
Reasoning about Computations Using
Two-Levels of Logic

Dale Miller

INRIA Saclay & LIX, École Polytechnique
Palaiseau, France

Abstract. We describe an approach to using one logic to reason about
specifications written in a second logic. One level of logic, called the
“reasoning logic”, is used to state theorems about computational specifi-
cations. This logic is classical or intuitionistic and should contain strong
proof principles such as induction and co-induction. The second level
of logic, called the “specification logic”, is used to specify computa-
tion. While computation can be specified using a number of formal
techniques—e.g., Petri nets, process calculus, and state machines—we
shall illustrate the merits and challenges of using logic programming-like
specifications of computation.

1 Introduction

When choosing a formalism to use to specify computation (say, structured opera-
tional semantics, Petri nets, finite state machines, abstract machines, λ-calculus,
or π-calculus), one needs that specification framework to be not only expressive
but also amenable to various kinds of reasoning techniques. Typical kinds of
reasoning techniques are algebraic, inductive, co-inductive, and category theo-
retical.

Logic, in the form of logic programming, has often been used to specify
computation. For example, Horn clauses are a natural setting for formalizing
structured operational semantics specifications and finite state machines; hered-
itary Harrop formulas are a natural choice for specifying typing judgments given
their support for hypothetical and generic reasoning; and linear logic is a nat-
ural choice for the specification of stateful and concurrent computations. (See
[27] for an overview of how operational semantics have been specified using the
logic programming paradigm.) The fact that logic generally has a rich and deep
meta-theory (soundness and completeness theorems, cut-elimination theorems,
etc) should provide logic with powerful means to help in reasoning about com-
putational specifications.

The activities of specifying computation and reasoning about those specifica-
tions are, of course, closely related activities. If we choose logic to formulate both
of these activities, then it seems we must also choose between using one logic for
both activities and using two different logics, one for each activity. While both
approaches are possible, we shall focus on the challenges and merits of treating

these two logics as different. In particular, we shall assume that our “reasoning
logic” formalizes some basic mathematical inferences, including inductive and
co-inductive reasoning. On the other hand, we shall assume that our “specifi-
cation logic” is more limited and designed to describe the evolution (unfolding)
of computations. Speaking roughly, the reasoning logic will be a formalization
of a part of mathematical reasoning while the specification logic will be a logic
programming language.

This paper is a summary of some existing papers (particularly [16]) and is
structured as follows. Section 2 presents a specific reasoning language G and
Section 3 presents a specific specification logic hH2. Section 4 describes how
hH2 is encoded in G. Section 5 describes a few implemented systems that have
been used to help explore and validate the intended uses of hH2 and G. Section 6
presents an overview of the various key ingredients of these two logics as well as
suggesting other possibilities for them. Finally, Section 7 describes some related
work.

2 The reasoning logic

Our reasoning logic, which we call G (following [14]) is a higher-order logic similar
to Church’s Simple Theory of Types [9] (axioms 1 - 6) but with the following
differences.

Intuitionistic vs classical logic Our reasoning logic is based on intuitionistic
logic instead of Church’s choice of classical logic. While defaulting to a construc-
tive approach to proving theorems about computation is certainly sensible, this
choice is not essential and the sequent calculus proof system used to describe
the intuitionistic reasoning logic can easily be modified to capture the classical
variant. The choice between intuitionistic and classical logic can have, however,
surprising consequences that are not immediately related to the familiar dis-
tinction between constructive and non-constructive logic. In particular, Tiu &
Miller [44] have shown that, for a certain declarative treatment of binding in the
π-calculus, provability of the bisimulation formula yields “open” bisimulation
when the reasoning logic is intuitionistic and late (“closed”) bisimulation if that
logic is classical.

