
UNIFORM PROOFS AS A FOUNDATION FOR
LOGIC PROGRAMMING

Dale Miller Computer and Information Science Department
University of Pennsylvania, Philadelphia, PA 19104

Gopalan Nadathur Computer Science Department
Duke University, Durham, NC 27706

Frank Pfenning Computer Science Department
Carnegie Mellon University, Pittsburgh, PA 15213

Andre Scedrov Mathematics Department
University of Pennsylvania, Philadelphia, PA 19104

Abstract: A proof-theoretic characterization of logical languages that form suitable
bases for Prolog-like programming languages is provided. This characterization is based
on the principle that the declarative meaning of a logic program, provided by provability
in a logical system, should coincide with its operational meaning, provided by interpreting
logical connectives as simple and fixed search instructions. The operational semantics is
formalized by the identification of a class of cut-free sequent proofs called uniform proofs.
A uniform proof is one that can be found by a goal-directed search that respects the inter-
pretation of the logical connectives as search instructions. The concept of a uniform proof
is used to define the notion of an abstract logic programming language, and it is shown
that first-order and higher-order Horn clauses with classical provability are examples of
such a language. Horn clauses are then generalized to hereditary Harrop formulas and it
is shown that first-order and higher-order versions of this new class of formulas are also
abstract logic programming languages if the inference rules are those of either intuitionistic
or minimal logic. The programming language significance of the various generalizations to
first-order Horn clauses is briefly discussed.

Appear in Annals of Pure and Applied Logic, 1991 (51), 125–157.

1. Introduction

Most logic programming languages can be thought of as implementations of the classi-
cal, first-order theory of Horn clauses. The language Prolog [29], for instance, is generally
described using these formulas and its interpreter is based on SLD-resolution [1, 31]. Al-
though the use of first-order Horn clauses in this capacity provides for a programming
language that has many interesting features, it also results in a language that lacks most
forms of abstractions commonly found in modern programming languages. For example,
Horn clauses are not capable of supporting modular programming, abstract data types, or
higher-order functions in either a direct or a natural fashion.

There are essentially three broad approaches that can be adopted to provide these
missing features in a language such as Prolog. The first approach is to take programming
constructs from other languages and to mix them into Horn clauses. For example, a notion
of higher-order functions can be provided in Prolog by mixing some of the higher-order
mechanisms of Lisp with Horn clauses [32, 33]. The second approach is to modify an
existing interpreter in some simple ways so that the resulting interpreter has a behavior
that can be utilized to provide aspects of the missing features. This is generally achieved in
logic programming languages via the implementation of various non-logical primitives, such
as call, univ, and functor [29]. Both of these approaches generally provide for immediate
and efficient extensions to the language. However, they have the disadvantage that they
clutter up of the semantics of the language, obscure the declarative readings of programs,
and move the language far from its basis in logic.

The third approach, which we pursue here, involves extending the logic programming
paradigm to include richer logics than Horn clauses in the hope that they provide a logical
basis for the missing abstraction mechanisms. While this approach does not always lead
to immediate and efficient solutions like the other two approaches, it generally has the
advantage that the extended language continues to have a clear semantics. There are,
however, greatly differing possibilities with regard to the logical systems that can be used
in this context. The theory of Horn clauses appears to be close to one extreme of these
possibilities. At the other extreme, there is the possibility of using full and unrestricted
quantificational logic with a general purpose theorem prover serving as the interpreter for
the resulting language. There is a need, therefore, for a criterion for determining whether
a given logical theory is an adequate basis for a logic programming language before this
third approach can be brought to fruition.

In this paper, we argue that there is, in fact, a natural criterion for making such a
determination. The basic observation here is that logic programs are intended to specify
search behavior and that this fact is just as central to logic programming as the fact that it
makes use of symbolic logic for some of its syntax and metatheory. We attempt to formalize

this search behavior through the identification of certain kinds of proofs, called uniform
proofs, in sequent calculi without the cut inference rule. An abstract logic programming
language is then characterized in terms of uniform proofs. In abstract logic programming
languages, the declarative reading of the logical connectives coincides with the search
related reading. The class of such languages includes classical first-order Horn clauses and
excludes full quantificational logic as well as some other recently proposed extensions to
Horn clauses. Fortunately, there are logics more expressive than first-order Horn clauses
and apparently relevant to actual logic programming practice that are also captured by
the notion of an abstract logic programming language. Three such logics are described in
this paper.

The remainder of this paper is structured as follows. In the next section we provide the
formal definition of a uniform proof and of an abstract logic programming language. We
follow this up with a presentation of four different abstract logic programming languages:
in Section 3, we present the first-order and higher-order versions of positive Horn clauses
and in Sections 4 and 5 we present the first-order and higher-order versions of a new class
of formulas called hereditary Harrop formulas. Section 6 contains a detailed proof that
higher-order hereditary Harrop formulas interpreted using either intuitionistic or minimal
logic form an abstract logic programming language. Some possible applications within
logic programming for our various extensions are outlined in Section 7 and Section 8
contains some concluding remarks. An appendix collects together the various abstract logic
programming languages defined in this paper and summarizes some of the observations
made about them.

2. Uniform Proofs

The syntax of the logic used here corresponds closely to that of the simple theory of
types [2]. In particular, our logic consists of types and simply typed λ-terms. The set of
types contains a collection of primitive types or sorts and is closed under the formation
of functional types: i.e., if α and β are types, then so is α → β. The type constructor
→ associates to the right. We assume that there are denumerably many variables and
constants of each type. Simply typed λ-terms are built up in the usual fashion from these
typed constants and variables via abstraction and application. Application associates to
the left.

It is assumed that the reader is familiar with most of the basic notions and definitions
pertaining to substitution and λ-conversion for this language; only a few are reviewed
here. Two terms are equal if they differ by only alphabetic changes in their bound variable
names. A term is in λ-normal form if it contains no β-redexes, i.e. it has no subformulas
of the form (λx B)C. Every term can be β-converted to a unique λ-normal form, and we

write λnorm(t) to denote the λ-normal form corresponding to the term t. The notation
[C/x]B denotes the result of substituting C for each free occurrence of x in B and is defined
formally to be λnorm((λx B)C).

Logic is introduced into these term structures by including o, a type for propositions,
amongst the primitive types, and by requiring that the collection of constants contain the
following typed logical constants: ∧,∨,⊃ all of type o → o → o; >, ⊥ of type o; and,
for every type α, ∀α and ∃α both of type (α → o) → o. These logical constants are also
referred to as logical connectives. The type subcript on ∀ and ∃ will be omitted except
when its value is essential in a discussion and cannot be inferred from context. Expressions
of the form ∀(λx B) and ∃(λx B) will be abbreviated by ∀x B and ∃x B, respectively.
Terms of propositional type are referred to as formulas. The λ-normal form of a formula
consists, at the outermost level, of a sequence of applications, and the leftmost symbol
in this sequence is called its top-level symbol. First-order formulas are those formulas in
λ-normal form that are obtained by only using variables that are of primitive type and
nonlogical constants that are of type α1 → . . . → αn → α0 where n ≥ 0, α1, . . . , αn are
primitive types distinct from o, and α0 is a primitive type (possibly o).

In various parts of this paper, we shall use the following syntactic variables with the
corresponding general connotations:

D A set of formulas that serves as possible program clauses of some logic pro-
gramming language.

G A set of formulas that serves as possible queries or goals for this programming
language.

A An atomic formula; that is, a formula whose top-level symbol is not a logical
constant. > and ⊥ are not atomic formulas.

Ar A rigid atomic formula; that is, an atomic formula whose top-level symbol is
not a variable.

D A member of D, referred to as a definite clause or a program clause.

G A member of G, referred to as a goal or query.

P A finite subset of formulas from D, referred to as a (logic) program.

One meaningful relation that could be asked for arbitrary sets D and G is the following.
Given some notion of logical provability (such as classical or intuitionistic provability)
denoted by `, is it the case that P ` G? This notion of provability could be used to state
that the goal G succeeds given program P. There are at least two reasons why this very
general notion of success is unsatisfactory as a foundation for logic programming.

First, in an abstract sense, computation in the logic programming setting means goal-
directed search. Therefore, the primitives of the programming language should specify how
to build and traverse a search space. Since we are trying to provide a logical foundation for

logic programming, these primitives should be the logical connectives. As we shall see, the
meaning of logical connectives in a very general provability setting does not easily support
a search-related interpretation and we will have to look for a more restricted notion of
provability.

Second, the result of a computation in logic programming is generally something that
is extracted from the proof of a goal from a program. Typically, this extraction is a sub-
stitution or witness, called an answer substitution, for the existentially quantified variables
in the goal formula. For it to be possible to make such an extraction, the provability
relation over programs should satisfy the existential property; that is, whenever P ` ∃x G,
there should be some term t such that P ` [t/x]G. An answer substitution is then the
substitution for the existentially quantified variables of a goal that are contained in a proof
of that goal. Again, many provability relations do not satisfy this property if D and G are
taken to be arbitrary sets of formulas.

The definition of a proof theoretic concept that captures this notion of computation-as-
search can be motivated by describing how a simple, non-deterministic interpreter (theorem
prover) for programs and goals should function. This interpreter, given the pair 〈P, G〉
in its initial state, should either succeed or fail. We shall use the notation P `O G

to indicate the (meta) proposition that the interpreter succeeds if started in the state
〈P, G〉. The subscript on `O signifies that this describes an “operational semantics” (of
an idealized interpreter). The search-related semantics that we want to attribute to the
logical constants >,∧,∨,⊃,∀, and ∃ can then be informally specified by associating with
them the following six search instructions.

SUCCESS P `O >.

AND P `O G1 ∧G2 only if P `O G1 and P `O G2.

OR P `O G1 ∨G2 only if P `O G1 or P `O G2.

INSTANCE P `O ∃αx G only if there is some term t of type α such that P `O [t/x]G.

AUGMENT P `O D ⊃ G only if P ∪ {D} `O G.

GENERIC P `O ∀αx G only if P `O [c/x]G, where c is a parameter of type α that is
not free in P or in G.

