -> (Figure 1).

Constant declarations have the structure described in Figure 2, with additional con-
straints on type variables as described in section 9.

Definitions are given as blocks with a header containing predicate declarations,
and an optional body containing a set of clauses, in which uppercase variables are
implicitly universally quantified (Figure 3). A predicate with no definition clauses is
always false; the head of a bodiless clause is always true. A predicate can only depend
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type_decl ::= Kind <id> <kind>.
kind ::= type -> <kind>

| type

Figure 1: Grammar of type declarations.

constant_decl ::= Type <id> <type>.
type ::= <type> -> <type>

| <type_atom>
type_atom ::= <type_atom> (<type_atom>)

| <type_atom> <type_variable>
| <id>

Figure 2: Grammar of constant declarations.

on predicates defined up to its definition block, so multiple predicates in one block is
the only way to achieve mutual recursion. One can see definition blocks as groups
of predicates belonging to the same stratum; stratification forbids predicates from the
same block to depend negatively one on the other, as usual, but here it also forbids the
use of inductive and coinductive in the same block for similar reasons.

definition_block ::= Define <declarations>.
| Define <declarations> by <clauses>.

declarations ::= <declaration> , <declarations>
| <declaration>

declaration ::= <flavour> <id> : <type>
flavour ::= inductive

| coinductive

|

clauses ::= <clause> ; <clauses>
| <clause>

clause ::= <head> := <body>
| <head>

head ::= <id> <atom>*
body ::= <formula>

Figure 3: Grammar of predicates declarations and definitions.

Theorems are horn-like formulae which head must be an atom obtained by the
application of an already defined predicate (Figure 4). For a non-recursive predicate,
they can be seen as additional clauses, admissible by the definition with respect to the
logic, if not to Bedwyr. Their names holds no semantic value.

11 Concrete syntax

Although the concrete syntax of Bedwyr was originally derived from that of λProlog in
the Teyjus implementation[NM99], it has now evolved in such a way that, by design, it
resembles that of the Abella proof assistant [Gac10]. This explains the lack of syntactic
compatibility with versions earlier than 1.3.
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theorem ::= Theorem <id> : <body> -> <head>. <proof> Qed.

Figure 4: Grammar of theorems specifications.

formula ::= <term> = <term> equality
| <formula> /\ <formula> conjunction
| <formula> \/ <formula> disjunction
| <formula> -> <formula> implication
| <quantifier> <bound_variable>+,<formula>
| <term>

quantifier ::= forall universal
| exists existential
| nabla generic

Figure 5: Grammar of formulae.

11.1 Formulae

Formulae are described in Figure 5, separately from terms, as it is customary to have
the former contain the later and not the other way around. However, one can actually
write ((x\ (p x /\ q x)) c) instead of (p c /\ q c), and the parser takes it into
account by allowing a formula to be interpreted as a term.

Quantifiers are n-ary, and their scope extends to the right as far as possible:

(forall x y, f y x = g x y) ≡ (forall x y, (f y x = g x y))

11.2 Terms

Within terms, the highest priority goes to the regular application (Figure 6). In partic-
ular, it has precedence over the application of an infix constant:

(w x ** y z) ≡ (w x) ** (y z)

All infix constants have the same priority, and are right-associative, to mimic the be-
havior of ->.

An infix constant usually has to be at least of arity 2 to be read: (x **) raises a
parsing error, while (x ** y) can be applied to another term if ** is of arity 3 or more.
It is also possible to use the prefix version of an infix constant by surrounding it with
parentheses, in which case any arity is permitted: ((**) x) and ((**) x y z) are both
syntactically legal.

The abstraction over variable x in term is denoted by x\ term – which is read as
λx.term. The scope of the infix λ-abstraction extends to the right as far as possible
inside of a term, but not across formula operators:

(x\ y\ f y x = g x y) ≡ ((x\ (y\ (f y x))) = (g x y))

11.3 Tokens

Names for objects such as types, predicates, constants and variables are character
strings built with letters, digits and the special characters {-^<>=~+*&:|}, {‘’$?} and
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term ::= <atom>+ application
| <atom>* <abstraction> application on an abstraction
| <term> <infix_id> <term> (partial) infix application

abstraction ::= <bound_variable>\<term>
atom ::= true prop

| false prop

| "<string>" string

| [0-9]+ nat

| (<formula>)
| (<infix_id>) prefix form of an infix constant
| <id> declared object
| <bound_variable> bound (or free) variable

Figure 6: Grammar of terms.

{_/@#!} (Figure 7). Names must be separated by space characters (SPACE, TAB, CR,
LF), parentheses or C-style inline nested comments (/* */). As a general rule, the first
character of a name determines the kind of name it is, and cannot be a digit.