Variables of higher-order type Following Church, we used the type o to denote
formulas: thus, a variable of type τ1 → · · · → τn → o (for some n ≥ 0) is
a variable at “predicate type.” In what follows, we shall not use such higher-
order variables within formulas. We shall use variables of higher-order type that
are not predicate types: in particular, we shall quantify over variables of type
τ1 → · · · → τn → τ0 (for some n ≥ 0) where τ0, . . . , τn are all primitive types.
Removing restrictions on predicate quantification should be possible but, for the
kind of project we intend here, it seems to be an unnecessary complication.

Generic quantification We include in G the ∇-quantifier [30] and the associated
notion of nominal abstraction [14] so that the “generic” reasoning associated with
eigenvariables in the specification logic can be modeled directly and declaratively
in G. While ∇ is a genuine departure from Church’s original logic, it is a weak
addition to the logic and is only relevant to the treatment of bindings in syntax
(it enriches the possibilities of binder mobility [26]). If one is not treating bindings
in syntax expressions of the specification logic, this quantifier plays no role.

Induction and co-induction A reasoning logic must certainly be powerful enough
to support induction and co-induction. The logic G allows for the direct specifica-
tion of recursive predicate definitions and to interpret them either as a least and
or greatest fixed point in the sense of [2, 5, 22, 31]. The rules for induction and
co-induction use higher-order predicate schema variables in their premises in or-
der to range over possible pre- and post-fixed points. For example, the recursive
definitions (written like logic programming clauses)

nat z
µ
= > member B (B :: L)

µ
= >

nat (s N)
µ
= nat N member B (C :: L)

µ
= member B L

are admitted to G as the following fixed point expressions:

nat = µ(λpλx.(x = 0) ∨ (∃y.(s y) = x ∧ p y))
member = µ(λmλxλl.(∃k. l = (x :: k)) ∨ (∃k∃y. l = (y :: k) ∧m x k))

In order to support induction and co-induction, the closed world assumption
must be made: that is, we need to know the complete specification of a predicate
in order to state the induction and co-induction rule for that predicate. Thus,
the reasoning logic will assume the closed world assumption. On the other hand,
computing with λ-tree syntax [25] uses the higher-order judgments of GENERIC
and AUGMENT. Since these two judgments only make sense assuming the open
world assumption, the specification logic will make that assumption. The next
two sections contain a description of the specification logic and its encoding in
the reasoning logic.

3 The specification logic

For our purposes here, we shall use the intuitionistic theory of hereditary Harrop
formulas [28] restricted to second order as the specification logic. In particular,
formulas in hH2 are of two kinds. The goal formulas are given by:

G = > | A | G ∧G | A ⊃ G | ∀τx.G,

where A denotes atomic formulas and τ ranges over types that do not themselves
contain the type o of formulas. The definite clauses are formulas of the form
∀x1 . . .∀xn.(G1 ⊃ · · · ⊃ Gm ⊃ A), where n, m ≥ 0 and where quantification is,
again, over variables whose types do not contain o. This restricted set of formulas

Σ : ∆ ` > TRUE
Σ : ∆ ` G1 Σ : ∆ ` G2

Σ : ∆ ` G1 ∧G2
AND

Σ : ∆, A ` G

Σ : ∆ ` A ⊃ G
AUGMENT

Σ ∪ {c :τ} : ∆ ` G[c/x]

Σ : ∆ ` ∀τx.G
GENERIC

Σ : ∆ ` G1[t̄/x̄] · · · Σ : ∆ ` Gn[t̄/x̄]

Σ : ∆ ` A
BACKCHAIN

where ∀x̄.(G1 ⊃ . . . ⊃ Gn ⊃ A′) ∈ ∆ and A′[t̄/x̄] λ-conv A

Fig. 1. Derivation rules for the hH2 logic

is “second-order” in that to the left of an implication in a definite formula one
finds goal formulas and to the left of an implication in a goal formula, one finds
only atomic formulas.