Thus, the logical constant > simply signifies a successfully completed search. The logical
connectives ∧ and ∨ provide for the specification of non-deterministic AND and OR nodes
in the interpreter’s search space. The quantifier ∃ specifies an infinite non-deterministic
OR branch where the disjuncts are parameterized by the set of all terms. Implication
instructs the interpreter to augment its program, and universal quantification instructs
the interpreter to introduce a new parameter and to try to prove the resulting generic
instance of the goal.

There are several points to be noted with respect to the search instructions above.

First, they only partially specify the behavior of an idealized interpreter since they do not
describe a course of action when atomic goals need to be solved. In each of the examples
considered in this paper, a natural choice turns out to be the operation of backchaining.
This might not, however, be the most general choice in all cases and building it into the
definition could make it unduly restrictive. Second, the search instructions specify only
the success/failure semantics for the various connectives and do not address the question
of what the result of a computation should be. The abstract interpreter must solve exis-
tentially quantified goals by providing specific instances for the existential quantifiers and
the instantiations that are used can be provided, as usual, as the result of a computation.
As outlined at the end of this paper, an actual interpreter that extracts answer substitu-
tions from uniform proofs can be constructed for each of the logic programming languages
considered here. We have chosen not to build in this notion of answer substitution into the
description of an abstract interpreter in order to provide as broad a framework as possi-
ble. A point of particular interest is that the abstract interpreter is specified in a manner
completely independent of any notion of unification: free variables that appear in goals are
not variables in the sense that substitutions can be made for them; substitutions are made
only when quantifiers are instantiated. Finally, we note that some of the naturalness, from
a logical point of view, of the search instructions arises from the fact that their converses
are true in most logical systems. They are true, for instance, within minimal logic, the
weakest of the logical systems that we consider below.

Our concern with logic programming languages that contain the constant ⊥ will be
minimal in this paper. This is largely because ⊥ contributes little to our understanding of
abstractions in logic programs. This symbol is useful within logic programming to provide
a notion of negation: see [15] for a development of this notion. In the present context it is
important to point out that the natural tendency to read ⊥ as failure does not correspond
to the role of this symbol within logical systems: in the inference systems corresponding to
classical, intuitionistic, and minimal logic that are considered below, ⊥ is something that
is provable when there is a contradiction in the assumptions.

In formalizing the behavior of the idealized interpreter, we shall find sequent-style
proof systems a useful tool. We assume, once again, a familiarity with the basic notions of
such proof systems and we summarize only a few of these below. A sequent is a pair of finite
(possibly empty) sets of formulas 〈Γ, Θ〉 that is written as Γ −→ Θ. Proofs for sequents
are constructed by putting them together using inference figures. Figure 1 contains the
various inference figures needed in this paper. The proviso that the parameter c is not free
in any formula of the lower sequent is assumed for the ∃-L and ∀-R figures. Also, in the
inference figure λ, the sets Γ and Γ′ and the sets Θ and Θ′ differ only in that zero or more
formulas in them are replaced by some formulas to which they are β-convertible. A proof
for the sequent Γ −→ Θ is then a finite tree constructed using these inference figures

and such that the root is labeled with Γ −→ Θ and the leaves are labeled with initial
sequents, i.e., sequents Γ −→ Θ such that either > ∈ Θ or the intersection Γ∩Θ contains
either ⊥ or an atomic formula. Sequent systems of this kind generally have three structural
figures, which we have not listed. Two of these figures, interchange and contraction, are
not necessary here because the antecedents and succedents of sequents are taken to be sets
instead of lists. Hence, the order and multiplicity of formulas in sequents is not important.
If an antecedent is of the form Γ, B, it may be the case that B ∈ Γ; that is, a formula
in an antecedent or succedent has an arbitrary multiplicity. The third common structural
inference figure is that of thinning. The definition of initial sequents above removes the
need for this inference figure.

B, C, ∆ −→ Θ ∧-L
B ∧ C, ∆ −→ Θ

Γ −→ ∆, B Γ −→ ∆, C ∧-R
Γ −→ ∆, B ∧ C

B, ∆ −→ Θ C, ∆ −→ Θ ∨-L
B ∨ C, ∆ −→ Θ

Γ −→ ∆, B ∨-R
Γ −→ ∆, B ∨ C

Γ −→ ∆, C ∨-R
Γ −→ ∆, B ∨ C

Γ −→ Θ, B C, Γ −→ ∆ ⊃-L
B ⊃ C, Γ −→ ∆ ∪Θ

B, Γ −→ Θ, C ⊃-R
Γ −→ Θ, B ⊃ C

[t/x]P, Γ −→ Θ ∀-L
∀x P, Γ −→ Θ

Γ −→ Θ, [t/x]P ∃-R
Γ −→ Θ,∃x P

[c/x]P, Γ −→ Θ ∃-L
∃x P, Γ −→ Θ

Γ −→ Θ, [c/x]P ∀-R
Γ −→ Θ, ∀x P

Γ −→ Θ,⊥ ⊥-R
Γ −→ Θ, B

Γ′ −→ Θ′
λ

Γ −→ Θ

Figure 1: Inference figures

We define the following three kinds of proofs. An arbitrary proof will be called a
C-proof. A C-proof in which each sequent occurrence has a singleton set for its succedent
is also called an I-proof. Finally, an I-proof that contains no instance of the ⊥-R inference

figure is also called an M-proof. We write Γ `C B, Γ `I B, and Γ `M B, if the sequent
Γ −→ B has, respectively, a C-proof, an I-proof, and an M-proof. If the set Γ is empty,
it will be dropped entirely from the left side of these three relations. The three relations
defined here correspond to provability in, respectively, higher-order classical, intuitionistic
and minimal logic. More detailed discussions of these kinds of sequent proof systems and
their relationship to other presentations of the corresponding logics can be found in [5, 9,
28, 30]. Of particular note here is the use of the cut-elimination theorems for these various
logics to identify `C ,`I ,`M with the customary definitions of these provability relations.

A uniform proof is an I-proof in which each occurrence of a sequent whose succedent
contains a non-atomic formula is the lower sequent of the inference figure that introduces
its top-level connective. In other words, a uniform proof is an I-proof such that, for each
occurrence of a sequent Γ −→ G in it, the following conditions are satisfied:

◦ If G is >, that sequent is initial.

◦ If G is B ∧ C then that sequent is inferred by ∧-R from Γ −→ B and Γ −→ C.

◦ If G is B∨C then that sequent is inferred by ∨-R from either Γ −→ B or Γ −→ C.

◦ If G is ∃x P then that sequent is inferred by ∃-R from Γ −→ [t/x]P for some term t.

◦ If G is B ⊃ C then that sequent is inferred by ⊃-R from B, Γ −→ C.

◦ If G is ∀x P then that sequent is inferred by ∀-R from Γ −→ [c/x]P , where c is a
parameter that does not occur in the given sequent.

The notion of a uniform proof reflects the search instructions associated with the
logical connectives. We can, in fact, formalize `O by saying that P `O G, i.e., the
interpreter succeeds on the goal G given the program P, if and only if there is a uniform
proof of the sequent P −→ G. An abstract logic programming language is then defined as
a triple 〈D,G,`〉 such that for all finite subsets P of D and all formulas G of G, P ` G if
and only if P `O G.

We shall presently consider examples of abstract logic programming languages. Be-
fore we do this, however, we describe two logical systems that are not included by this
definition. First, let us take for D the set of positive Horn clauses extended by permitting
the antecedents of implications to contain negated literals, for G the existential closure of
the conjunctions of atoms, and for ` the notion of classical provability (see, for example,
[6]). The resulting system fails to be an abstract logic programming language under our
definition since

p ⊃ q(a), ¬p ⊃ q(b) `C ∃x q(x)

although there is no term t such that q(t) follows from the same program (antecedent).
Thus, there is no uniform proof for ∃x q(x) from the program {p ⊃ q(a), ¬p ⊃ q(b)}. For
another example, let D be the set of positive and negative Horn clauses, let G be the set of

negations of such formulas, and let ` once again be classical provability (see, for example,
[8]). This system again fails to be an abstract logic programming language since

¬p(a) ∨ ¬p(b) `C ∃x ¬p(x)

although no particular instance of the existentially quantified goal can be proved.

3. Horn Clauses

Horn clauses are generally defined in the literature as the universal closures of dis-
junctions of literals that contain at most one positive literal. They are subdivided into
positive Horn clauses that contain exactly one positive literal, and negative Horn clauses
that contain no positive literals. This presentation of Horn clauses is motivated by the fact
that its simple syntactic nature simplifies the description of resolution theorem provers.
Our analysis of provability will be based on sequent proofs rather than on resolution refu-
tations. We therefore prefer to use the following more natural definition of this class of
formulas.

Let A be a syntactic variable that ranges over atomic, first-order formulas. Let G1 be
the collection of first-order formulas defined by the following inductive rule:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∃x G.

Similarly, let D1 be the collection of first-order formulas defined by the following inductive
rule:

D := A | G ⊃ A | D1 ∧D2 | ∀x D.

Notice that any formula of D1 can be rewritten as a conjunction of some list of positive
Horn clauses by uses of prenexing, anti-prenexing, and deMorgan laws. Similarly, every
positive Horn clause can be identified with some formula in D1. Given this correspondence
and the additional fact that we do not allude to negative Horn clauses anywhere in our
discussions below, we shall refer to the formulas in D1 as first-order Horn clauses. This
definition of (positive) Horn clauses is in fact more appealing than the traditional one
for several reasons. First, it is textually closer to the kind of program clauses actually
written by Prolog programmers: these programmers do not write lists of signed literals
and they often insert disjunctions into the bodies of clauses. Second, it provides for a more
compact notation, given that the size of the conjunctive normal form of a formula can be
exponentially larger than the size of the formula. Finally, this presentation of Horn clauses
will be easier to generalize when, as in the next section, we desire to include additional
connectives inside program clauses.

Let fohc = 〈D1,G1,`C〉. We then have the following theorem.

Theorem 1. fohc is an abstract logic programming language.