More precisely, we divide the special characters into three categories:

• infix characters: -^<>=~+*&:|

• prefix characters: ‘’$?

• tail characters: _/@#!

which gives us three token categories:

upper names start with A-Z; contain any letter, digit, prefix character or tail character
(i.e. anything but an infix): Foo?0, B@r, My_Var’

prefix names start with a-z or a prefix character; contain any letter, digit, or prefix or
tail character (i.e., anything but an infix): l33t, h#sh, ?Your_Var

infix names contain only infix characters: -->, |=, ^^

Keywords are implicitly excluded from those definitions.
Types and predicates must have prefix names, constants can have either prefix or

infix names, and bound variables (from quantifiers of λ-abstractions) can have either
upper or prefix names, though it is customary to use an upper name for an existentially
quantified variable and a prefix name for the others.

In a term or a type, all unbound infix or prefix names must be declared, and unbound
upper names (which cannot be declared objects) are free variables. Those are implicitly
universally quantified in files (i.e. in types and clauses), and existentially quantified in
queries. Though no name can begin with the special character _2, it can serve as a
placeholder: it is a fresh one-time free variable, except when used instead of a variable
name in a binding, where it denotes a vacuous abstraction.

One more constraint restrict the range of names. As already said, names must be
separated by space characters or comments. This is true even if they are not names of

2Actually, such names exist and are accepted by the parser, but are rejected in type, constant and predicate
declarations, as they are read-only names, only used for undocumented, internally defined predicates (usually
experimental, non-logical, and with side-effects).
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id ::= <prefix_name>
| <infix_name>

bound_variable ::= <upper_name>
| <prefix_name>

type_variable ::= <upper_name>
infix_id ::= <infix_name>
upper_name ::= [A-Z][a-zA-Z0-9‘’$?_/@#!]*
prefix_name ::= [a-z‘’$?][a-zA-Z0-9‘’$?_/@#]*
infix_name ::= [-^<>=~+*&:|]+

Figure 7: Grammar of type declarations.

the same kind, e.g. infix characters and other characters cannot be contiguous. This
explains why the spaces are mandatory in (X -> Y) or even (X = Y). The only allowed
exceptions are the special sequences /* and */, which can appear right after (resp.
before) a prefix name, and which always start (resp. end) a level of inline comment3,
except when in a quoted string or a single-line comment.

12 Tabling

Proof search for a defined atom is done by unfolding the definition for the atom, i.e.
by replacing it with the body of the definition. Since (mutually) recursive definitions
are allowed, it is possible that loops occur in the proof search. The same goals can
also arise several times in different searches. By default, Bedwyr doesn’t detect any of
these issues, which makes the proof search much longer than needed, or even infinite.
To address this, Bedwyr can use tabling to keep records of certain proved, disproved or
ongoing formulae, hence avoiding redundant search.

Tabling is used in both prover-0 and prover-1 (see Section 7.5). The current imple-
mentation restricts tabling to atomic goals with no occurrence of existential variables
in prover-1. In prover-0, only ground atomic goals (no occurrence of existential or
universal variables) are tabled.

The use of tabling as a memoization mechanism is straightforward: once an atom
is proved or disproved, it is marked as such in the table, and this result can be reused
in any later computation. On the other hand, while the proof search for an atom is still
ongoing, the atom is marked as working, and any new occurrence of it will mean that
a loop in the search has been found. This can have several interpretations, depending
on whether we consider the predicate as inductive or co-inductive. In the former case,
that means that the atom is not provable, since otherwise it would contradict the well-
foundedness of inductive definitions. In the latter case, we would have a proof of the
atom. This simple loop checking makes it possible to do proof search for some non-
terminating definitions.

Tabling is by default not enabled in Bedwyr. To enable it, two keywords are pro-
vided: inductive and coinductive. To use tabling on a predicate p, one of them has
to be added in the declaration of p, in the header of the definition block. Note that,
while one can mix tabled and non-tabled predicates in the same definition block by
only applying such a keyword to some of the predicates, the scope of the inductive
or co-inductive trait is the whole block of mutually recursive definitions. This means

3Contrary to Teyjus, Bedwyr doesn’t see two variables in the expression X/* Y*/.
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that a definition block cannot contain both inductive and co-inductive predicates at the
same time, as it might lead to contradictions – see [MT03] for more details.