Provability in hH2 is formalized by a sequent calculus proof system in which
sequents are of the form Σ : ∆ ` G, where ∆ is a list of definite clauses, G
is a goal formula, and Σ is a set of eigenvariables. The inference rules for hH2

are presented in Figure 1: these rules are shown in [28] to be complete for the
intuitionistic theory of hH2. The GENERIC rule introduces an eigenvariable
(reading rules from conclusion to premise) and has the usual freshness side-
condition: c is not in Σ. In the BACKCHAIN rule, for each term ti in the list t̄,
we require that Σ ` ti : τi holds, where τi is the type of the quantified variable
xi. An important property to note about these rules is that if we use them to
search for a proof of the sequent Σ : ∆ ` G, then all the intermediate sequents
that we will encounter will have the form Σ′ : ∆,L ` G′ for some Σ′ with
Σ ⊆ Σ′, some goal formula G′, and some set of atomic formulas L. Thus the
initial context ∆ is global: changes occur only in the set of atoms on the left and
the goal formula on the right. In presenting sequents, we will elide the signature
when it is inessential to the discussion.

The logic hH2 is a subset of the logic programming language λProlog [32]
and is given an effective implementation by Teyjus implementation of λProlog
[33]. This logic has also been used to formally specify a wide range of operational
semantic specifications and static (typing) judgments [15, 27, 23].

An example: a typing judgment We briefly illustrate the ease with which type
assignment for the simply typed λ-calculus can be encoded in hH2. There are
two classes of objects in this domain: types and terms. Types are built from a
single base type called i and the arrow constructor for forming function types.
Terms can be variables x, applications (m n) where m and n are terms, and
typed abstractions (λx : a.r) where r is a term and a is the type of x. The
standard rules for assigning types to terms are given as the following inference

rules.

x : a ∈ Γ
Γ ` x : a

Γ ` m : (a → b) Γ ` n : a

Γ ` m n : b

Γ, x : a ` r : b

Γ ` (λx :a.r) : (a → b) x not in Γ

Object-level simple types and untyped λ-terms can be encoded in a simply typed
(meta-level) λ-calculus as follows. We assume the types ty and tm for represent-
ing object-level simple types and untyped λ-terms. The simple types are built
from the two constructors i : ty and arr : ty → ty → ty and terms are built using
the two constructors app : tm → tm → tm and lam : ty → (tm → tm) → tm.
Note that the bound variables in an object-level abstraction are encoded by
an explicit, specification logic abstraction: for example, the object-level term
(λf : i → i.(λx : i.(f x))) will be represented by the specification logic term
lam (arr i i) (λf.lam i (λx.app f x)). Given this encoding of the untyped λ-
calculus and simple types, the standard inference rules for the typing judgment
can be specified by the following theory describing the binary predicate of.

∀m,n, a, b.(of m (arr a b) ⊃ of n a ⊃ of (app m n) b)
∀r, a, b.(∀x.(of x a ⊃ of (r x) b) ⊃ of (lam a r) (arr a b))

This specification in hH2 does not maintain an explicit context for typing
assumptions but uses hypothetical judgments instead. Also, the explicit side-
condition in the rule for typing abstractions is not needed since it is captured
by the freshness side-condition of the GENERIC rule in hH2.

4 Encoding provability of the specification logic

The definitional clauses in Figure 2 encode hH2 provability in G; this encoding is
based on ideas taken from [23]. Formulas in hH2 are represented in this setting
by terms of type form and we reuse the symbols ∧, ∨, ⊃, >, and ∀ for constants
involving this type in G; we assume that the context will make clear which reading
of these symbols is meant. The constructor 〈·〉 is used to inject atomic formulas in
hH2 into the type form in G. As we have seen earlier, provability in hH2 is about
deriving sequents of the form ∆,L ` G, where ∆ is a fixed list of definite clauses
and L is a varying list of atomic formulas. Our encoding uses the G predicate
prog to represent the definite clauses in ∆. In particular, the definite clause
∀x̄.[G1 ⊃ · · · ⊃ Gn ⊃ A] is encoded as the clause ∀x̄.prog A (G1∧· · ·∧Gn)