Proof. Only a sketch is provided here since most of the details are present in the proof
of a more general theorem in Section 6. Let P and G be an fohc program and goal,
respectively. If P `O G, then the uniform proof of P −→ G is also a C-proof, and thus
P `C G. For the converse, we may assume that P −→ G has a C-proof, say Ξ, with no
instances of the λ inference figure and then show that it must also have a uniform proof.
An argument for this is outlined as follows:

(1) Let A be a finite subset of D1 and B be a finite subset of G1 such that A −→ B
has a C-proof. A simple inductive argument shows that the antecedent and succedent of
each sequent occurrence in this proof are subsets of D1 and G1 ∪ {⊥}, respectively. By
virtue of Proposition 3 below, this derivation can be transformed into one in which the
inference figure ⊥-R does not appear, essentially by “omitting” occurrences of ⊥-R and
by “padding” the succedents of sequents above this inference figure appropriately. We
may, therefore, assume without loss of generality that the succedent of each sequent in the
derivation under consideration is a subset of G1 and, further, that the inference figure ⊥-R
does not appear in it. An inductive argument now shows that there is some formula G′

in B such that A −→ G′ has an M-proof. From this observation, it follows that there is
an M-proof Ξ′ for P −→ G; when spelt out in detail, the above argument shows how Ξ′

can be obtained from the given derivation Ξ.

(2) Given the nature of the antecedents and succedents of its sequents, it is clear that
the only inference figures that appear in Ξ′ are ∧-L, ⊃-L, ∀-L, ∧-R, ∨-R, and ∃-R. If Ξ′ is
not already a uniform proof, then this is because the introduction rules for connectives on
the right might not appear as close to the root as required: instances of ∧-L, ⊃-L, and ∀-L
might come between an occurrence of a sequent with a compound formula in its succedent
and the inference figure where that formula’s top-level connective was introduced. It is
possible to prove, again by an inductive argument, that the inference rules ∧-L, ⊃-L, and
∀-L commute with ∧-R, ∨-R, and ∃-R. Thus, the M-proof Ξ′ can be converted into a
uniform proof of the same sequent, and thus P `O G.

The transformation outlined above implicitly shows the equivalence of classical, in-
tuitionistic, and minimal provability for sequents of the form P −→ G where P ⊆ D1

and G ∈ G1. It follows, therefore, that the triples 〈D1,G1,`I〉 and 〈D1,G1,`M 〉 are also
abstract logic programming languages. They are, in fact, the same abstract logic program-
ming languages as fohc since the sets of sequents of the form P −→ G that have C-, I-,
M-, and uniform proofs are the same.

fohc extends the logical language underlying Prolog slightly, since it allows explicit ex-
istential quantifiers and does not require normal forms. It is, however, relatively weak as a
logic programming language in the sense that there are no cases for the introduction of im-

plications or universal quantifiers into succedents. Put equivalently, an interpreter for this
language does not need to implement the search operations AUGMENT and GENERIC.
There are many ways in which the languages of programs and goals, i.e., the classes D1

and G1, can be strengthened in order to obtain richer abstract logic programming lan-
guages, and we examine some of these here. In this section we examine the possibility of
permitting higher-order terms and formulas in Horn clauses. In the next section we shall
be concerned with allowing implication and universal quantification in goals.

In introducing higher-order notions into Horn clauses, our approach will be to permit
quantification over all occurrences of function symbols and some occurrences of predicate
symbols, and to replace first-order terms by simply typed λ-terms within which there
may be embedded occurrences of logical connectives. To define such a class of formulas
precisely, let us first identify H1 as the set of all λ-normal terms that do not contain
occurrences of the logical constants ⊃, ∀, and ⊥: that is, the only logical constants these
terms can contain are >,∧,∨, and ∃. Let the syntactic variable A now denote an atomic
formula in H1. Such a formula must have the form Pt1 . . . tn, where P is either a variable
or non-logical constant. A is said to be rigid if P is a constant, and the syntactic variable
Ar is used for rigid atomic formulas in H1. We now let G2 be the set of all formulas in H1

and, in a manner akin to the definition of D1, we let D2 be the set of formulas satisfying
the following rule:

D := Ar | G ⊃ Ar | D1 ∧D2 | ∀x D.

The quantification here may be over higher-order variables, and G ranges over the formulas
of H1. Notice that a closed, non-atomic formula in G2 must be either >, or have ∧,∨, or ∃
as its top-level constant. The formulas in D2 are what we call higher-order Horn clauses.

The restriction that the atomic formulas appearing in the “conclusions” of higher-
order Horn clauses be rigid is motivated by two considerations. First, given the operational
interpretation that is generally accorded to a Horn clause, the predicate symbol of the atom
in the conclusion of an implication is the name of a procedure that that clause is helping
to define. Requiring this predicate symbol to be a constant forces each such implication
to be part of the definition of some specific procedure. Second, this requirement also
makes it impossible for a collection of higher-order Horn clauses to be inconsistent in
the sense that arbitrary formulas can be proved from it. This observation follows from
Proposition 3 below. In fact, a sequent of the form P −→ Ar is provable only if the
top-level predicate constant of Ar is also the top-level predicate constant of the conclusion
of some implication in P. If the condition on occurrences of predicate variables is relaxed,
however, programs can become inconsistent. For instance, arbitrary formulas are provable
from the set {p,∀x(p ⊃ x)}.

Let hohc = 〈D2,G2,`C〉. We wish to show then that hohc is an abstract logic pro-

gramming language. The proof that was provided for fohc does not carry over immediately
to this case: since predicates may be quantified upon, it is possible to construct C-proofs in
the context of hohc that are much more complex than in the first-order case. For example,
consider the following derivation of the goal formula ∃y Py from the higher-order Horn
clause ∀x (x ⊃ Pa). We assume here that q is of type o and that there is some primitive
type i such that P is of type i → o, and a and b are of type i.

Pb −→ q, Pb ⊃-R
−→ Pb ⊃ q, Pb Pa −→ Pa ⊃-L

(Pb ⊃ q) ⊃ Pa −→ Pa, Pb ∃-R
(Pb ⊃ q) ⊃ Pa −→ Pa,∃y Py ∃-R

(Pb ⊃ q) ⊃ Pa −→ ∃y Py ∀-R
∀x (x ⊃ Pa) −→ ∃y Py

This derivation illustrates that an important observation made in the proof of Theorem
1 is not true in the higher-order case: in a C-proof of a sequent of the form P −→ G,
there may appear sequents that contain non-Horn clauses such as (Pb ⊃ q) ⊃ Pa in
their antecedents. Furthermore, this is a proof of a sequent with an existential formula in
its succedent in which the existential quantifier results from generalizing on two different
constants; the formula ∃y Py in the final sequent is obtained by generalizing on Pa and
Pb. To show hohc is an abstract logic programming language, we must be able to show
that there is an alternative C-proof with a single witnessing term for the existentially
quantified goal.

The proof of Theorem 1 can be adapted to this case if it is possible to show that in
a C-proof of a sequent in hohc it is only necessary to use substitution terms taken from
the set H1. This would help because of the following observation: if t is a member of H1

and x is a variable of the same type as t, then [t/x]s is a member of H1 for each s that is
a member of H1 and, similarly, [t/x]D is a member of D2 for each D that is a member of
D2. If it could be proved that substitutions from only this set need to be considered, then
we can, in fact, restrict our attention to C-proofs in which the antecedent and succedent
of each sequent occurrence is a subset of D1 and G1 ∪ {⊥}, respectively. The rest of the
argument in the proof of Theorem 1 would then carry over to this case as well.

In [22] and [24], it is shown that this restriction on substitutions within C-proofs in
fact preserves the set of provable sequents. That is, if P is a set of higher-order Horn
clauses and G is a formula in G2 such that P −→ G has a C-proof, then this sequent
has a C-proof in which the substitution terms used in the inference figures ∀-L and ∃-R
are from the set H1. Hence, H1 acts as a kind of Herbrand universe for hohc. In proving

this fact, a procedure is described for transforming arbitrary C-proofs to C-proofs of this
restricted variety. This procedure would, for instance, transform the above problematic
proof into the following proof of the same sequent.

−→ >, P b Pa −→ Pa ⊃-L
> ⊃ Pa −→ Pa, Pb ∃-R
> ⊃ Pa −→ Pa, ∃y Py ∃-R
> ⊃ Pa −→ ∃y Py ∀-R.

∀x (x ⊃ Pa) −→ ∃y Py

The substitution term Pb ⊃ q has been replaced here by the simpler term >. Although
the existential quantifier ∃y Py is still instantiated twice in the proof, the arguments in
the proof of Theorem 1 permit the removal of the “unnecessary” instance, Pb. These
observations are made precise in the following theorem.

Theorem 2. hohc is an abstract logic programming language.

Proof. Again, only an outline is provided. Details can be found in [22, 24], and the
proof in Section 6 is also similar in spirit.

Let P be a finite set of higher-order Horn clauses and let G be a formula in G2. The
theorem is trivial in one direction, since a uniform proof of P −→ G is also a C-proof.
For the other direction, assume that P −→ G has a C-proof Ξ. We argue below that this
sequent must then also have a uniform proof.

Let Ξ′ be the result of dropping all sequents in Ξ that occur above the lower sequent
of an instance of either ⊃-R or ∀-R. In general, Ξ′ will not be a proof, since its leaves might
not be initial sequents. Because of the effect of higher-order substitutions, the formulas
that occur in the antecedents of sequents of Ξ′ might not be members of D2. However,
let B, Lr, and L be syntactic variables for formulas described in the following manner: B

denotes arbitrary formulas, Lr denotes rigid atomic formulas not necessarily in H1, and L

denotes formulas defined inductively by

L := Lr | B ⊃ Lr | L1 ∧ L2 | ∀x L.

It is easily seen then that formulas in the antecedents of sequents in Ξ′ are L-formulas.

