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Abstract

We review links between three logic formalisms and three approaches to
specifying operational semantics. In particular, we show that specifications
written with (small-step and big-step) SOS, abstract machines, and multiset
rewriting, are closely related to Horn clauses, binary clauses, and (a subset
of) linear logic, respectively. We shall illustrate how binary clauses form
a bridge between the other two logical formalisms. For example, using a
continuation-passing style transformation, Horn clauses can be transformed
into binary clauses. Furthermore, binary clauses can be seen as a degener-
ative form of multiset rewriting: placing binary clauses within linear logic
allows for rich forms of multiset rewriting which, in turn, provides a mod-
ular, big-step SOS specifications of imperative and concurrency primitives.
Establishing these links between logic and operational semantics has many
advantages for operational semantics: tools from automated deduction can
be used to animate semantic specifications; solutions to the treatment of
binding structures in logic can be used to provide solutions to binding in
the syntax of programs; and the declarative nature of logical specifications
provides broad avenues for reasoning about semantic specifications.

1 Introduction
There are a number of formalisms that have been used to specify what and how
programming languages compute. If one wishes to build on top of such for-
malisms such things as concepts (e.g., observational equivalence and static anal-
ysis) and tools (e.g., interpreters, model checkers, and theorem provers), then the
quality of such encodings is particularly important. In this paper, we shall use



logic formulas to directly encode operational semantics instead of other formal
devices such as domains, algebras, games, and Petri nets. We use proof theory
to provide logical specifications with a dynamics that is able to capture a range
of operational specifications and we argue that the resulting logic theories should
provide practitioners with specifications that can support the development of a
range of concepts and tools. We will focus on three logical formalisms that have
been used to describe operational semantics and illustrate their use via examples.

1.1 Various roles for logic in computation
Logic is, of course, used in multiple, rich, and deep ways to specify and to reason
about computation. In order to clarify our focus in this paper, we provide a brief
overview of the various roles logic has in computation.

One approach to the specification of computations is to encode them using
mathematical structures, such as nodes, transitions, and vectors of state values.
Logic can then be used to make statements about those structures and their dy-
namics: that is, computations are used as models for logical expressions. Com-
putation can simply be seen as transformations on vectors of state values [17] or
as “abstract state machines” [11]. Intensional operators, such as the modals of
temporal and dynamic logics or the triples of Hoare logic, are often employed to
express propositions about the change in state. This use of logic to represent and
reason about computation, sometimes called the computation-as-model approach,
is probably the oldest and most broadly successful use of logic in computer sci-
ence.

Another approach to specification uses pieces of the syntax of logic—
formulas, terms, types, and proofs—directly as elements of computation. In this
more rarefied setting of computation-as-deduction, there are two rather differ-
ent approaches to modeling computation. In the proof normalization approach
to functional programming, a proof term encodes the state of a computation and
computation is the process of normalization (know variously as λ-reduction or
cut-elimination). The so-called Curry-Howard correspondence provides the basis
for justifying this correspondence between operations on proofs and computations
in programs.

In this paper, we focus on another approach to computation-as-deduction,
namely the proof search approach to logic programming. In this approach to
specification, relations (in contrast to functions) are specified and the language
of sequent calculus is used to describe the dynamics of computation: the state of a
computation corresponds to a sequent (a collection of relations, such as “reference
r has value v” and “E evaluates to U”) and computation is the process of searching
for a cut-free proof of that sequent. In the process of attempting to build such a
proof, sequents change and such change encodes the dynamics of computation.



In this paper, when we say “logic specification” we could also have said “logic
program” or “theory”. Also, when we speak of “programming languages” we
shall also allow include specification languages such as the λ-calculus and the
π-calculus.

1.2 Denotational semantics vs Operational semantics
It is conceptually useful to view the difference between functional programming
and logic programming as the difference between proof-normalization and proof-
search. This same difference can also be applied to semantic specifications. In
particular, denotational semantic specifications strongly resembles (pure) func-
tional programs: the modern reader of, say, the early texts by Stoy [34] and Gor-
don [9] on denotational semantic will get a strong sense that the more involved
denotational semantic specifications can be seen as Haskell or Scheme programs.
We hope to convince the reader by the end of this article that many operational
semantic specifications can be seen as logic programs and, furthermore, that there
are significant advantages in viewing them that way.

A reason for the early successes of the denotational semantic approach to spec-
ification was its use of well developed mathematical theories as a formal frame-
work [10]. As we shall illustrate below, proof theory has developed significantly
to provide a similarly mature and flexible framework for operational semantics
[20].

1.3 Different operational semantics and associated logics
In this paper we shall illustrate how three kinds of semantic specifications can be
encoded into three different but closely related logical formalisms. The connection
between these operational semantic specifications and logic is not new: most of
these observations were made during the decade 1985–1995. These three kinds of
semantic specifications are briefly described below.

Structural operational semantics was first used by Milner [26] to describe CCS
and by Plotkin [31, 32] to describe a wide range of programming language fea-
tures. This style of specification, now commonly referred to as small-step SOS,
allows for a natural treatment of concurrency via interleaving. Big-step SOS, in-
troduced by Kahn [14], is convenient for specifying, say, functional programming
but more awkward for specifying concurrency. Both of these forms of operational
semantics define relations using inductive systems described by inference rules:
Horn clauses provide a declarative setting for encoding such rules.