µ
= >

and a set of such hH2 definite clauses is encoded as a set of prog clauses. (The
descriptions of prog above and of seq in Figure 2 use the symbol

µ
= to indicate

that these names are to be associated with fixed point definitions.) Sequents
in hH2 are represented in G by formulas of the form seqN L G where L is a
list encoding the atomic formulas in L and where G encodes the goal formula.
The provability of such sequents in hH2, given by the rules in Figure 1, leads
to the clauses that define seq in Figure 2. The argument N that is written as a
subscript in the expression seqN L G encodes an upper bound on the height of
the corresponding hH2 derivation and is used to formalize proofs by induction

seq(s N) L > µ
= >

seq(s N) L (B ∧ C)
µ
= seqN L B ∧ seqN L C

seq(s N) L (A ⊃ B)
µ
= seqN (A :: L) B

seq(s N) L (∀B)
µ
= ∇x.seqN L (B x)

seq(s N) L 〈A〉 µ
= member A L

seq(s N) L 〈A〉 µ
= ∃b.prog A b ∧ seqN L b

Fig. 2. Encoding provability of hH2 in G

on the height of proofs. This argument has type nt for which there are two
constructors: z of type nt and s of type nt → nt. Similarly, the type of the
non-empty list constructor :: is atm → lst → lst, where atm denotes the type of
atomic formulas and lst denotes the type of a list of atomic formulas.

Notice the following points about this specification of provability. First, the
∇-quantifier is used in the reasoning logic to capture the “generic” reasoning
involved with using eigenvariables in specifying the provability of the specifica-
tion logic universal quantifier. Second, the seq predicate contains an explicit list
of atomic formulas and this is augmented by an atomic assumption whenever
the proof of an implication is attempted. Third, the last clause for seq speci-
fies backchaining over a given hH2 definite clauses stored as prog clauses. The
matching of atomic judgments to heads of clauses is handled by the treatment of
definitions in the logic G; thus the last rule for seq simply performs this match-
ing and makes a recursive call on the corresponding clause body. Finally, the
natural number (subscript) argument to seq is used to measure the height of
specification logic proofs.

Since we have encoded derivability in hH2, we can prove general properties
about it in G. For example, the following theorem in G states that the judgment
seqn ` g is not affected by permuting, contracting, or weakening the context `.

∀n, `1, `2, g.(seqn `1 g) ∧ (∀e.member e `1 ⊃ member e `2) ⊃ (seqn `2 g)

Using this theorem with the encoding of typing judgments for the simply typed
λ-calculus, for example, we immediately obtain that permuting, contracting, or
weakening the typing context of a typing judgment does not invalidate that
judgment.

Two additional G theorems are called the instantiation and cut properties.
To state these properties, we use the following definition to abstract away from
proof sizes.

seq ` g
µ
= ∃n.nat n ∧ seqn ` g.

The instantiation property states that if a sequent judgment is proved generically
(using∇) then, in fact, it holds universally (that is, for all substitution instances).
The exact property is

∀`, g.(∇x. seq (` x) (g x)) ⊃ (∀t. seq (` t) (g t)).

The cut property allows us to remove hypothetical judgments using a proof of
such judgments. This property is stated as the G theorem

∀`, a, g.(seq ` 〈a〉) ∧ (seq (a :: `) g) ⊃ seq ` g,

To demonstrate the usefulness of the instantiation and cut properties, note that
using them together with our encoding of typing for the simply typed λ-calculus
leads to an easy proof of the type substitution property, i.e., if Γ, x : a ` m : b
and Γ ` n : a then Γ ` m[x := n] : b.

5 Various implemented systems

Various systems and prototypes have been built to test and exploit the concepts
of λ-tree syntax, higher-order judgments, and two-level logic. We overview these
systems here.