Now let τ be the mapping on λ-terms that first replaces all occurrences of ⊃, ∀, and
⊥ with the terms λxλy >, λw >, and >, respectively, and then converts the result into
λ-normal form. Obviously, τ(t) is a member of H1 for any term t, and if t ∈ H1 then
τ(t) = t. Now consider two additional mappings defined using τ . For arbitrary formulas
B, let τ+(B) := τ(B); τ+ maps arbitrary formulas into G2, while preserving formulas in

G2. On the class of L-formulas, let τ− by the mapping given by the following recursion:
τ−(Lr) := τ(Lr), τ−(B ⊃ Lr) := τ(B) ⊃ τ(Lr), τ−(L1 ∧ L2) := τ−(L1) ∧ τ−(L1), and
τ−(∀x L) := ∀x τ−(L); τ− maps L-formulas into D2, preserving, again, the formulas
already in D2.

Ξ′ is now transformed into Ξ′′ by the following operation: apply τ− to each formula
in the antecedent of the sequents in Ξ′ and apply τ+ to each formula in the succedent of
the sequents in Ξ′. It can be shown that Ξ′′ is a C-proof of P −→ G (since τ+(G) = G

and τ−(D) = D for each D ∈ P) in which all substitution terms in ∃-R and ∀-L are from
H1. Furthermore, every sequent in Ξ′′ has an antecedent that is a subset of D2 and a
succedent that is a subset of G2 ∪ {⊥}. The proof of this theorem can now be completed
by arguments that are identical to those used in the proof of Theorem 1.

The transformation implicit in the above proof once again indicates the equivalence of
classical, intuitionistic, and minimal provability for sequents of the form P −→ G where
P ⊆ D2 and G ∈ G2. Thus replacing the proof relation in the definition of hohc by either
`I or `M results in an abstract logic programming language that is identical to hohc.

Before concluding this section, we observe the following Proposition concerning the
L-formulas described in the proof of Theorem 2. An immediate consequence of this Propo-
sition is that any finite set of L-formulas is consistent. Since first-order and higher-order
Horn clauses are L-formulas, it follows therefore that finite sets of these formulas are also
consistent. This fact was used in the proofs of Theorem 1 and 2. We shall use this
proposition again in a similar fashion in Section 6.

Proposition 3. Let Γ be a finite set of L-formulas. Then there can be no C-proof for

Γ −→ ⊥.

Proof. Consider the set of all C-proofs of sequents of the form Γ −→ ⊥, where Γ is a
finite set of L-formulas. Assume this set is non-empty and let Ξ be a proof in this set of
minimal height. Ξ cannot be an initial sequent since ⊥ is not an L-formula. Thus, the
last inference figure of Ξ must be either ⊃-L, ∀-L, or ∧-L. This is, however, impossible
since, in all of these cases, Ξ would contain a proof of ⊥ from a finite set of L-formulas as
a subproof, contradicting the choice of Ξ.

Although the availability of higher-order terms in hohc makes this language more
expressive than fohc (see Section 7), an interpreter for this language still does not imple-
ment the AUGMENT and GENERIC search operations. In the next section, we present
our first example of an abstract logic programming language that incorporates these ad-
ditional search operations.

4. First-Order Hereditary Harrop Formulas

We return to first-order logic in this section in order to present an abstract logic
programming language that makes stronger use of logical connectives. We shall presently
consider a language in which goal formulas may have occurrences of all six logical constants
that have been given an operational interpretation. We note first that unless the occur-
rences and combinations of these connectives are greatly restricted, classical logic cannot
be expected to provide a proof system for an abstract logic programming language with
such goal formulas. For example, consider the goal formula p ∨ (p ⊃ q). If this goal was
given to our idealized interpreter with the program being empty, the interpreter would fail:
there is no uniform proof for either p or q from p. There is, however, a C-proof for this
formula, namely

p −→ p, q ⊃-R
−→ p, p ⊃ q ∨-R

−→ p ∨ (p ⊃ q), p ⊃ q ∨-R.
−→ p ∨ (p ⊃ q)

Thus classical provability is too strong for specifying the behavior of an interpreter that
implements the AUGMENT search operation. For this purpose it is necessary to choose
a logic weaker than classical logic, and intuitionistic logic and minimal logic appear to be
possible choices.

Let us consider now the class of first-order formulas given by the following recursive
definition of the syntactic variable D:

D := A | B ⊃ D | ∀x D | D1 ∧D2.

We assume here that A denotes atomic first-order formulas and B denotes arbitrary first-
order formulas. These D-formulas are known as Harrop formulas [11, 30]. The syntax of
these formulas can be simplified slightly by noting the following equivalences for minimal
logic: B ⊃ (D1 ∧D2) ≡ (B ⊃ D1)∧ (B ⊃ D2) and B ⊃ ∀x D ≡ ∀x (B ⊃ D) provided x is
not free in B. Thus, an inductive definition of Harrop formulas that is equivalent in both
intuitionistic and minimal logic to the one above can be given by

D := A | B ⊃ A | ∀x D | D1 ∧D2.

Since this definition resembles the earlier definitions of program clauses, we shall prefer it
over the former one. Obviously, all first-order Horn clauses are Harrop formulas.

Let P be a finite set of Harrop formulas and let B be some non-atomic formula.
An important property of Harrop formulas that was shown in [11] is the following: if

P `I B then there is an I-proof of P −→ B in which the last inference rule introduces
the logical connective of B. Hence, an I-proof of a sequent whose succedent is a set of
Harrop formulas can be made uniform “at the root”. However, this observation does not
imply the existence of a uniform proof whenever there is an I-proof since such a proof of
P −→ B can contain sequents whose antecedents are not sets of Harrop formulas; the
above-mentioned property cannot, therefore, hold at these sequents. For example, let P
be the empty set of Harrop formulas and B be the formula (p ∨ q) ⊃ (q ∨ p). There is
no uniform proof of the resulting sequent. Thus, the triple consisting of Harrop formulas,
arbitrary formulas, and intuitionistic logic is not an abstract logic programming language.
These observations carry over to the case where the proof relation considered is that of
minimal logic.

To motivate the definition of a triple that does constitute an abstract logic program-
ming language, let us consider the behavior of our idealized interpreter when given a
program consisting of Harrop formulas and a goal that is an arbitrary formula. As long as
the program remains a set of Harrop formulas, the search interpretation of the top-level
logical connective of the goal is consistent with the intuitionistic or minimal logic meaning
of that connective. The program might, however, become non-Harrop if the AUGMENT
rule is used. To avoid this problem, we stipulate that a formula whose top-level connective
is an implication may appear as a goal only if the formula to the left of the implication is
itself a Harrop formula. A similar restriction must also apply to the antecedent of program
clauses whose top-level logical connective is an implication, since the ⊃-L inference figure
moves this into the succedent of the upper sequent. The G- and D-formulas given by the
following following mutual recursion meet these conditions:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G,

D := A | G ⊃ A | ∀x D | D1 ∧D2.

Let D3 be the set of D-formulas and let G3 be the set of G-formulas. A formula from D3

is called a first-order hereditary Harrop formula [14], and fohh is defined to be the triple
〈D3,G3,`I〉. We have the following theorem concerning this triple.

Theorem 4. fohh is an abstract logic programming language.

Proof. Again we only outline the proof. A similar theorem is proved in [15] and the
proof in Section 6 extends the proof outlined here.

Let P be a finite subset of D3 and let G be a member of G3. Since any uniform proof
is also an I-proof, P `O G implies P `I G.

Assume that P `I G and let Ξ be an I-proof of P −→ G. The only reason why
Ξ might not be a uniform proof is because the introduction rules for the connectives in
formulas in the succedent are not as close to the root as required: instances of ∧-L, ⊃-L,

and ∀-L might have come between an occurrence of a sequent with a compound formula
in its succedent and the inference figure where the top-level connective of that formula
was introduced. Now, from the discussion above, it follows that each sequent that occurs
in Ξ has an antecedent that is a subset of D3 and a succedent whose sole element is a
member of G3. Using this observation and the fact that the inference rules ∧-L, ⊃-L, and
∀-L commute with ∧-R, ∨-R, ⊃-R, ∀-R, and ∃-R, an inductive argument can show how Ξ
can be converted to a uniform proof and, therefore, P `O G.

A point to note is that, by virtue of Proposition 3, the transformation described in the
above proof actually produces a uniform proof that is also a minimal proof. Thus the triple
〈D3,G3,`M 〉 amounts to the same logic programming language as fohh. As another point,
we note that an interpreter for fohh must implement all six search operations described in
Section 2, since the corresponding six logical constants can appear in goal formulas. Such
an interpreter would subsume an interpreter for fohc.

There is an interesting relationship between fohh and fohc. Let M be the intersection
of the sets D3 and G3. This class can be defined a the set of all formulas satisfying the
following inductive definition:

M := A | M ⊃ A | ∀x M | M1 ∧M2.

Notice that M contains all formulas of the form ∀x1 . . . ∀xm[A1 ∧ . . . ∧ An ⊃ A0] where
n ≥ 0 and m ≥ 0. Thus members of D1 are equivalent (in minimal logic) to members of
M. In this sense, Horn clauses can be both program clauses and goal formulas in fohh.
For an example of why this fact might be useful, consider the goal formula M ∧G. This is
equivalent (in intuitionistic and minimal logic) to the goal formula M ∧ (M ⊃ G). Hence,
a goal of the form M ∧G can be replaced by the one of the form M ∧ (M ⊃ G). Proofs of
the latter goal can be much shorter than of the former since the fact that M is provable
is “stored” during the attempt to prove G. The clause M could be used several times
without the need to prove it each time it is used.

For more examples of the use of fohh to write a richer set of programs than is possible
with fohc, the reader is referred to [7, 15, 17].

5. Higher-Order Hereditary Harrop Formulas

We now wish to describe a higher-order version of hereditary Harrop formulas. There
are certain choices that need to be made in order to do this. A choice that is of particular
importance concerns the form of logic that is to be allowed to be embedded within atomic
formulas. One proposal is to permit all the connectives that could appear as the top-level
symbols of fohh goal formulas to appear within atomic formulas. As we shall see presently,

a language described in this manner does not constitute an abstract logic programming
language since it contains theorems of minimal logic that do not have uniform proofs.
It is actually instructive to analyze this unsuccessful proposal carefully, and we do this
below. Before doing so, however, we present a higher-order extension of hereditary Harrop
formulas that is, in fact, successful.