Abstract machines and other forms of term rewriting can be encoded naturally
as binary clauses, which are the universal closure of formulas of the form “atom



implies atom.” These degenerate Horn clauses are tail recursive and naturally
specify iterative algorithms and abstract machines, such as the SECD machine
(see Figure 5) [16]. Arbitrary Horn clause programs can also be transformed into
binary clauses using a continuation-passing style transformation. As such, binary
clauses can be seen as capturing a thread of computation that contains a sequence
of “instructions.” While binary clauses represent a retreat from logic in the sense
that they employ fewer logical constants (such as conjunction) than general Horn
clauses, they do provide two things in exchange: (1) a way to explicitly order
much of proof search (i.e., computation) and (2) a basis for an extension to linear
logic in which concurrency and imperative features can be naturally captured in a
big-step-style semantic specification.
Multiset rewriting is a well known way to specify concurrency-related features
of a programming language. Multisets and their rewriting are closely related to
Petri nets [15] and have been used by a number of researcher to directly specify
computation: see, for example, the Gamma programming language [3], the chem-
ical abstract machine [4], and MSR [5]. Sequents in linear logic contain multisets
and it is easy for proof search to encode multiset rewriting. We will illustrate how
generalizing binary clauses to include linear logic connectives allows for the natu-
ral specification of a number of concurrent and imperative programming language
features.

2 Specifications as terms and formulas in a logic
In this section, we describe a general approach to encoding an operational se-
mantic specification into logic: in subsequent sections, we focus on three specific
logics separately.

2.1 Abstract syntax as terms
In order to encode a programming language, we first map syntactic expressions
used in the specification of programming languages into logic-level terms. Since
almost all interesting programming languages contain binding constructions, we
choose a logic whose terms also contain bindings. Because we are only attempting
to capture the syntax of the objects used to describe computation, we shall assume
that the logic has sufficient typing to directly encode syntactic types. We shall use
the following two natural principles to guide such an encoding.

Constructors of the language are mapped to term constructors and the latter are
typed by the syntactic categories of the objects that are used in the construction.
As is common, the term constructor is modeled as an application of the construc-
tor to arguments. Similarly, binders in the programming language domain are



mapped to abstractions of variables over the encoding of their scope. That is, just
as the usual notions of abstract syntax involve the application of constructions in
a term, we shall also use abstractions to encode binding. Church [7] used sim-
ilar techniques when he encoded various mathematical concepts into his Simple
Theory of Types. This use of applications and abstractions in syntactic encodings
is the starting point for the λ-tree syntax approach to abstract syntax [23]. We
illustrate more aspects of this style of encoding with two examples that we shall
return to again later.

2.2 Encoding the untyped lambda-calculus
The untyped λ-calculus has one syntactic type, say tm, and two constructors for
application and abstraction. If we use the constructor app for building applica-
tions then its typing is given as app : tm → tm → tm: that is, app takes two
untyped λ-terms and returns their applications (all this uses two instances of the
logic-level application). If we use abs as the constructor for building an untyped
λ-abstraction, then its type is abs : (tm→ tm)→ tm. Notice that abs is applied to
a logic-level abstraction: the argument type tm→ tm acts as the syntactic type of
term abstractions over terms. With this style encoding, the familiar S and K com-
binators are encoded as the terms (abs λx abs λy abs λz (app (app x z) (app y z)))
and (abs λx abs λy x), respectively.

2.3 Encoding the pi-calculus
Processes in the finite π-calculus are describe by the grammar

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|P | P + P.

Treating replications or recursion is straightforward here as well: we choose to
leave them out to make this example more compact. We use the symbols P and
Q to denote processes and lower case letters, e.g., x, y, z to denote names. The
occurrence of y in the process x(y).P and (y)P is a binding occurrence, with P as
its scope. The notion of free and bound variables is the usual one and we consider
processes to be syntactically equal if they are equal up to α-conversion.

Three primitive syntactic categories are used to encode the π-calculus into λ-
tree syntax: n for names, p for processes, and a for actions.

There are three constructors for actions: τ : a (for the silent action) and the
two constants ↓ and ↑, both of type n → n → a (for building input and output
actions, respectively). The free output action x̄y, is encoded as ↑xy while the
bound output action x̄(y) is encoded as λy (↑xy) (or the η-equivalent term ↑x).
The free input action xy, is encoded as ↓xy while the bound input action x(y) is



encoded as λy (↓xy) (or simply ↓x). Notice that bound input and bound output
actions have type n→ a instead of a.

The following are process constructors, where + and | are written as infix:

0 : p τ : p→ p out : n→ n→ p→ p in : n→ (n→ p)→ p
+ : p→ p→ p | : p→ p→ p match : n→ n→ p→ p ν : (n→ p)→ p

Notice that τ is overloaded by being used as a constructor of actions and of pro-
cesses. The precise translation of π-calculus syntax into simply typed λ-terms
is given using the following function [[.]] that translates process expressions to
βη-long normal terms of type p.