5.1 Teyjus

Nadathur and his students and colleagues have developed the Teyjus compiler
and run-time system [33] for λProlog. Although Teyjus is designed to compile and
execute a rich subset of higher-order intuitionistic logic, it provides an effective
environment for developing and animating the more restricted logic of hH2.

5.2 Bedwyr

Baelde et. al. have implemented the Bedwyr model checker [4] which automates
deduction for a subset of G. The core logic engine in Bedwyr implements a se-
quent calculus prover that unfolds fixed points on both sides of sequents. As a
result, it is able to perform standard model checking operations such as reacha-
bility, simulation, and winning strategies. Since unfolding is the only rule used
with fixed points, such unfoldings must terminate in order to guarantee termi-
nation of the model checker. Bedwyr also provides the ∇-quantifier so model
checking problems can directly express problems involving bindings. A particu-
larly successful application of Bedwyr is on determining (open) simulation for
the finite π-calculus [43, 44].

5.3 Abella

Gacek has built the Abella interactive theorem prover [12] for proving theorems
in G. The two level logic approach is built into Abella and the cut and instan-
tiation properties of Section 4 are available as reasoning steps (tactics). Abella
accepts hH2 specifications written as λProlog programs. Reasoning level pred-
icates can then be defined inductively or co-inductively: these can also refer to
provability of hH2 specifications. Examples of theorems proved in Abella: pre-
congruence of open bisimulation for the finite π-calculus; POPLmark challenge

problems 1a and 2a; the Church-Rosser property and standardization theorems
for the λ-calculus; and a number of properties related to the specification of
the static and dynamic semantics of programming languages (type preservation,
progress, and determinacy).

5.4 Tac

Baelde et. al. [7] have built an automated theorem prover for a fragment of G.
This prototype prover was developed to test various theorem prover designs that
are motivated by the theory of focused proofs for fixed points [6]. This prover
is able to automatically prove a number of simple theorems about relational
specifications. Currently, Tac does not have convenient support for treating two-
level logic although there is no particular problem with having such support
added.

6 Various aspects of logic

There have been a number of papers and a number of logics that have been
proposed during the past several years that shaped our understanding of the
two-level logic approach to specifying and reasoning about computation. In this
section, I briefly overview the key ingredients to that understanding.

6.1 Abstract syntax as λ-tree syntax

The λProlog programming language [32] was the first programming language to
support what was later called “higher-order abstract syntax” [35]. This later term
referred to the encoding practice of using “meta-level” binding in a program-
ming language to encode the “object-level” bindings in syntactic objects. Un-
fortunately, the meta-level bindings available in functional programming (which
build functions) and logic programming (which build syntactic expressions with
bindings) are quite different. Since using the term “higher-order abstract syn-
tax” to refer to both styles of encoding is confusing, the term λ-tree syntax was
introduced in [25] to denote the treatment of syntax using weak equality (such
as α, β, and η on simply typed λ-terms). A key ingredient to the manipulation
of λ-tree syntax involves the unification of λ-terms [19, 24].

6.2 Fixed points

Schroeder-Heister [39, 40] and Girard [17] independently proposed a proof-the-
oretic approach to the closed-world assumption. The key development was the
shift from viewing a logic program as a theory that provided some of the meaning
of undefined predicates to viewing logic programs as recursive definitions that
completely describe predicates. In this later case, it is easy to view predicates then
as only convenient names for fixed point expressions. The proof theoretic treat-
ment of such fixed points involves the first-order unification of eigenvariables. It

was straightforward to extend that unification to also involve the unification of
simply typed λ-terms and, as a result, this treatment of fixed points could be
extended to the treatment of λ-tree syntax [21, 22].

6.3 ∇-quantification

The ∇-quantifier was introduced by Miller & Tiu [29, 30] in order to help com-
plete the picture of fixed point reasoning with λ-tree syntax. To provide a quick
motivation for this new quantifier, consider the usual inference rule for proving
the equality of two λ-abstracted terms.