Let H2 be the set of λ-normal terms that do not contain occurrences of the logical
constants ⊃ and ⊥. In other words, the only logical constants that terms in H2 may
contain are >, ∧, ∨, ∀, and ∃. Let the syntactic variable A denote atomic formulas in H2

and let the syntactic variable Ar denote rigid atomic formulas in H2. Then G4 and D4

are, respectively, the sets of G and D-formulas that are defined by the following mutual
recursion:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G

D := Ar | G ⊃ Ar | ∀x D | D1 ∧D2.

Quantification here may be over higher-order variables. The formulas of D4 will be called
higher-order hereditary Harrop formulas. Letting hohh = 〈D4,G4,`I〉, we note the follow-
ing theorem, whose proof is the subject of the next section.

Theorem 5. hohh is an abstract logic programming language.

In trying to understand the nature of the abstract logic programming language hohh,
it is useful to consider briefly the behavior of the idealized interpreter in the context of
hohc. We note first that atoms with predicate variables as their top-level symbol might
appear in goal formulas. By making substitutions for such variables, the interpreter can
move embedded logical connectives into the top-level logical structure of these formulas.
However, the interpreter cannot similarly alter atomic program clauses or the formulas to
the right of the implication symbol in these clauses; in the latter case, the top-level logical
structure of only the goal formula to the left of the implication symbol can be altered. Thus,
in the hohc case, every connective that is permitted in goal formulas may also be allowed
to appear within the terms that constitute the arguments of atomic formulas: since only
such terms may ultimately be substituted for predicate variables, the interpreter would in
this case only produce goal formulas from goal formulas and program clauses from program
clauses. This aspect of hohc is in fact reflected in the definitions of the goal formulas in
G2 and the universe of “substitution” terms H1: G2 is exactly the set of formulas in H1.

In the definition of higher-order hereditary Harrop formulas, however, this close rela-
tionship between goal formulas and substitution terms does not hold: the set G4 is strictly
larger than the set of formulas in H2. In particular, goal formulas can contain implications
while the terms in H2 cannot. Relaxing this restriction by permitting implications into
atomic formulas can result in “goal” formulas that are theorems of minimal logic but which

do not have uniform proofs. For example, consider the formula

∃Q[∀p∀q[R(p ⊃ q) ⊃ R(Qpq)] ∧Q(t ∨ s)(s ∨ t)],

where R is a constant of type o → o, s and t are constants of type o, Q is a variable of type
o → o → o, and p and q are constants of type o. This formula has exactly one M-proof,
obtained by using λxλy(x ⊃ y) as the substitution term for the existentially quantified
variable Q. This proof must contain within it a proof of the sequent t ∨ s −→ s ∨ t. Since
there is no uniform proof of this sequent, there can be no uniform proof for the original
sequent. The source of the “problem” in this example can be analyzed as follows. The
subformula t ∨ s has a positive occurrence in the original formula to be proved. However,
substituting the term containing an implication for Q produces a formula in which t ∨ s

has a negative occurrence. The resulting formula cannot be a goal formula within the
framework of hohh since it contains a formula with an ∨ as its top-level symbol at a place
where only program clauses are permitted. The presence of implications in substitution
terms may transform positive occurrences of formulas into negative occurrences and can
consequently lead to the existence of only non-uniform proofs. One way in which this
situation can be prevented from occurring is by making it unnecessary for implications to
appear in substitution terms. This can be achieved by not permitting implications inside
atomic formulas. This is the reason for not permitting implications in the members of H2.

One possible use for higher-order features in a programming language is in letting
part of a computation build a program that later parts of the computation might use. The
restriction that requires rigid atoms at various positions in D-formulas, however, greatly
restricts the possibility of this kind of computation within the abstract logic programming
languages described herein. Consider, for example, the sequent

P −→ ∃Q[(compile d Q) ∧ (Q ⊃ g)],

where d and g are some (specific) formulas of type o and Q is a variable of type o. Consistent
with discussions in this paper, the antecedent of this sequent can be thought of as a program
and the succedent as a goal. Let us now assume that the clauses in P define the relation
compile between two terms such that the latter term is a program clause obtained by
compiling the information in the former term. Then, the above sequent can be thought of
as describing the following kind of computation: compile the term d to construct a program
clause Q, and use this new clause in trying to solve the goal g. Such a computation would
correspond rather directly to some of the computations that can be performed in Lisp
because of the presence of the function eval. Unfortunately this is not a computation that
can be described even in hohh, the richest of the languages considered here: the succedent
of this sequent is not a valid goal formula of hohh since the formula Q ⊃ g that appears
in it has a non-rigid atom to the left of the implication.

The requirement that atoms in certain places be rigid and the restriction that implica-
tions not occur embedded in atoms might, in practice, be a hindrance to a programmer. A
possible solution to this problem is to remove these restrictions, thus permitting sequents
such as the one above to define legal computations. This might seldom conflict with the
structure of the abstract interpreter in practice; for instance, in the specific example under
consideration it might be the case that the the program P defines compile in such a way
that it relates only legal program clauses to d. Whether or not this is true requires, in
general, establishing rather deep properties about user-defined programs — in our example
it would require establishing a property of compile — a task that might be very hard to
carry out in general. An implementation of a higher-order “version” of hereditary Harrop
formulas might forego making such a determination statically and, instead, signal a run-
time error when it encounters sequents whose antecedents are not Harrop formulas; thus,
in our example it should signal a runtime error if Q is instantiated with a formula whose
top-level symbol is a disjunction or existential quantifier. Looked at in this light, Theorem
5 guarantees that if the language is restricted to being in hohh, no such runtime errors will
occur.

6. Proof of Uniformity

The objective of this section is to prove Theorem 5, that is, to show that 〈D4,G4,`I〉
is an abstract logic programming language. For this purpose it is convenient to introduce
the notion of an M′-proof.

Definition 6. An M′-proof is an M-proof in which each occurrence of a ∀-L or an
∃-R figure constitutes a generalization upon a term from H2. In other words, in each
appearance of a figure of one of the following two forms,

[t/x]P, Γ −→ Θ

∀x P, Γ −→ Θ

Γ −→ Θ, [t/x]P

Γ −→ Θ,∃x P

it is the case that t ∈ H2. Within M′-proofs, H2 acts as a kind of Herbrand universe.

In this section, we shall refer to formulas from D4 as D-formulas and to formulas
from G4 as G-formulas. The discussions below can be understood, in this context, in the
following manner. Let Γ be a finite collection of D-formulas and let G be a G-formula
such that Γ −→ G has an I-proof. We show then that this I-proof can be transformed
into a uniform proof for the same sequent. This transformation is effected by a two step
process. The first step consists of obtaining an M′-proof from the given I-proof, and the
second step involves the extraction of a uniform proof from the resulting M′-proof. While

these respective transformations are not presented explicitly, they will be apparent from
the constructive nature of the proofs to Lemmas 10 and 11 that appear below.

In elucidating the first step in the transformation process, the following mapping from
arbitrary terms to terms in H2 is used.

Definition 7. Let x and y be variables of type o. Then the function pos on terms is
defined as follows:

(i) If F is a constant or a variable

pos(F) =

{
λxλy >, if F is ⊃;
>, if F is ⊥;
F, otherwise.

(ii) pos([F1 F2]) = [pos(F1) pos(F2)].

(iii) pos(λz F) = λz pos(F).

Given a term F , the λ-normal form of pos(F) is denoted by F+.

This “positivization” operation on terms commutes with λ-conversion, as is proved in
the following lemma.

Lemma 8. For any terms F1 and F2, if F1 λ-converts to F2 then pos(F1) λ-converts to

pos(F2).

Proof. Clearly, if F1 α-converts to F2, then pos(F1) α-converts to pos(F2). Let x be a
variable possibly free in B, and let A be a term of the same type as x that is also free
for x in B. Let H2 be the result of replacing all occurrences of a variable x in the term
B by the term A. An induction on the structure of B verifies the following: pos(H2)
results from substituting pos(A) for all occurrences of x in pos(B). Thus, if H2 results by
a β-reduction step from H1, where H1 = (λx B)A, then pos(H2) results from pos(H1) by
a similar step. This observation together with an induction on the structure of F1 verifies
that if F2 results from F1 by a single β-reduction step, then pos(F2) results similarly from
pos(F1). An induction on the conversion sequence now verifies the lemma.

It is necessary to consider below the result of performing a sequence of substitutions
into a term. In order to avoid an excessive use of parentheses, we adopt the convention
that substitution is a right associative operation: for example, [t2/x2][t1/x1]F denotes the
term that is obtained by first substituting t1 for x1 in F and then substituting t2 for x2

in the result.

Lemma 9. If F is a term in H2 and t1, . . . , tn are arbitrary terms (n ≥ 0), then

([tn/xn] . . . [t1/x1]F)+ = [(tn)+/xn] . . . [(t1)+/x1]F.

In particular, this is true when F is an atomic G- or D-formula.

Proof. Using the definition of substitution, the properties of λ-conversion and Lemma
8, it is easily seen that

([tn/xn] . . . [t1/x1]F)+ = [(tn)+/xn] . . . [(t1)+/x1]F+.

For any term F ∈ H2, it is evident that pos(F) = F and, hence, that F+ = F .

The basis for the first step in the transformation alluded to above is now provided
by the following lemma; as mentioned already, the actual mechanism for carrying out this
step should be apparent from its proof.

Lemma 10. If Γ is a finite set of D-formulas and G is a G-formula, the sequent Γ −→ G

has an I-proof only if it also has an M′-proof.

Proof. Let ∆ be a set of the form

{[t1n1
/x1

n1
] . . . [t11/x1

1]D1, . . . , [trnr
/xr

nr
] . . . [tr1/xr

1]Dr},

where r, n1, . . . , nr ≥ 0 and D1, . . . , Dr are D-formulas; i.e., ∆ is a set of formulas each
member of which is obtained by performing a sequence of substitutions into a D-formula.
In this context, let ∆+ denote the set

{[(t1n1
)+/x1

n1
] . . . [(t11)

+/x1
1]D1, . . . , [(trnr

)+/xr
nr

] . . . [(tr1)
+/xr

1]Dr}.