[[0]] = 0 [[P + Q]] = [[P]] + [[Q]] [[P|Q]] = [[P]] | [[Q]] [[τ.P]] = τ [[P]]
[[[x = y]P]] = [x = y][[P]] [[x̄y.P]] = out x y [[P]]

[[x(y).P]] = in x λy.[[P]] [[(x)P]] = νλx.[[P]]

The expression νλx.P is abbreviated as νx.P.

2.4 Inference rules versus formula encodings
Structural operational semantics are relational specifications and relations corre-
spond naturally to predicates in logic. For example, the judgment “M has value V”
can be encoded as the atomic formula M ⇓ V using the binary relation ⇓. Finally,
the familiar SOS inference rule

A1 · · · An

A0 (n ≥ 0)

can be translated to the Horn clause

∀x1 . . .∀xm[A1 ∧ . . . ∧ An ⊃ A0].

(If n = 0 then the empty conjunction above can written as the true logical con-
nective.) Of course, we assume that x1, . . . , xm are the schema variables in the in-
ference rule. The formulas A0, . . . , An are universally quantified atomic formulas
(usually, the list of such universal quantifiers is empty). A Horn clause is binary if
its body contains exactly one atom: that is, in the displayed formula above, n = 1.

The correctness of this encoding is easy to establish. Let A be an atomic
formula, I a set of inference rules, andH the set of Horn clauses that encodes the
rules in I. Then A is a consequence of I if and only if H ` A (where ` denotes
provability in either classical or intuitionistic logic). More precisely, the trees that
witness the inductive inference of A from I are in one-to-one correspondence with
uniform proofs [24] of the sequentH −→ A.



There are two general things to state about this connection between SOS as in-
ference rules and as a Horn clause theory. First, there are various “non-standard”
ways to interpret inference rules: consider, for example, the description of evalua-
tion in that part of Standard ML [29] that involves side-conditions and exceptions.
One would not expect that our simple translation of inference rules into logic could
directly support the order of evaluation via the left-to-right ordering of premises:
in particular, conjunction is use to accumulate premises and conjunction is com-
mutative. Second, logic is a richly developed topic and many other aspects of
computational systems, such as type checking and source-to-source transforma-
tions can be written in a similar logic programming style but in possibly richer
logics. Using logic to encode operational semantics as well as other aspects of
computing should make it natural to connect these different fields via theorems
such as type-preservation and the correctness of compilation.

2.5 Schema and bound variables

Another advantage with using logic directly to encode operational semantics is
that logic provides rather sophisticated treatments of the notions of schema vari-
ables, quantified variables, term-level bound variables, and substitution for vari-
ables. By making direct use of logic, one can adopt directly those solutions found
within logic. As we shall see when we present the operational semantics for the
π-calculus, a simple use of λ-bindings linked with occurrences of universal quan-
tifiers in premises allows us to provide a specification of one-step label transitions
for the π-calculus that contains no side-conditions. All the subtleties concerned
with avoiding name conflicts, etc., are already treated by logic.

3 Horn clauses

We illustrate the use of Horn clauses in the specification of operational semantics
by presenting examples using the λ-calculus and the π-calculus.

3.1 Call-by-value evaluation

Figure 1 contains a big-step semantic specification of call-by-value evaluation for
the λ-calculus. Figure 2 contains the corresponding Horn clause encoding of the
inference rules in Figure 1. The (infix) predicate symbol ⇓ is a type tm→ tm→ o
and the variable R is of higher-order syntactic type tm → tm. The encoding of
the atomic evaluation judgment R[U/x] ⇓ V in Figure 1 is simply (R U) ⇓ V in
Figure 2: that is, the logic expression simply forms the expression (R U) and once



λx.R ⇓ λx.R
M ⇓ (λx.R) N ⇓ U R[U/x] ⇓ V

(M N) ⇓ V

Figure 1: Big-step specification of the call-by-value evaluation of the untyped
λ-calculus.

∀R [ (abs R) ⇓ (abs R) ]

∀M,N,U,V,R [ M ⇓ (abs R) ∧ N ⇓ U ∧ (R U) ⇓ V ⊃ (app M N) ⇓ V ]

Figure 2: Horn clause encoding of call-by-value evaluation. Here, all quantified
variables are at syntactic type tm except for R, which is at syntactic type tm→ tm.

R is instantiated with a λ-abstractions, the logic’s built-in treatment of β-reduction
performs the necessary substitution.

3.2 Specifying the pi-calculus
The relation of one-step (late) transition [28] for the π-calculus is denoted by
P

α
−−→ Q, where P and Q are processes and α is an action. The kinds of actions are

the silent action τ, the free input action xy, the free output action x̄y, the bound
input action x(y), and the bound output action x̄(y). The name y in x(y) and x̄(y)
is a binding occurrence. An action without binding occurrences of names is a free
action; otherwise it is a bound action. Notice also that we have allowed universal
quantifiers to appear in the body of the Horn clauses: these quantifiers are natural
complements of allowing λ-binders within terms.