(ζ) if M = N then λx.M = λx.N

In a formalized meta-theory, the quantification of x in the premise equation
must be resolved and the universal quantification of x is a natural candidate.
This choice leads to accepting the equivalence

(∀x.M = N) ≡ (λx.M = λx.N).

This equivalence is, however, problematic when negation is involved. For ex-
ample, since there is no (capture-avoiding) substitution for the variable w that
makes the two (simply typed) term λx.w and λx.x equal (modulo λ-conversion),
one would expect that our reasoning logic is strong enough to prove ∀w.¬(λx.x =
λx.w). Using the equivalence above, however, this is equivalent to ∀w.¬∀x.x = w.
Unfortunately, this formula should not be provable since it is true if the domain
of quantification is a singleton. The ∇-quantifier is designed to be the proper
quantifier to match the λ-binder: in fact, the formula ∀w.¬∇x.x = w has a sim-
ple proof in the proof systems for ∇. (As this example suggests, it is probably
challenging to find a model-theory semantics for ∇.)

Two variants of ∇ appear in the literature and they differ on whether or not
they accept the following exchange and strengthening equivalences:

∇x∇y.Bxy ≡ ∇y∇x.Bxy ∇xτ .B ≡ B (x not free in B)

While the first equivalence is often admissible, accepting the second rule is signif-
icant since it forces the domain of quantification for x (the type τ) to be infinite:
that is, the formula

∃τx1 . . .∃τxn.

 ∧
1≤i,j≤n,i 6=j

xi 6= xj

is provable for any n ≥ 1. The minimal generic quantification of Baelde [3] rejects
these as proof principle in part because there are times when a specification
logic might need to allow possibly empty types: accepting these principles in the
reasoning logic would force types using ∇-quantification to have infinite extent.
On the other hand, the nominal generic quantification of Gacek et. al. [13, 14]
accepts these two additional equivalences.

6.4 Induction and co-induction

The earlier work on fixed points only allowed for the unfolding of fixed points: as
a result, it was not possible to reason specifically about the least or the greatest
fixed point. In the series of PhD thesis, McDowell [21], Tiu [42], Baelde [2], and
Gacek [13] developed numerous enrichments to our understanding of induction
and co-induction: the last three of these theses have also been concerned with
the interaction of the ∇-quantifier and fixed point reasoning.

6.5 Two-level logic

The force behind developing a two-level logic approach to reasoning about logic
specifications is the necessity to treat both induction (and co-induction) and
higher-order judgments (AUGMENT and GENERIC in Figure 1). These latter
judgments only make sense when the “open world assumption” is in force: that
is, atoms are undefined and we can always add more clauses describing their
meaning. On the other hand, induction and co-induction only makes sense when
the “close world assumption” is in force: that is, we can only induct when we
have completely defined a predicate. It seems that we are at an impasse: in order
to reason about logic specifications employing higher-order judgments, we need
to have a logic that does not have higher-order judgments. To get around this
impasse, McDowell & Miller [21, 22] proposed using two logics: the reasoning
logic assumes the closed world assumption and contains the principles for in-
duction and co-induction while the specification logic assumes the open-world
assumption and allows for higher-order judgments. The interface between these
two logics has two parts. First, the term structures (including those treating
binding) are shared between the two logics, and, second, provability of the spec-
ification logic is encoded as a predicate in the reasoning logic (as in Figure 2).

There are, of course, choices in the selection of not only the specification logic
but also the proof system used to encode that logic. For example, extending hH2

to allow the linear logic implication −◦ was considered in [21, 22]: the linear spec-
ification logic allowed for natural specifications of the operational semantics of
a number of imperative programming features. There are also choices in how
one describes specification logic provability: while two different proof systems
should describe the same notion of provability, the form of that definition plays
a large role in theorems involving provability. For example, the proof system
in Figure 1 describes the uniform proofs of [28], which, in the terminology of
focused proofs systems for intuitionistic logic [20], arises from assigning the neg-
ative polarity to all atomic formulas. The resulting “goal-directed” (“top-down”)
proofs mimic the head-normal form of typed λ-terms. Thus, induction over the
seq judgment corresponds closely to induction over head-normal form. It is also
possible to consider a proof system for seq in which all atoms are assigned a
positive polarity. The resulting proofs would be “bottom-up”: such proofs would
naturally encode terms that contains explicit sharing. There may be domains
where an induction principle over such bottom-up proofs would be more natural
and revealing than for top-down proofs.