Given any G-formula G, we claim that ∆ −→ [sm/ym] . . . [s1/y1]G has an I-proof only if
∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G has an M′-proof. The lemma follows easily from this
claim.

The claim is proved by an induction on the height of an I-proof for a sequent of
the form ∆ −→ [sm/ym] . . . [s1/y1]G. If this height is 1, the given sequent must be an
initial sequent. It is easily seen that performing substitutions into a D-formula produces
an L-formula (see Section 3). Thus ∆ is a set of L-formulas and, consequently, ⊥ /∈ ∆.
Therefore, [sm/ym] . . . [s1/y1]G must be either > or an atomic formula. But then G must
itself be > or an atomic formula, and so, by Lemma 9,

[(sm)+/ym] . . . [(s1)+/y1]G = ([sm/ym] . . . [s1/y1]G)+.

Now if ∆ −→ [sm/ym] . . . [s1/y1]G is an initial sequent because [sm/ym] . . . [s1/y1]G = >,
then ∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G must also be an initial sequent since (>)+ = >.
Otherwise for some i, 1 ≤ i ≤ r, it is the case that

[sm/ym] . . . [s1/y1]G = [tini
/xi

ni
] . . . [ti1/xi

1]Di.

Since Di must be an atomic formula here, it follows, using Lemma 9, that

([sm/ym] . . . [s1/y1]G)+ = ([tini
/xi

ni
] . . . [ti1/xi

1]Di)+ = [(tini
)+/xi

ni
] . . . [(ti1)

+/xi
1]Di.

Thus ∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G must again be an initial sequent.

For the inductive case, we assume that the claim is true for sequents of the requisite
sort that have derivations of height h and then verify it for sequents with derivations
of height h + 1. For this purpose, we consider the possible cases for the last inference
figure in such a derivation. This figure cannot be a ⊥-R: If it were, then ∆ −→ ⊥ would
have an I-proof, contradicting Proposition 3 since ∆, as we have observed, must be a set
of L-formulas. Further, the figure in question cannot be an ∨-L or an ∃-L, since, once
again, an L-formula cannot have either an ∨ or a ∃ as its top-level connective. Finally,
a simple induction on the heights of derivations shows that if a sequent consists solely of
formulas in λ-normal form, then any I-proof for it that contains the inference figure λ can
be transformed into a shorter I-proof in which λ does not appear. Since each formula in
∆ −→ [sm/ym] . . . [s1/y1]G is in λ-normal form, we can assume that the last inference
figure in its I-proof is not a λ. Thus, the only figures that need to be considered are ∧-L,
⊃-L, ∀-L, ∧-R, ∨-R, ⊃-R, ∀-R, and ∃-R.

Let us consider first the case for an ∧-R, i.e., when the last inference figure is of the
form

∆ −→ B ∆ −→ C

∆ −→ B ∧ C

In this case, B ∧C = [sm/ym] . . . [s1/y1]G. Depending on the structure of G, our analysis
breaks up into two parts:

(1) G is an atomic formula. From Lemma 9 it follows that

[(sm)+/ym] . . . [(s1)+/y1]G = (B ∧ C)+ = B+ ∧ C+.

Now B and C can be written as [B/y]y and [C/y]y, respectively. It therefore follows from
the hypothesis that ∆+ −→ B+ and ∆+ −→ C+ have M′-proofs. Using an ∧-R figure
in conjunction with these, we obtain an M′-proof for ∆+ −→ B+ ∧ C+.

(2) G is a non-atomic formula. In this case G must be of the form G1 ∧G2, where G1

and G2 are G-formulas. Hence B = [sm/ym] . . . [s1/y1]G1 and C = [sm/ym] . . . [s1/y1]G2.
It follows from the hypothesis that the sequents ∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G1 and
∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G2 must both have M′-proofs, and therefore

∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G1 ∧ [(sm)+/ym] . . . [(s1)+/y1]G2

must also have one. It is now only necessary to note that the succedent of the last sequent
is in fact [(sm)+/ym] . . . [(s1)+/y1]G to see that the claim must be true.

An analogous argument can be provided when the last figure is ∨-R. If it is an ⊃-R,
then last inference figure in the given I-proof must be of the form

B, ∆ −→ C

∆ −→ B ⊃ C

where B ⊃ C = [sm/ym] . . . [s1/y1]G. If G is an atomic formula, then G+ = G and

[(sm)+/ym] . . . [(s1)+/y1]G = (B ⊃ C)+ = >,

and ∆+ −→ [(sm)+/ym] . . . [(s1)+/y1]G has a trivial M′-proof. If G is a non-atomic
formula, it must be of the form D′ ⊃ G′ for some G-formula G′ and some D-formula D′.
An argument similar to that in (2) above now verifies the claim. For the cases ∧-L and
⊃-L, we observe first that if the result of performing a sequence of substitutions into a
D-formula D is a formula of the form B ∧ C, then D must be the conjunction of two
D-formulas; if such an instance is of the form B ⊃ C, then D must be of the form G′ ⊃ D′

where G′ is a G-formula and D′ is a D-formula. In each of these cases, the claim is now
verified by invoking the hypothesis and by mimicking the argument in (2) above.

If the last figure in the derivation in an ∃-R, then it must be of the form

∆ −→ [t/x]P

∆ −→ ∃x P

where ∃x P = [sm/ym] . . . [s1/y1]G. We assume, without loss of generality, that x is
distinct from the variables y1, . . . , ym as well as the variables that are free in s1, . . . , sm

and consider, once again, two subcases based on the structure of G. If G is an atomic
formula, it follows from Lemma 9 that

[(sm)+/ym] . . . [(s1)+/y1]G = (∃x P)+ = ∃x (P)+.

Writing [t/x]P as [t/x][P/y]y and invoking the hypothesis, we see that ∆+ −→ [t+/x]P+

has an M′-proof. Adding below this an ∃-R figure we obtain, as required, an M′-
proof for ∆+ −→ ∃x (P)+. If, on the other hand, G is a non-atomic formula, it must
be of the form ∃x G′ where G′ is a G-formula. But now P = [sm/ym] . . . [s1/y1]G′.
Thus, ∆+ −→ [t+/x][(sm)+/ym] . . . [(s1)+/y1]G′ has an M′-proof by the hypothesis, and
from this we can obtain one for ∆+ −→ ∃x ([(sm)+/ym] . . . [(s1)+/y1]G′). Noting that
∃x ([(sm)+/ym] . . . [(s1)+/y1]G′) is in fact [(sm)+/ym] . . . [(s1)+/y1]∃x G′, the claim is ver-
ified in this case as well.

The only remaining cases are those when the last inference figure is a ∀-L or a ∀-R.
In both these cases, an argument that is similar to the one for ∃-R can be provided: for

the case of ∀-R, it is only necessary to make the additional observation that if a variable
y is free in a formula of the form [(ul)+/zl] . . . [(u1)+/z1]F , then it must also be free in
[ul/zl] . . . [u1/z1]F .

A direct consequence of the above lemma is the equivalence of provability in intuition-
istic and minimal logics in the context of D4 and G4 formulas. Of more immediate concern
to us is that it permits us to focus on M′-proofs for the sequents of interest in this section.
The proof of the following lemma outlines a mechanism for transforming such a derivation
into a uniform proof.

Lemma 11. Let Γ be a finite set of D-formulas and let G be a G-formula. If Γ −→ G

has an M′-proof then it also has a uniform proof.

Proof. The proof of the lemma is based on an observation and a claim. First the
observation: In an M′-proof for a sequent of the sort described in the lemma, the antecedent
of every sequent is a set of D-formulas and the succedent is a G-formula. The observation
may be confirmed by an induction on the height of the M′-proof for such a sequent. It is
certainly the case for a derivation of height 1. Given a derivation of height h+1 we consider
the possibilities for the last inference figure. A routine inspection suffices to confirm the
observation in all cases except perhaps for ∀-L and ∃-R. In the latter two cases it follows
by noting that if t ∈ H2 then [t/x]P is a D-formula if P is a D-formula, and [t/x]P is a
G-formula if P is a G-formula.

Now for the claim: Let ∆ be an arbitrary set of D-formulas, and let G′ be a G-formula
such that ∆ −→ G′ has an M′-proof of height h. Then

(i) if G′ = G1 ∧G2 then ∆ −→ G1 and ∆ −→ G2 have M′-proofs of height less than
h,

(ii) if G′ = G1 ∨G2 then either ∆ −→ G1 or ∆ −→ G2 has an M′-proof of height less
than h,

(iii) if G′ = ∃x G1 then there is a t ∈ H2 such that ∆ −→ [t/x]G1 has an M′-proof of
height less than h,

(iv) if G′ = D ⊃ G1 then ∆ ∪ {D} −→ G1 has an M′-proof of height less than h, and

(v) if G′ = ∀x G1 then there is a parameter c that appears neither in ∀x G1 nor in any of
the formulas in ∆ for which ∆ −→ [c/x]G1 has an M′-proof of height less than h.

This claim is proved by inducing again on the height of the derivation for ∆ −→ G′. If
this height is 1, it is vacuously true. For the case when the height is h+1, we consider the
possibilities for the last inference figure. The argument is trivial when this is one of ∧-R,
∨-R, ∃-R, ⊃-R, and ∀-R. Consider then the case for ∀-L, i.e., when the last figure is of the

form
[t/x]P, Θ −→ G′

∀x P, Θ −→ G′

The argument in this case depends on the structure of G′. For instance, let G′ = ∀x G1.
By the observation, the upper sequent of the above figure is of the requisite sort for the
hypothesis to apply. Hence, there is a parameter c that does not appear in any of the
formulas in Θ or in [t/x]P or in ∀x G1 for which [t/x]P, Θ −→ [c/x]G1 has an M′-proof
of height less than h. Adding below this derivation a ∀-L inference figure, we obtain an
M′-proof of height less than h + 1 for ∀x P, Θ −→ [c/x]G1. To verify the claim in this
case, it is now only necessary to observe that c cannot be free in ∀x P if it is not already
free in [t/x]P . The analysis for the cases when G′ has a different structure follows an
analogous pattern. Further, similar arguments can be provided when the last inference
figure is an ∧-L or an ⊃-L, thus completing the proof of the claim.