The one-step transition relation is represented using two predicates: ·
·

−−→ ·

is of type p → a → p → o and encodes transitions involving the silent and free
actions and ·

·

−−⇀ · is of type p → (n → a) → (n → p) → o and encodes
transitions involving bound values. One-step transition judgments are translated
to atomic formulas as follows (we overload the symbol [[.]] from Section 2.3).

[[P
xy
−−→ Q]] = [[P]]

↓xy
−−→ [[Q]] [[P

x(y)
−−→ Q]] = [[P]]

↓x
−−⇀ λy.[[Q]]

[[P
x̄y
−−→ Q]] = [[P]]

↑xy
−−→ [[Q]] [[P

x̄(y)
−−→ Q]] = [[P]]

↑x
−−⇀ λy.[[Q]]

[[P
τ
−−→ Q]] = [[P]]

τ
−−→ [[Q]]

Figure 3 contains a set of Horn clauses, called Dπ, that encodes the operational
semantics of the late transition system for the finite π-calculus. In this specifica-
tion, free variables are schema variables that are assumed to be universally quan-
tified over the Horn clause in which they appear. These schema variables have



: > ⊃ τ P
τ
−−→ P

: > ⊃ in X M
↓X
−−⇀ M

: > ⊃ out x y P
↑xy
−−→ P

: P
A
−−→ Q ⊃ [x = x]P

A
−−→ Q

P
A
−−⇀ Q ⊃ [x = x]P

A
−−⇀ Q

: P
A
−−→ R ∨ Q

A
−−→ R ⊃ P + Q

A
−−→ R

P
A
−−⇀ R ∨ Q

A
−−⇀ R ⊃ P + Q

A
−−⇀ R

: P
A
−−→ P′ ⊃ P | Q

A
−−→ P′ | Q

Q
A
−−→ Q′ ⊃ P | Q

A
−−→ P | Q′

P
A
−−⇀ M ⊃ P | Q

A
−−⇀ λn(M n | Q)

Q
A
−−⇀ N. ⊃ P | Q

A
−−⇀ λn(P | N n)

: ∀n(Pn
A
−−→ Qn) ⊃ νn.Pn

A
−−→ νn.Qn

∀n(Pn
A
−−⇀ P′n) ⊃ νn.Pn

A
−−⇀ λm νn.P′nm

: ∀y(My
↑Xy
−−→ M′y) ⊃ νy.My

↑X
−−⇀ M′

: P
↓X
−−⇀ M ∧ Q

↑X
−−⇀ N ⊃ P | Q

τ
−−→ νy.(My | Ny)

P
↑X
−−⇀ M ∧ Q

↓X
−−⇀ N ⊃ P | Q

τ
−−→ νy.(My | Ny)

: P
↓X
−−⇀ M ∧ Q

↑XY
−−→ Q′ ⊃ P | Q

τ
−−→ MY | Q′

P
↑XY
−−→ P′ ∧ Q

↓X
−−⇀ N ⊃ P | Q

τ
−−→ P′ | NY

Figure 3: The late transition system of the π-calculus as Horn clauses.

primitive types such as a, n, and p as well as functional types such as n → a and
n→ p.

Notice that, as a consequence of using λ-tree syntax for this specification,
the usual side conditions in the original specifications of the π-calculus [28] are
no longer present. For example, the side condition that X , y in the open rule is
implicit, since X is outside the scope of y and therefore cannot be instantiated with
y (substitutions into logical expressions cannot capture bound variable names).
The adequacy of our encoding is stated in the following proposition (the proof of
this proposition can be found in [36]).

Proposition. Let P and Q be processes and α an action. Let n̄ be a list of free names
containing the free names in P, Q, and α. The transition P

α
−−→ Q is derivable in

the π-calculus if and only if ∀n̄.[[P
α
−−→ Q]] is provable from the logical theory Dπ.



The clauses in Figure 3 come from [25] except that the ∇-quantifier used in
that other paper is replaced here by the ∀-quantifier: as is argued in [25], as long
as “positive” properties (such as reachability) are computed, the ∇-quantifier can
be confused with the ∀ quantifier in the body of Horn clauses.

4 Binary clauses
The reduced class of Horn clause, called binary clauses, can play an important role
in modeling computation. As we argue below, they can be used to explicitly order
computations whose order is left unspecified in Horn clauses: such an explicit
ordering is important if one wishes to use the framework of big-step semantics to
capture side-effects and concurrency. They can also be used to capture the notion
of abstract machines, a common device for specifying operational semantics.

4.1 Continuation passing in logic programming
Continuation-passing style specifications are possible in logic programming us-
ing quantification over the type of formulas [35]. In fact, it is possible to “cps
transform” arbitrary Horn clauses into binary clauses as follow. First, for every
predicate p of type τ1 → . . . → τn → o (n ≥ 0), we provide a second predicate
p̂ of type τ1 → . . . → τn → o → o: that is, an additional argument of type o
(the type of formulas) is added to predicate p. Thus, the atomic formula A of the
form (p t1 . . . tn) is similarly transformed to the formula Â = ( p̂ t1 . . . tn) of type
o→ o. Using these conventions, the cps transformation of the formula

∀z1 . . .∀zm [(A1 ∧ . . . ∧ An) ⊃ A0] (m ≥ 0, n > 0)

is the binary clause

∀z1 . . .∀zm∀k [(Â1 (Â2(· · · (Ân k) · · · ))) ⊃ (Â0 k)].