12.1 Table output

The command #show_table pred. allows one to inspect the contents of pred’s table
outside of any computation, when it only contains proved and disproved atoms. The
output displays one formula per line, with the prefix [P] for proved and [D] for dis-
proved. The formulas are abstracted over by their generic and universal variables. The
relative scopings of generic and universal variables is not displayed although that in-
formation is present internally: such information is needed, for example, to avoid that
a proof of (∀x∇y . p x y) is used as a proof for (∇y∀x . p x y). The displaying of this
information will be fixed with planned extensions of the tabling mechanisms that will
implicitly allow extra axioms on ∇ (see [Tiu06]) in order to be able to inspect in a
meaningful way one predicate’s table from another logic program.

For example, if we define

Define inductive neq : nat -> nat -> prop by

neq X Y := X = Y -> false.

Define query1 : prop, query2 : prop by

query1 := forall x, nabla y, neq x y ; % true

query2 := nabla y, forall x, neq x y. % false

and ask the queries query1. and query2. , we end up with the following puzzling table:

?= #show_table neq.

Table for neq contains (P=Proved, D=Disproved ):

[P] nabla x1, x2\ neq x2 x1

[D] nabla x1, x2\ neq x2 x1

?=

The two entries are indistinguishable by the user, but internally some extra information
does separate them.

Tables can be reset with the commands #clear_table and #clear_tables.

12.2 Table extraction

Two means of extracting tabled information exist in Bedwyr. The first is the
#save_table command, which is similar to #show_table but outputs the table in a
definition file as a pair of predicates (Listing 10), proved and disproved. This way, it
is possible for Bedwyr to reason about its own tables.

The other method is the #export command. It outputs the whole set of tabled atoms
of the current session in a structured way (Listing 11), not unlike the trees of multicut

derivations described in [Nig08]. Note that this tree can contain atoms from multiple
predicates, and therefore cannot be built if some tables were selectively removed by
#clear_table.
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Listing 10: #save_table path "path-table.def".

% Table for path contains :

Define proved : (s -> s -> prop) -> s -> s -> prop ,

disproved : (s -> s -> prop) -> s -> s -> prop by

disproved path (state 1 1 0) (state 5 5 1) ;

disproved path (state 1 1 0) (state 5 5 1) ;

[...]

disproved path (state 1 1 0) (state 5 5 0) ;

disproved path (state 2 1 1) (state 5 5 0).

Listing 11: #export "tables.xml".

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE skeleton SYSTEM "bedwyr.dtd">

<?xml-stylesheet type="text/xsl" href="bedwyr -skeleton.xsl"?>

<skeleton timestamp="1365771164 ">

<son value="disproved" id="57">

<atom>path (state 3 1 1) (state 5 5 1)</atom>

<son value="disproved" id="113">

<atom>path (state 1 1 0) (state 5 5 1)</atom>

<son value="disproved" id="33">

<atom>path (state 2 1 1) (state 5 5 1)</atom>

<loop value="disproved" ref="57">

path (state 3 1 1) (state 5 5 1)

</loop>

[...]

12.3 Tabling modulo

Version 1.3 introduced tabling modulo theorems, where simples lemmas can be used
to improve the efficiency of tabling in two ways:

backward-chaining uses a lemma as an additional definition clause, and unifies its
head with a queried atom to expand the range of the search in the table. For
instance, if the lemma A ∧ B ⇒ C is known and the table contains Aθ and
Bθ, then the query Cθ can be solved without unfolding a (possibly complicated)
definition.

forward-chaining uses a lemma to fill the table faster: with the same lemma, if the
table contains Aθ, then upon solving and tabling Bθ, Cθ is de facto solved and
can be tabled without even having been queried.

Lemmas obviously have to be admissible by the definitions; they are merely short-
cuts that ease the access to results too complex for Bedwyr to compute quickly or at
all. The first examples that come to mind are symmetry or transitivity lemmas. They
can be added to files as theorems, using the Abella syntax, and the subsequent text is
ignored until the command Qed is met. That way, parsing and checking the proof is left
to Abella.
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12.4 A bisimulation example

In some cases the table contents has important uses: for example, once the co-inductive
predicate bisim (for bisimulation in some of the example files) has been checked, the
table for the predicate bisim describes a bisimulation. We give here a simple exam-
ple of checking bisimulation of finite state automata. The example is distributed with
Bedwyr as bisim.def. For more sophisticated examples involving the π-calculus, we
refer the reader to section 6.

Consider the following transition system (taken from [Mil99], page 19):

p1
b

}}
a

��

p0
a

==

a

!!
p2 a

hh

b

bb

q0
a

!!
q1 agg

b

}}
q2

a

==

The state p0 and q0 are bisimilar (see [Mil99] for a proof). This transition system and
the bisimulation relation are encoded in Bedwyr as shown in Listing 12. Using this
definition of bisimulation, Bedwyr is able to prove that p0 and q0 are indeed bisimilar
(Listing 13).

Listing 12: Excerpt from examples/bisim.def.