The lemma follows immediately from the observation and the claim above. In par-
ticular, the proof of the claim outlines a mechanism for moving the inference figure that
introduces the top-level logical connective in G to the end of the M′-proof. In conjunction
with the observation, this amounts to a method for transforming an M′-proof of Γ −→ G

into a uniform proof for the same sequent.

Theorem 5, the main result that we sought to establish in this section, is an immediate
consequence of Lemmas 10 and 11.

7. Abstractions in Logic Programs

As we mentioned in the introduction, first-order Horn clauses lack any direct and
natural expression of the standard abstraction mechanisms that are found in most modern
computer programming languages. One of the goals of our investigation into extensions
to logic programming was to provide a logical foundation for introducing some of these
abstraction mechanisms into the logic programming idiom. Below we briefly describe how
the extensions we have considered can help account for three program-level abstraction
mechanisms: modules, abstract data types, and higher-order programming. We also de-
scribe a new kind of abstraction mechanism, called term-level abstraction, that is available
in hohc and hohh because of the possibility of using λ-terms to represent data objects.
Our discussions are brief, but we provide references to places where fuller discussions can
be found.

Modules. An interpreter for the fohc or hohc logics need not implement the AUGMENT
search operation. Thus, to evaluate a goal in a complex program, all parts of the program
must be present at the start of the computation, whether or not the use of bits of code

could be localized or encapsulated. For example, let D0, D1 and D2 represent bundles or
modules of code. In Horn clause logic programming languages, to attempt goals G1 and
G2 with respect to these three program modules, the interpreter must be called with the
sequent

D0, D1, D2 −→ G1 ∧G2.

Even if we, as programmers, know that the code in D1 is needed only in attempting to
solve G1 and the code in D2 is needed only in attempting to solve G2, there is no way to
represent this structural fact using Horn clauses.

Implications within goals can, however, be used to provide for this missing structuring
mechanism. The following goal could be attempted in either fohh or hohh:

−→ D0 ⊃ (D1 ⊃ G1) ∧ (D2 ⊃ G2).

In trying to solve this goal, the interpreter would reduce this sequent into the two sequents

D0, D1 −→ G1 and D0, D2 −→ G2.

From this it is clear that the attempt to solve the two goals G1 and G2 would be made
in the context of two different programs. The ability to impose such a structure on code
might have a variety of uses. For instance, in the above example we see that the code in
modules D1 and D2 cannot interfere with each other. This is particularly useful if these
two modules are to be written by different programmers: the programmer of D1 need not
be concerned about the predicate names (that is, procedure names) and actual code that
appears D2. This structuring mechanism should also help in establishing formal properties
of large programs since explicit use can be made of the fact that certain parts of the code
do not interfere with others.

A more detailed description of such an approach to modules in logic programming can
be found in [15]. It is of interest to note a peculiar characteristic of the notion of module
that is provided by the use of the AUGMENT operation. A facet of many programming
languages that provide a module construct is that the meaning of a procedure occurring
within a module is given entirely by the code lying within that module. However, in the
logic programming setting described here, procedures in modules can always be augmented.
For instance, in the example above the code in module D0 is AUGMENTed with the code
in D1 before an attempt is made to prove G1. If D1 contains code for a procedure that also
has code in D0, that procedure would be defined by the accumulation of the code in D0

and D1. While there are occasions when this accumulation is desirable, it also gives rise
to a notion of modules unlike that found in other programming languages. Modules are
not “closures” since it is always possible for a goal to have the current program modules
augmented by any legal program clauses. This aspect of modules seems to be related to

what is known as the closed-world/open-world problem of logic programming [3]. The
simplest proof-theoretic approaches to explicating the meaning of logic programs, such as
the ones used here, generally require an open-world interpretation of programs due to the
basic monotonicity of the provability relation. In practice, however, programmers often
wish to think of the programs they write as being closed. There are several techniques
that have been used to impose a closed-world interpretation on logic programs and some
of these approaches might be used to force the notion of modules here to be more like the
module facilities of other programming languages.

Abstract data types. One problem with traditional logic programming languages is
that it is very hard to limit access to the internal structure of data objects. For example,
it is not possible to naturally support abstract data types in Horn clause logics. Use of
universal quantifiers in goals, however, provides for a degree of security that can be used
to support abstract data types [17]. Consider the following concrete example. Let Sort be
a set of Horn clauses that implements a binary tree sorting algorithm and let us assume
that it internally builds a labeled binary trees using the ternary function symbol f and the
constant symbol r; thus it might use f(5, f(3, r, r), f(8, r, r)) to represent the three-node
tree with a root that is labeled with 5 and that has left and right children labeled with 3
and 8, respectively. Now, assume that we attempt the goal G(z) (of the one free variable
z) that makes a call to the sorting procedure in Sort and that we would like it to be
guaranteed that the goal G(z) does not produce an answer (via a substitution term for z)
that incorporates the binary tree constructors used within Sort. Such a behavior can be
produced by letting D(x, y) be the result of replacing every occurrence of the parameters
f and r in Sort with new free variables x and y, respectively, and then attempting the
goal

∃z∀x∀y[D(x, y) ⊃ G(z)].

The alternation of quantifiers will not permit the substitution term for z to contain in-
stances of the constants used by the GENERIC search operation. These constants can,
however, play the role of being the data constructors of the sorting module.

Higher-order programming. It is possible to specify many of the higher-order opera-
tions that are familiar to Lisp and ML programmers in hohc and hohh. Operations such as
mapping a function or predicate over a list or “reducing” one list using a binary function
or predicate have very simple definitions. For example, consider the universal closures of
the higher-order formulas,

Pxy ∧map P l k ⊃ map P (cons x l) (cons y k) and

map P nil nil,

where cons and nil are the constructors for the list data type. The meaning given by these
clauses to the predicate map is that the goal map P l k is provable if l and k are lists of the

same length and corresponding members of these lists are P -related. This example is, of
course, higher-order because of the quantification over the predicate P . Such higher-order
programs are quite common among higher-order functional programming languages. For
more examples of higher-order logic programs in this style, see [19, 22].

Data Objects with Variable Bindings. There are many programming tasks that in-
volve the manipulations of structures containing variable bindings. For example, formulas
contain internal quantifications and programs contain formal parameters and local vari-
ables. In order to write such manipulation programs in a first-order logic programming
language, these objects must be encoded as first-order terms. The operations of substitu-
tion and notions of bound and free variables must also be implemented prior to writing
the various programs desired. If the variable-binding constructs of a language are directly
represented in the λ-calculus (in effect using higher-order abstract syntax, see [27]), the
notions of free and bound variables and the operation of substitution for such terms is
part of the meta-theory of the logic programming language itself and would not have to be
reimplemented each time it is needed. See [4, 18, 25, 26] for examples of using higher-order
logic programming techniques to implement theorem provers and type inference programs,
and see [10, 13, 20, 22] for examples of program transformation programs.

8. Conclusion

In this paper we have surveyed our recent attempts at extending the logic program-
ming paradigm by strengthening its logical foundations. The guiding principle in all these
attempts has been that a particular success/failure semantics for the logical connectives
>, ∧, ∨, ⊃, ∀, and ∃ is at the heart of logic programming. We have described three exten-
sions to first-order Horn clauses in which this duality in the meaning of the connectives is
preserved. From a programming perspective, these extensions are of interest because they
lead to the addition of different forms of abstraction to a language such as Prolog.

Although motivated by practical considerations, the discussions in this paper have
been largely of a foundational nature and have been a little divorced from the pragmatic
issues underlying the design of actual programming languages. It is, in fact, for this
reason that the term abstract logic programming language is used to describe the extensions
proposed herein. There is much work to be done before the ultimate impact that these
extensions on the design of Prolog-like languages can be assessed. One aspect whose
importance cannot be overemphasized is that of experimenting with actual interpreters for
languages based on the extensions. The abstract interpreter used to explicate the search
semantics for the logical connectives provides much of the structure of such an interpreter,
but there are certain points at which its behavior is described only nondeterministically
and at these points the actions of an actual interpreter must be further specified. In

some cases, it might be possible to describe devices that permit specific choices to be
delayed. The best example of this is the choice of a substitution term in the case of the
INSTANCE search operation that can be delayed by the use of free (“logical”) variables
and the concomitant notion of unification. In other cases, explicit choices might have
to be made and mechanisms for doing so need to be specified. Exercising such choices
might, in general, result in an interpreter that is incomplete as a proof procedure, and the
significance of this fact must be evaluated from a practical standpoint.

It merits mention that issues pertinent to the design of actual interpreters for the
various abstract logic programming languages in this paper have received attention else-
where. A less “abstract” interpreter for fohc, the logical language underlying Prolog, is
obtained from the well-known notion of SLD-resolution [1] and this forms the basis for
implementations of Prolog. Although hohc is substantially more complex than fohc, a
higher-order version of Prolog can be implemented in a fashion that shares many features
with first-order Prolog systems. For example, an interpreter for hohc can be described
in terms of higher-order unification, i.e. the unification of simply typed λ-terms perhaps
containing higher-order variables, and SLD-resolution [22, 24]. As shown in [22], the usual
backtracking mechanism of Prolog can be smoothly integrated with the higher-order uni-
fication search process described in [12] to provide interpreters for hohc. Similar ideas can
be used in implementing hohh with the following main differences: there might be a need
to solve unification problems that have mixed quantifier prefixes, an aspect dealt with in
[16], and it is necessary to consider programs that change in a stack-based fashion. A pro-
totype implementation of most of hohh has, in fact, been built based on this approach [23].
It has been used in several programming experiments [4, 10, 18, 20, 26] that have provided
an understanding of the usefulness of the various abstraction mechanisms discussed in this
paper in actual programming tasks.