Similarly, the cps transformation of the formula

∀z1 . . .∀zm [A0] is ∀z1 . . .∀zm∀k [k ⊃ (Â0 k)].

If P is a finite set of Horn clauses and P̂ is the result of applying this cps transfor-
mation to all clauses in P, then P ` A if and only if P̂ ` (Â >).

Consider again the presentation of call-by-value evaluation given by the Fig-
ure 2. In order to add side-effecting features, this specification must be made more
explicit: in particular, the exact order in which M, N, and (R U) are evaluated must
be specified. The cps transformation of that specification is given in Figure 4:



((M ⇓ (abs R)) ; (N ⇓ U) ; ((R U) ⇓ V) ; K) ⊃ ((app M N) ⇓ V) ; K
(((abs R) ⇓ (abs R)) ; K) ⊃ K.

Figure 4: Binary version of call-by-value evaluation.

there, evaluation is denoted by a ternary predicate of type tm → tm → o → o
which is written using both the ⇓ arrow and a semicolon: e.g., the relation “M
evaluates to V with the continuation K” is denoted by (M ⇓ V) ; K.

In this specification, goals are now sequenced in the sense that bottom-up
proof search is forced to construct a proof of one evaluation pair before others
such pairs. Of course, in this setting, any ordering works, so it is possible to prove
the following: the goal ((M ⇓ V) ; >) is provable if and only if V is the call-by-
value result of M. The order in which evaluation is executed is now forced not by
the use of logical connectives but by the use of the non-logical constant (· ⇓ ·) ; ·.

4.2 Abstract Machines

Abstract machines, which are often used to specify operational semantics, can
be encoded naturally using binary clauses. To see this, consider the following
definition of Abstract Evaluation System (AES) which generalizes the notion of
abstract machines [12].

Recall that a term rewriting system is a pair (Σ,R) such that Σ is a signature and
R is a set of directed equations {li ⇒ ri}i∈I with li, ri ∈ TΣ(X) and V(ri) ⊆ V(li).
Here, TΣ(X) denotes the set of first-order terms with constants from the signature
Σ and free variables from X, and V(t) denotes the set of free variables occurring
in t. An abstract evaluation system is a quadruple (Σ,R, ρ, S ) such that the pair
(Σ,R ∪ {ρ}) is a term rewriting system, ρ is not a member of R, and S ⊆ R.

Evaluation in an AES is a sequence of rewriting steps with the following re-
stricted structure. The first rewrite rule must be an instance of the ρ rule. This
rule can be understood as “loading” the machine to an initial state given an input
expression. The last rewrite step must be an instance of a rule in S : these rules
denote the successful termination of the machine and can be understood as “un-
loading” the machine and producing the answer or final value. All other rewrite
rules are from R. We also make the following significant restriction to the gen-
eral notion of term rewriting: all rewriting rules must be applied to a term at its
root. This restriction significantly simplifies the computational complexity of ap-
plying rewrite rules during evaluation in an AES. A term t ∈ TΣ(∅) evaluates to
the term s (with respect to the AES (Σ,R, ρ, S )) if there is a series of rewriting
rules satisfying the restrictions above that rewrites t into s.

The SECD machine [16] and Krivine machine [8] are both AESs and vari-



M ⇒ 〈 nil, M, nil 〉

〈 E, λM, X :: S 〉 ⇒ 〈X :: E, M, S 〉
〈 E, M ˆ N, S 〉 ⇒ 〈 E, M, {E,N} :: S 〉
〈{E′,M} :: E, 0, S 〉 ⇒ 〈 E′, M, S 〉
〈 X :: E, n + 1, S 〉 ⇒ 〈 E, n, S 〉

〈 E, λM, nil 〉 ⇒ {E, λM}

M ⇒ 〈nil, nil, M :: nil, nil 〉

〈S , E, λM :: C, D〉 ⇒ 〈{E, λM} :: S , E, C, D〉
〈S , E, (M ˆ N) :: C, D〉 ⇒ 〈S , E, M :: N :: ap :: C, D〉
〈S , E, n :: C, D〉 ⇒ 〈nth(n, E) :: S , E, C, D〉

〈X :: {E′, λM} :: S , E, ap :: C, D〉 ⇒ 〈nil, X :: E′, M :: nil, (S , E,C) :: D〉
〈X :: S , E, nil, (S ′, E′,C′) :: D〉 ⇒ 〈X :: S ′, E′, C′, D〉

〈X :: S , E, nil, nil〉 ⇒ X

Figure 5: The Krivine machine (top) and SECD machine (bottom).

ants of these are given in Figure 5. There, the syntax for λ-terms uses de Bruijn
notation with ˆ (infix) and λ as the constructors for application and abstraction,
respectively, and {E,M} denotes the closure of term M with environment E. The
first rule given for each machine is the “load” rule or ρ of their AES description.
The last rule given for each is the “unload” rule. (In each of these cases, the set
S is a singleton.) The remaining rules are state transformation rules, each one
moving the machine through a computation step.