7 Related work

This paper provides an overview of a multi-year effort to develop a logic and its
proof theory that treats binding and fixed point together. It is common, however,
that these two aspects of logic have been treated separately, as we describe below.

Many systems for reasoning about computations start with established in-
ductive logic theorem provers such as Coq [10, 8] and Isabelle/HOL [34], and
then use those systems to build approaches to binding and substitution. Three
such notable approaches are the locally nameless representation [1], the Nominal
package for Isabelle/HOL [45], and Hybrid [11].

On the other hand, there are a variety of systems for specifying computations
which take binding as a primitive notion and then attempt to define separately
notions of induction. Many of these systems start with the LF logical framework
[18], a dependently typed λ-calculus with a direct treatment of variable binding.
While the LF type system can directly treat λ-tree syntax, it does not include a
notion of induction. Twelf [36] is able to establish that various recursively defined
relations on LF-typed terms are, in fact, determinate (i.e., functional) and/or
total. These conclusions can be used in concert with the dependently typed λ-
terms to conclude a wide range of properties of the original LF specification.
Similar functional approaches have been developed starting with M+

2 [41], a
simple meta-logic for reasoning over LF representations where proof terms are
represented as recursive functions. More recent work includes the Delphin [38]
and Beluga [37] functional languages which can be used in the same spirit asM+

2 .
In all of these approaches, however, side-conditions for termination and coverage
are required and algorithms have been devised to check for such properties.
Since termination and coverage are in general undecidable, such algorithms are
necessarily incomplete.

Acknowledgments. I thank Andrew Gacek and Alwen Tiu for their comments on
this paper.

References

1. B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
formal metatheory. In 35th ACM Symp. on Principles of Programming Languages,
pages 3–15. ACM, Jan. 2008.

2. D. Baelde. A linear approach to the proof-theory of least and greatest fixed points.
PhD thesis, Ecole Polytechnique, Dec. 2008.

3. D. Baelde. On the expressivity of minimal generic quantification. In A. Abel
and C. Urban, editors, International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008), ENTCS 228, pages 3–19, 2008.

4. D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for
model checking over syntactic expressions. In F. Pfenning, editor, 21th Conf. on
Automated Deduction (CADE), LNAI 4603, pages 391–397. Springer, 2007.

5. D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Der-
showitz and A. Voronkov, editors, International Conference on Logic for Program-
ming and Automated Reasoning (LPAR), volume LNCS 4790, pages 92–106, 2007.

6. D. Baelde, D. Miller, and Z. Snow. Focused inductive theorem proving. In J. Giesl
and R. Hähnle, editors, Fifth International Joint Conference on Automated Rea-
soning, LNCS 6173, pages 278–292, 2010.

7. D. Baelde, D. Miller, Z. Snow, and A. Viel. Tac: A generic and adaptable interactive
theorem prover. http://slimmer.gforge.inria.fr/tac/, 2009.

8. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

9. A. Church. A formulation of the simple theory of types. J. of Symbolic Logic,
5:56–68, 1940.

10. T. Coquand and C. Paulin. Inductively defined types. In Conference on Computer
Logic, LNCS 417, pages 50–66. Springer-Verlag, 1988.

11. A. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. To appear in the J. of Automated Reasoning.

12. A. Gacek. The Abella interactive theorem prover (system description). In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Fourth International Joint Con-
ference on Automated Reasoning, LNCS 5195, pages 154–161. Springer, 2008.