Define next : state -> trans -> state -> prop by

next p0 a p1;

next p0 a p2;

next p1 b p0;

next p1 a p2;

next p2 a p2;

next p2 b p0;

next q0 a q1;

next q1 a q1;

next q1 b q2;

next q2 a q1.

Define coinductive bisim : state -> state -> prop by

bisim P Q :=

(forall P1 A, next P A P1 ->

exists Q1, next Q A Q1 /\ bisim P1 Q1) /\

(forall Q1 A, next Q A Q1 ->

exists P1, next P A P1 /\ bisim P1 Q1).

The table produced gives exactly the bisimulation set needed to prove the bisimi-
larity of p0 and q0, i.e. the set {(p0, q0), (p0, q2), (p1, q1), (p2, q1)}.

13 Limitations of the interpreter

The strategy used by Bedwyr for attempting proofs is not complete. That strategy in-
volves using two provers (prover-0 and prover-1), tabling, and depth-first search. Many
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Listing 13: Run on examples/bisim.def.

?= bisim p0 q0.

Yes.

More [y] ? y

No more solut ions.

?= #show_table bisim.

Table for bisim contains (P=Proved, D=Disproved ):

[P] bisim p0 q0

[P] bisim p0 q2

[P] bisim p1 q1

[P] bisim p2 q1

?=

of the incompleteness that one encounters in traditional logic programming languages,
such as Prolog and λProlog, resulting from depth-first search certainly reappear in Bed-
wyr. We mention two additional sources of incompleteness in the proof search engine
of Bedwyr.

13.1 Lλ and non-Lλ unification problems

Bedwyr allows for unrestricted applications of variables to argument but it is only will-
ing to solve Lλ-unification problems. As a result, Bedwyr will occasionally complain
that it needs to solve a “not LLambda unification problem” and stop searching for a
proof.

To illustrate this aspect of Bedwyr’s incompleteness, consider the problem of speci-
fying the instantiation of a first-order quantifier. In particular, consider the specification

Kind tm, fm type.

Type all (tm -> fm) -> fm.

Type p tm -> fm.

Type a tm.

Define instan : fm -> tm -> fm -> prop by

instan X T (B T) := X = (all B).

Thus, instan relates a universally quantified formula and a term to the result of instan-
tiating that quantifier with that term. It is the case, however, that a unification problem
containing (B T) does not belong to the Lλ subset. As a result, the following query
results in a runtime error.

?= instan (all x\ p x) a (p X).

At line 1, byte 28: Not LLambda unification encountered: a.

?=

In some situations, a specification can be written so that the problematic unification is
delayed to a point where the unification problem is within the Lλ restriction. In this
particular case, if the definition of instan is rewritten with the logically equivalent
clause
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Define instan : fm -> tm -> fm -> prop by

instan X T Y := X = (all B) /\ Y = (B T).

this same query now returns an appropriate solution.

?= instan (all x\ p x) a (p X).

Solut ion found:

X = a

More [y] ?

No more solut ions.

?=

An improvement to Bedwyr would be for it to automatically delay unification prob-
lems that are outside the Lλ-subset: delaying “difficult” unification problems in the
hope that future instantiations and β-reduction will make them “simple” is employed in
such systems as Twelf and the second version of the Teyjus implementation of λProlog
[GHN+08].

13.2 Restriction on the occurrences of logic variables

As we have already noted, in the current implementation of Bedwyr there are restric-
tions on negative occurrences of logic variables – i.e. to the left of an implication. This
restriction arises from the fact that we do not have a satisfactory and comprehensive
understanding of unification in the prover-1 that incorporates such variables. As a re-
sult, Bedwyr is incomplete since it generates a run-time error in these cases. Consider
the following two queries.

?= nabla f, exists X, X = 42 -> false.

At line 1, byte 35: Logic variable encountered on the left: H.

?= nabla f, exists X, f X = 42 -> false.

Yes.

More [y] ?

No more solut ions.

?=

The first query is certainly meaningful and is provable if there is a term different from
42 (say, 43): in Bedwyr, this query generates a run-time error since it requires deal-
ing with a prover-1 existential variable within prover-0 unification. The second query
illustrates that some instances of prover-0 unification can tolerate the occurrences of
prover-1 existential variables.

Sometimes, one can change a specification to avoid this runtime error. A simple
example is provided by the following two queries.

?= exists X, (X = 42 -> false) /\ X = 17.

At line 1, byte 38: Logic variable encountered on the left: H.

?= exists X, X = 17 /\ (X = 42 -> false).

Yes.

More [y] ?

No more solut ions.

?=
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Such reordering of goals is something a future version of Bedwyr might attempt to do
automatically.
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