A state in the Krivine machine is a triple 〈E,M, S 〉 in which E is an environ-
ment, M is a single term to be evaluated and S is a stack of arguments. A state in
the SECD machine is a quadruple 〈S , E,C,D〉 in which S is a stack of computed
values, E is an environment (here just a list of terms), C is a list of commands
(terms to be evaluated) and D is a dump or saved state. The expression nth(n, E),
used to access variables in an environment, is treated as a function that returns the
n + 1st element of the list E. Although Landin’s original description of the SECD
machine used variables names, our use of de Bruijn numerals does not change the



unload t ` unload t
unload t ` rewrite sn

...
unload t ` rewrite si

...
unload t ` rewrite s1

unload t ` load s

Figure 6: A proof related to the execution of an abstract machine.

essential mechanism of that machine.

There is a natural and immediate way to see a given AES as a set of binary
clauses. Let load, unload, and rewrite be three predicates of one argument each.
Given the AES (Σ,R, ρ, S ) let B be the set of binary clauses composed of the
following three kinds of formulas: ∀x̂ [rewrite r ⊃ load l] where ρ is the rewrite
rule l⇒ r, one clause of the form ∀x̂ [rewrite r ⊃ rewrite l] for every rewrite rule
l ⇒ r in R, and one clause of the form ∀x̂ [unload r ⊃ rewrite l] for every rewrite
rule l ⇒ r in S . It is then easy to show that if we start with term t and evaluate
to s (this can be a non-deterministic relationship) then from the set of clauses
B we can prove unload t ⊃ load s. In particular, if this implication is provable
from B then it has a proof of the form displayed in Figure 6. The transitions of
the abstract machine can be read directly from this proof: given the term s, the
machine’s state is initialized to be s1, which is then repeatedly rewritten yielding
the sequence of terms s2, . . . , sn, at which point the machine is unloaded to get
the value t. For more about translating SOS specifications directly into abstract
machines, see [12].

In order to motivate our next operational semantic framework, consider the
problem of specifying side-effects, exceptions, and concurrent (multi-threaded)
computation with binary clauses. Since all the dynamics of computation is rep-
resented via term structures (say, within s, s1, . . . , sn, t) all the information about
these threads, reference cells, exceptions, etc., must be maintained as, say, lists
within these other terms. Such an approach to specifying these features of a pro-
gramming language lacks modularity and makes little use of logic. We now con-
sider extending binary clauses so that these additional features have a much more
natural and modular specification.



5 Linear logic
We now illustrate how linear logic can be used to capture multiset rewriting. Given
that many aspects of computation can be captured using multiset rewriting, it is
possible to describe a subset of linear logic that includes binary clauses but pro-
vides a natural means to capture side effects and concurrency. The examples in
this section are adapted from [22].

5.1 Capturing multiset rewriting
The right-hand-side of a sequent in linear logic is a multiset of formula. At the
formula level, the O connective of linear logic (the multiplicative disjunction and
the de Morgan dual of ⊗) can be used to build multisets. For example, the propo-
sitional formula a O b O b O a O c can be seen as an encoding of the multiset
that contains two occurrences of a, two occurrences of b, one occurrence of c, and
no occurrences of any other formulas. The unit for O, written as ⊥, encodes the
empty multiset. A suitable generalization of backchaining in linear logic can be
used to formulate rewriting of that multiset. To illustrate this connection between
rewriting and backchaining, assume that ∆ is a set of linear logic formulas that
contains the formula

c O d O e −◦ a O b.

(The O symbol binds tighter than −◦.) Consider also the sequent ! ∆ −→ a, b,Γ. A
proof for this sequent that backchains on the clause above looks like the following.

! ∆ −→ c, d, e,Γ
! ∆ −→ c, d O e,Γ O R

! ∆ −→ c O d O e,Γ O R a −→ a b −→ b
a O b −→ a, b O L

! ∆, c O d O e −◦ a O b −→ a, b,Γ −◦L

! ∆ −→ a, b,Γ ! D

When we read this proof fragment bottom-up, we can see that the action of select-
ing the displayed formula above and doing a focused set of introductions (a.k.a.
backchaining) on it causes the multiset on the right-hand side to be rewritten from
a, b,Γ to c, d, e,Γ.

5.2 Adding a counter to evaluation
Consider again the binary clause example given in Figure 4. First, it is easy to
show that in Horn clauses in general, the top-level intuitionistic implication ⊃ can
be rewritten as the linear implication −◦ without changing the operational reading
of proof search [13]. With this change, the binary clauses in that figure are also



an example of multiset rewriting: in this occasion, one atom is repeatedly replace
by another atom (until the atom is replaced by a final continuation). In this way,
binary clauses can be seen as modeling single-threaded computation. Now that
we have embedded binary clauses within the richer setting of linear logic, it is
easy to see how “multi-threaded” computations might be organized. We present a
couple of examples here.