As a final note, we observe that the focus in this paper has been on the realization
of abstraction mechanisms within logic programming through the use of proof-theoretic
techniques. This has led to the ignoring of several programming aspects either not pertinent
to the notion of abstraction or not captured directly by proof theory. Included in this
category are notions such as control, negation-by-failure, and side-effects. These issues
are clearly important in a practical programming language and need to be addressed by
further theoretical work.

Acknowledgements. The authors gratefully acknowledge valuable comments on this
paper that were provided by D. Leivant, G. Mints, J. Zucker, and an anonymous ref-
eree. Support for this work from the following sources is also acknowledged: for Miller
from NSF grant CCR-87-05596 and DARPA grant N000-14-85-K-0018, for Nadathur from
NSF grant IRI-8805696 and ARO Contract DAAL03-88-K-0082, for Pfenning from the Of-

fice of Naval Research under contract N00014-84-K-0415 and from the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 5404, monitored by the Office of
Naval Research under the same contract, and for Scedrov from NSF grants DMS85-01522
and CCR-87-05596 and from the University of Pennsylvania Natural Sciences Association
Young Faculty Award.

9. References

A preliminary version of this paper appeared as [21]. Theorem 3 of that paper is incorrect.
It is corrected by the material in Sections 5 and 6 of the current paper.

[1] K. Apt and M. H. van Emden, Contributions to the Theory of Logic Programming,
Journal of the ACM 29 (1982), 841 – 862.

[2] A. Church, A Formulation of the Simple Theory of Types, Journal of Symbolic Logic
5 (1940), 56 – 68.

[3] K. Clark, Negation as Failure, in Logic and Databases, H. Gallaire and J. Minker
(eds.), Plenum Press, New York, 1978, 293 – 322.

[4] A. Felty and D. Miller, Specifying Theorem Provers in a Higher-Order Logic Pro-
gramming Language, Proceedings of the Ninth International Conference on Automated
Deduction, Argonne, Ill., May 1988, 61 – 80.

[5] M. Fitting, Intuitionistic Logic, Model Theory and Forcing, North-Holland Pub. Co.,
1969.

[6] M. Fitting, A Kripke-Kleene Semantics for Logic Programming, Journal of Logic
Programming, 4 (1985), 295 – 312.

[7] D. M. Gabbay and U. Reyle, N-Prolog: An Extension of Prolog with Hypothetical
Implications. I, Journal of Logic Programming 1 (1984), 319 – 355.

[8] J. Gallier and S. Raatz, Hornlog: A Graph-Based Interpreter for General Horn
Clauses, Journal of Logic Programming 4 (1987), 119 – 156.

[9] G. Gentzen, Investigations into Logical Deductions, in The Collected Papers of Ger-
hard Gentzen, M. E. Szabo (ed.), North-Holland Publishing Co., 1969, 68 – 131.

[10] J. Hannan and D. Miller, Uses of Higher-Order Unification for Implementing Pro-
gram Transformers, Fifth International Conference and Symposium on Logic Program-
ming, ed. K. Bowen and R. Kowalski, MIT Press, 1988.

[11] R. Harrop, Concerning Formulas of the Types A → B ∨ C, A → (Ex)B(x) in
Intuitionistic Formal Systems, Journal of Symbolic Logic 25 (1960), 27 — 32.

[12] G. Huet, A Unification Algorithm for Typed λ-Calculus, Theoretical Computer Sci-
ence 1 (1975), 27 – 57.

[13] G. Huet and B. Lang, Proving and Applying Program Transformations Expressed
with Second-Order Patterns, Acta Informatica 11 (1978), 31 – 55.

[14] D. Miller, Hereditary Harrop Formulas and Logic Programming, Proceedings of the
VIII International Congress of Logic, Methodology, and Philosophy of Science, Moscow,
August 1987.

[15] D. Miller, A Logical Analysis of Modules in Logic Programming, Journal of Logic
Programming 6 (1989), 79 – 108.

[16] D. Miller, Solutions to λ-Term Equations Under a Mixed Prefix, submitted, January
1989.

[17] D. Miller, Lexical Scoping as Universal Quantification, Sixth International Confer-
ence on Logic Programming, Lisbon Portugal, June 1989.

[18] D. Miller and G. Nadathur, Some Uses of Higher-Order Logic in Computational
Linguistics, Proceedings of the 24th Annual Meeting of the Association for Computational
Linguistics, 1986, 247 – 255.

[19] D. Miller and G. Nadathur, Higher-Order Logic Programming, Proceedings of the
Third International Logic Programming Conference, London, June 1986, 448 – 462.

[20] D. Miller and G. Nadathur, A Logic Programming Approach to Manipulating For-
mulas and Programs, Proceedings of the 1987 Symposium on Logic Programming, San
Franciso, September 1987, 379 – 388.

[21] D. Miller, G. Nadathur, and A. Scedrov, Hereditary Harrop Formulas and Uniform
Proofs Systems, Proceedings of the Second Annual Symposium on Logic in Computer
Science, Ithaca, June 1987, 98 — 105.

[22] G. Nadathur, A Higher-Order Logic as the Basis for Logic Programming, Ph. D.
dissertation, University of Pennsylvania, May 1987.

[23] G. Nadathur and D. Miller, An Overview of λProlog, Proceedings of the Fifth Inter-
national Logic Programming Conference, Seattle, August 1988, 810 – 827.

[24] G. Nadathur and D. Miller, Higher-Order Horn Clauses, Journal of the ACM (sub-
mitted).

[25] L. Paulson, Natural Deduction as Higher-Order Resolution, Journal of Logic Pro-
gramming 3 1986, 237 – 258.

[26] F. Pfenning, Partial Polymorphic Type Inference and Higher-Order Unification, Pro-
ceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird,
Utah, July 1988, 153 – 163.

[27] F. Pfenning and C. Elliott, Higher-Order Abstract Syntax, Proceedings of the SIG-
PLAN ’88 Symposium on Language Design and Implementation, Atlanta, Georgia, June
1988, 199 – 208.

[28] D. Prawitz, Natural Deduction, Almqvist & Wiksell, Uppsala, 1965.

[29] L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming Techniques,
MIT Press, 1986.

[30] A. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Anal-
ysis, LNM 344, Springer-Verlag, 1973.

[31] M. van Emden and R. Kowalski, The Semantics of Predicate Logic as a Programming
Language, Journal of the ACM 23 (1976) 733 – 742.

[32] M. van Emden, First-Order Predicate Logic as a Common Basis for Relational and
Functional Programming, Proceedings of the Second Annual Symposium on Logic in Com-
puter Science, Ithaca, June 1987, 179 (abstract).

[33] D. H. D. Warren, Higher-Order Extensions to Prolog: Are They Needed? Machine
Intelligence 10, J. E. Hayes, D. Michie and Y-H. Pao (eds.), Halsted Press, 1982, 441 –
454.

Appendix: A Brief Summary

The definitions of the four abstract logic programming languages discussed in this
paper are collected below. These definitions are followed by a brief summary of the obser-
vations made about them.

First-order Horn clauses. Let A be a syntactic variable that ranges over first-order
atomic formulas. Let G1 and D1 be the sets of all first-order G- and D-formulas defined
inductively by the following rules:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∃x G,

D := A | G ⊃ A | D1 ∧D2 | ∀x D.

The formulas of D1 are called first-order Horn clauses. The triple 〈D1,G1,`C〉 is fohc.

Higher-order Horn clauses. Let H1 be the set of all λ-normal terms that do not
contain occurrences of the logical constants ⊃, ∀, and ⊥. Let A and Ar be syntactic
variables denoting, respectively, atomic formulas and rigid atomic formulas in H1. Let
G2 and D2 be the sets of all higher-order G and D-formulas defined inductively by the
following rules:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∃x G,

D := Ar | G ⊃ Ar | D1 ∧D2 | ∀x D.

The formulas of D2 are called higher-order Horn clauses. Notice that G2 is precisely the
set of formulas in H1. The triple 〈D2,G2,`C〉 is hohc.

First-order hereditary Harrop formulas. Let A be a syntactic variable that ranges
over first-order atomic formulas. Let G3 and D3 be the sets of all first-order G- and D-
formulas defined by the following rules:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G,

D := A | G ⊃ A | ∀x D | D1 ∧D2.

Formulas in D3 are called first-order hereditary Harrop formulas. The triple 〈D3,G3,`I〉
is fohh.

Higher-order hereditary Harrop formulas. Let H2 be the set of all λ-normal terms
that do not contain occurrences of the logical constants ⊃ and ⊥. Let A and Ar be
syntactic variables denoting, respectively, atomic formulas and rigid atomic formulas in
H2. Let G4 and D4 be the sets of G- and D-formulas that are defined by the following
mutual recursion:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G

D := Ar | G ⊃ Ar | ∀x D | D1 ∧D2.

The formulas of D4 are called higher-order hereditary Harrop formulas. hohh is the triple
〈D4,G4,`I〉.
Some Observations. All four triples, fohc, hohc, fohh, and hohh, are abstract program-
ming languages. If the provability relation for fohc and hohc is weakened from `C to `I

or `M , the resulting triples would still be abstract logic programming languages. In fact,
such a weakening does not change the set of sequents that are provable. If the provability
relation for fohh and hohh is weakened from `I to `M , the resulting triples would still be
abstract logic programming languages, and again, such a weakening does not change the
set of sequents that are provable. However, if the provability relation for fohh and hohh is
strengthened to `C , then new sequents would be provable and the resulting triple would
not be an abstract programming language.

A set of terms can be classified as a Herbrand universe for an abstract logic program-
ming language if provable sequents in the language have uniform proofs in which the terms
generalized on in the ∀-L and ∃-R inference figures are members of this set. The set of
first-order terms is a Herbrand universe for both first-order languages, fohc and fohh. The
set H1 is a Herbrand universe for hohc while the set H2 is a Herbrand universe for hohh.

Informally, we can say that one abstract logic programming language is contained
in another if every goal or program clause of the first is, respectively, a goal or program
clause of the second and if each “appropriate” sequent having a uniform proof in one also
has a uniform proof in the other. The containment relations among the four languages

discussed in this paper is then completely described by noting that fohc is contained in all
the languages, hohh contains all the languages, and fohh and hohc are not comparable.