13. A. Gacek. A Framework for Specifying, Prototyping, and Reasoning about Com-
putational Systems. PhD thesis, University of Minnesota, 2009.

14. A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with recursive
definitions. In F. Pfenning, editor, 23th Symp. on Logic in Computer Science, pages
33–44. IEEE Computer Society Press, 2008.

15. A. Gacek, D. Miller, and G. Nadathur. Reasoning in Abella about structural
operational semantics specifications. In A. Abel and C. Urban, editors, Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP 2008), ENTCS 228, pages 85–100, 2008.

16. A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach to reasoning
about computations. Submitted 16 November, Nov. 2009.

17. J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, Feb. 1992.

18. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. of the
ACM, 40(1):143–184, 1993.

19. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

20. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

21. R. McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis,
University of Pennsylvania, Dec. 1997.

22. R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induc-
tion. Theoretical Computer Science, 232:91–119, 2000.

23. R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Trans. on Computational Logic, 3(1):80–136, 2002.

24. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. of Logic and Computation, 1(4):497–536, 1991.

25. D. Miller. Abstract syntax for variable binders: An overview. In J. Lloyd and et
al., editors, Computational Logic - CL 2000, LNAI 1861, pages 239–253.

26. D. Miller. Bindings, mobility of bindings, and the ∇-quantifier. In J. Marcinkowski
and A. Tarlecki, editors, 18th International Conference on Computer Science Logic
(CSL) 2004, LNCS 3210, page 24, 2004.

27. D. Miller. Formalizing operational semantic specifications in logic. Concurrency
Column of the Bulletin of the EATCS, Oct. 2008.

28. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

29. D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract.
In P. Kolaitis, editor, 18th Symp. on Logic in Computer Science, pages 118–127.
IEEE, June 2003.

30. D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on
Computational Logic, 6(4):749–783, Oct. 2005.

31. A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus. In
M. Coppo, S. Berardi, and F. Damiani, editors, Post-proceedings of TYPES 2003,
LNCS 3085, pages 293–308, Jan. 2003.

32. G. Nadathur and D. Miller. An Overview of λProlog. In Fifth International Logic
Programming Conference, pages 810–827, Seattle, Aug. 1988. MIT Press.

33. G. Nadathur and D. J. Mitchell. System description: Teyjus — A compiler and
abstract machine based implementation of λProlog. In H. Ganzinger, editor, 16th
Conf. on Automated Deduction (CADE), LNAI 1632, pages 287–291, Trento, 1999.

34. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

35. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the
ACM-SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 199–208. ACM Press, June 1988.

36. F. Pfenning and C. Schürmann. System description: Twelf — A meta-logical
framework for deductive systems. In H. Ganzinger, editor, 16th Conf. on Auto-
mated Deduction (CADE), LNAI 1632, pages 202–206, Trento, 1999. Springer.

37. B. Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In 35th Annual ACM Symposium on
Principles of Programming Languages (POPL’08), pages 371–382. ACM, 2008.

38. A. Poswolsky and C. Schürmann. System description: Delphin - A functional
programming language for deductive systems. In A. Abel and C. Urban, editors,
International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2008), volume 228, pages 113–120, 2008.

39. P. Schroeder-Heister. Cut-elimination in logics with definitional reflection. In
D. Pearce and H. Wansing, editors, Nonclassical Logics and Information Process-
ing, LNCS 619, pages 146–171. Springer, 1992.

40. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, IEEE, June 1993.

41. C. Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University, Oct. 2000. CMU-CS-00-146.

42. A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

43. A. Tiu. Model checking for π-calculus using proof search. In M. Abadi and L. de Al-
faro, editors, CONCUR, LNCS 3653, pages 36–50. Springer, 2005.

44. A. Tiu and D. Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. ACM Trans. on Computational Logic, 11(2), 2010.

45. C. Urban. Nominal reasoning techniques in Isabelle/HOL. J. of Automated Rea-
soning, 40(4):327–356, 2008.