Consider adding to the untyped λ-calculus a single global counter that can
be read and incremented. In particular, we shall place all integers into type tm
and add two additional constructors of tm, namely get and inc. The intended op-
erational semantics of these two constants is that evaluating the first returns the
current value of the counter and evaluating the second increments the counter’s
value and returns the counter’s old value. We also assume that integers are values:
that is, for every integer i the clause ∀k(k −◦ (i ⇓ i) ; k) is part of the evalua-
tor’s specification. The multiset rewriting specification of these two additional
constructors can be given as the two formulas

∀K∀V (r V O K −◦ ((get ⇓ V) ; K) O r V) and
∀K∀V (r (V + 1) O K −◦ ((inc ⇓ V) ; K) O r V).

Here, the atom of the form (r x) denotes the “r-register” with value x. Let D
contain the two formulas in Figure 4, the two formulas displayed above, and the
formulas mentioned above describing the evaluation of integers. Then D is a
specification of the call-by-value evaluator with one global counter in the sense
that the logical judgment

!D ` ((M ⇓ V) ; >) O r 0

holds exactly when we expect the program M to evaluation to V in the setting
when the register r is initialized to 0.

Of course, the name of the register should not be a part of the specification of
a counter. Fortunately, logic comes equipped with abstraction mechanisms that
allow hiding the name of this register. In Figure 7 there are three specifications,
E1, E2, and E3, of a counter: all three specifications store the counter’s value in an
atomic formula as the argument of the predicate r. In these three specifications,
the predicate r is existentially quantified over the specification in which it is used
so that the atomic formula that stores the counter’s value is itself local to the
counter’s specification (such existential quantification of predicates is a familiar
technique for implementing abstract data types in logic programming [19]). The
first two specifications store the counter’s value on the right of the sequent arrow,
and reading and incrementing the counter occurs via a synchronization between
an ⇓-atom and an r-atom. In the third specification, the counter is stored as a
linear assumption on the left of the sequent arrow, and synchronization is not



E1 = ∃r[ (r 0)⊥ ⊗
!∀K∀V (r V O K −◦ ((get ⇓ V) ; K) O r V) ⊗
!∀K∀V (r (V + 1) O K −◦ ((inc ⇓ V) ; K) O r V)]

E2 = ∃r[ (r 0)⊥ ⊗
!∀K∀V (r V O K −◦ ((get ⇓ (−V)) ; K) O r V) ⊗
!∀K∀V (r (V − 1) O K −◦ ((inc ⇓ (−V)) ; K) O r V)]

E3 = ∃r[ (r 0) ⊗
!∀K∀V (r V ⊗ (r V −◦ K) −◦ ((get ⇓ V) ; K)) ⊗
!∀K∀V (r V ⊗ (r (V + 1) −◦ K) −◦ ((inc ⇓ V) ; K))]

Figure 7: Three specifications of a global counter.

used: instead, the linear assumption is “destructively” read and then rewritten in
order to specify the get and inc functions (counters such as these are described in
[13]). Finally, in the first and third specifications, evaluating the inc symbol causes
1 to be added to the counter’s value. In the second specification, evaluating the
inc symbol causes 1 to be subtracted from the counter’s value: to compensate for
this unusual implementation of inc, reading a counter in the second specification
returns the negative of the counter’s value.

Although these three specifications of a global counter are different, they
should be equivalent in the sense that evaluation cannot tell them apart. Although
there are several ways that the equivalence of such counters can be proved, the
specifications of these counters are, in fact, logically equivalent.

Proposition. The three entailments E1 ` E2, E2 ` E3, and E3 ` E1 are provable in
linear logic.

The proof of each of these entailments proceeds (in a bottom-up fashion) by
choosing an eigen-variable to instantiate the existential quantifier on the left-hand
side and then instantiating the right-hand existential quantifier with some term
involving that eigen-variable. Assume that in all three cases, the eigen-variable
selected is the predicate symbol s. Then the first entailment is proved by instan-
tiating the right-hand existential with λx.s (−x); the second entailment is proved
using the substitution λx.(s (−x))⊥; and the third entailment is proved using the
substitution λx.(s x)⊥. The proof of the first two entailments must also use the
identities −0 = 0, −(x + 1) = −x− 1, and −(x− 1) = −x + 1. The proof of the third
entailment requires no such identities.

Clearly, logical equivalence is a strong equivalence: it immediately implies
that evaluation cannot tell the difference between any of these different specifica-
tions of a counter. For example, assume E1 ` (M ⇓ V) ; >. Then by the cut infer-
ence rule (modus ponens) and the above proposition, we have E2 ` (M ⇓ V) ; >.



K −◦ (none ⇓ none) ; K.
(E ⇓ V) ; K −◦ ((guard E) ⇓ (guard V)) ; K.
(E ⇓ V) ; K −◦ ((poll E) ⇓ (poll V)) ; K.
(E ⇓ V) ; K −◦ ((receive E) ⇓ (receive V)) ; K.
(E ⇓ V) ; K −◦ ((some E) ⇓ (some V)) ; K.

(E ⇓ U) ; ((F ⇓ V) ; K) −◦ ((choose E F) ⇓ (choose U V)) ; K.
(E ⇓ U) ; ((F ⇓ V) ; K) −◦ ((transmit E F) ⇓ (transmit U V)) ; K.
(E ⇓ U) ; ((F ⇓ V) ; K) −◦ ((wrap E F) ⇓ (wrap U V)) ; K.

Figure 8: These CML-like constructors evaluate to themselves.

It is possible to generalize a bit the previous example involving a single global
counter to languages that have the ability to generate references dynamically,
much as one finds in, say, Algol or Standard ML [6, 22].

5.3 Specification of Concurrency primitives
Following [22], we show how concurrency primitives inspired by those found in
Concurrent ML (CML) [33] can be specified in linear logic: we assume that the
reader has some familiarity with this extension to ML.

Consider extending the untyped λ-calculus with the following constructors.

none : tm.
guard, poll, receive, some, sync : tm→ tm.

choose, transmit,wrap : tm→ tm→ tm.
spawn, newchan : (tm→ tm)→ tm.

The meaning of these constructors is then given using the linear logic formulas in
Figures 8 and 9. The clauses in Figures 8 specify the straightforward evaluation
rules for the eight data constructors. In Figure 9, the predicate event is of type
tm → tm → o → o and is used to store in the multiset “events”, a technical
aspect of this semantic specification. The first three clauses of that figure defined
the meaning of the three special forms sync, spawn, and newchan. The remaining
clauses specify the event predicate.

The formulas in Figure 9 allow for multiple threads of evaluation. Evaluation
of the spawn function initiates a new evaluation thread. The newchan function
causes a new eigenvariable to be picked (via the ∀c quantification) and then to
assume that that eigen-variable is a value (via the assumption ∀I(I −◦ (c ⇓ c) ; I)):
such a new value can be used to designate new channels for use in synchronization
(the clause for newchan is not strictly speaking a Horn clause). The sync primitive
allows for synchronization between threads: its use causes an “evaluation thread”



eval E U (event U V K) −◦ ((sync E) ⇓ V) ; K.
(((R unit) ⇓ unit) ; ⊥) O K −◦ ((spawn R) ⇓ unit) ; K.

∀c(∀I(I −◦ (c ⇓ c) ; I) ⊃ ((R c) ⇓ V) ; K) −◦ ((newchan R) ⇓ V) ; K.

K O L −◦ event (receive C) V K O event (transmit C V) unit L

event E V K −◦ event (choose E F) V K.
event F V K −◦ event (choose E F) V K.

event E U (((app F U) ⇓ V) ; K) −◦ event (wrap E F) V K.
((app F unit) ⇓ U) ; (event U V K) −◦ event (guard F) V K.

(event E U >) & K −◦ event (poll E) (some E) K.
K −◦ event (poll E) none K.

Figure 9: Specifications of some primitives similar to those in Concurrent ML.

to become an “event thread.” The behaviors of event threads are described by
the remaining clauses in Figure 9. The primitive events are transmit and receive
and they represent two halves of a synchronization between two event threads.
Notice that the clause describing their meaning is the only clause in Figure 9 that
has a head with more than one atom. The non-primitive events choose, wrap,
guard, and poll are reduced to other calls to event and ⇓. The choice event is
implemented as a local, non-deterministic choice. (Specifying global choice, as
in CCS [27], would be much more involved.) The wrap and guard events chain
together evaluation and synchronization but in direct orders.

The only use of additive linear logic connectives, in particular & and >, in any
of our semantic specifications is in the specification of polling: in an attempt to
synchronize with (poll E) (with the continuation K) the goal (event E U >)& K is
attempted (for some unimportant term U). Thus, a copy of the current evaluation
threads is made and (event E U >) is attempted in one of these copies. This atom
is provable if and only if there is a complementary event for E in the current en-
vironment, in which case, the continuation > brings us to a quick completion and
the continuation K is attempted in the original and unspoiled context of threads.
If such a complementary event is not present, then the other clause for computing
a polling event can be used, in which case, the result of the poll is none, which
signals such a failure. The semantics of polling, unfortunately, is not exactly as
intended in CML since it is possible to have a polling event return none even if
the event being tested could be synchronized. This analysis of polling is similar
to the analysis of testing in process calculus as described in [21].

The PhD thesis of Chirimar [6] presents a linear logic specification of a pro-
gramming language motivated by Standard ML [29]. In particular, a specification
for the call-by-value λ-calculus is provided, and then modularly extended with the



specifications of references, exceptions, and continuations: each of these features
is specified without complicating the specifications of other the features.

6 Conclusion
There is a lot of interest in being able to reason about operational semantic de-
scriptions of programming languages: see, for example, the POPLmark challenge
[1], and the long-standing research efforts using dependently typed λ-calculus [30]
and certain higher-order logics [2, 18, 25]. In this paper, we have tried to describe
one approach to formally specifying operational semantics so that such verifica-
tion efforts have a solid foundation. We have done this by encoding three different
formalisms–SOS, abstract machines, and multiset rewriting—into collections of
logic formulas. The theory of proofs can then be used to provide completely for-
mal meaning to such specifications.
Acknowledgments. I would like to thank Andrew Gacek for providing several
useful comments on an earlier draft of this paper.
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