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Hereditary Harrop formulas are an extension to Horn clauses in ,vhich
the body of clauses can contain implications and universal quantifiers. These
formulas can further be extended by embedding them in a higher-order logic;
that is, by permitting quantification over function symbol occurrences and
some predicate symbol occurrences, and by replacing first-order terlns ,vith
simply typed ..x-terms. Our justification for considering this rich extension
of Horn clause theory as a satisfactory logic programming language is pro
vided by a proof-theoretic notion '\ve call "uniform proofs". This notion
will be defined and motivated. This extended language can provide very
natural and direct implementations of various kinds of abstraction mecha
nisms. For example, higher-order hereditary Harrop formulas (hohh) can
be used to support aspects of modular progranlming, abstract data types,
and higher-order programming.

\Ve have designed and built a logic programlning system ,vhich iln
plements hohh in much the same ,\\'ay Prolog implements first-order Horn
clauses. This language and its interpreter, collectively called ..xProlog, ,,~ill

be described. \\Te ,vill present several example progralns ,vhere ..xProlog
provides a much more hnmediate and satisfactory implelnentation language
than first-order Prologs. These examples are taken from theorem proving
and program transforlnation. Finally, ,ve ,vill describe some aspects of our
hnplementation of ..xProlog.

1



Lecture I

Introduction

Colleagues

Duke University

Gopalan Nadathur CS assistant professor

Table of Contents Carnegie Mellon University

Conal Elliott CS graduate student
Frank Pfenning CS researcll scientist

University of Edinburgh

J ames Harland CS graduate student

University of Pennsylvania

Amy Felty CIS graduate stllclellt
Elsa Gunter CIS post doc
John Hannan CIS graduate studellt
Dale Miller .CIS assistant professor
Remo Pareschi CIS graduate stlldent
Andre Scedrov Math associate professor

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

· . 1-10
1-11

. 1-14
1-15

. 1-16
· . 1-17

1-18
· 1-19
· 1-20

1-21
· . 1-22

. . . 1-23
· ..... 1-24

Colleagues . . . . . . . . . . .
Outline . . . . . . . . . . . .
Goals of These Lectures . . . . .
Extensions to Logic Programming
Extensions to the Logic of Logic Programming .
Analysis of "Good" Extensions . . . . . . . .
Four Abstract Logic Progranlming Languages
The Programlning Language AProlog . . . . .
Inlplelnentations of AProlog . . . . . . . . .
Three Dilllensions for Extending Horn Clauses .
References . . . . . . . . . . . . . . . .
Meta Mathenlatical Properties of Some Logics
An Exalllple of Higher-Order Reasoning . . . .
Another Exalnple of Higher-Order Reasoning
Extensional/Non-Extensional / Intensional . .
Higher-Order Logic as an

Object and Meta Language
Sinlply Typed A-Ternls
An Exalnple of A-Conversion. . .
Adding Logic to A-Terms . . . .
Fornlulas as A-Terms . . ~ . . .
Another Exalllple of A-Conversion
An Illfornlal Description of T

Miller/Septell1ber 1988 asflp/1/colleagues MillerjSeptell1ber 1988 I-I
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Outline

Lecture I

Introduction

Lecture II

Higher-Order Horn Clauses:

Definition, Examples, and Theory

Lecture III

Higher-Order Unification and

a Generalization of SLD-Resolution

Lecture IV

Hereditary Harrop Formulas and

Uniform Proofs

Lecture V

An Approach to Modules and Lexical Scoping

Lecture VI

Higher-Order Hereditary Harrop Formulas

Goals of These Lectures

To probe the essential logical character of various
notions of abstractions in logic programllling.

o higher-order functions

o abstract data types

o lllodules

To describe computational aspects of higher-order
logic.

To present some relationships betweeIl proof theory
and logic programming.

To propose an extension to the logic of Horn
clauses that maintains many of its computational
aspects.

To present a programming language, ;\Prolog, built
on this extension.

To use the proposed extensions to provide new
programming language features.
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Extensions to Logic Programming

AIllalgaIIlate Prolog with other languages.

Modify existing interpreters to add new
functionali ty.

Extend the logical foundations of Prolog.

o Increase the role of negation

o Increase the role of equality

o Quantify over Illore syntactic categories

o Add Illore logical priIllitives to queries

~xtensions to the Logic of Logic Prograrnllling

We shall consider two kinds of extensions in these
talks.

Quantificational extension

o adding quantification over predicate and/or
function sYIllbols

o higher-order Horn clauses

o terIllS extended with A-terIllS

Propositional extension

o adding additional connectives to goals and
prograIll clauses

o hereditary Harrop forIllulas

o intuitionistic provability Illodels cOIllputations

asflp/1/extensions Miller/Septel11ber 1988 1-4 asflp /1/extensiol1s Miller /Septel11ber 1988 1-5



Analysis of "Good" Extensions Four Abstract Logic PrograIllITling Languages

Extensions lllUSt maintain a certain lllatch between

an operational interpretation and the logical

interpretation of connectives within goals.

Programs, Goals <===> Logical Forlllulas

Solving a Goal <===> Logical Provability

Logical connectives are to have search-related

meanings, for example, the properties listed below

such hold.

o P I- G1 V G2 if and only if P ~ G1 or P ~ G2 .

o P I- 3x G if and only if for some t, P ~ G[t/x].

fohc

hohe

fohh

hohh

First~order Horn clauses with classical or
intuitionistic provability

Higher-order Horn clauses with classical
or intuitionistic provability

First-order hereditary Harrop formulas
with intuitionistic provability

Higher-order hereditary Harrop formulas
with intuitionistic provability

hohh

/ "fohh hohe

~ /
fohe

-----t denotes containlllent

asHp /1/analysis Miller /Septel11ber 1988 1-6 asfip /1/analysis Miller /Septeillber 1988 1-7



The Prograrnllling Language AProlog

AProlog is a progralllllling language built on
top of hohh. An interpreter for this language.
uses a depth-first discipline for both clauses and
(pre)unifier selections.

AProlog extends Prolog by providing

o higher-order prograIIlllling

o A-terllls as data structures

o stacked-based lllechanislll for introducing and
discharging program. clauses

o scoping tnechanislll for constants

o modules and local iIIlporting

o abstract data types

An overview of AProlog can be found in [23].

Illlplelllentations of AProlog

LP2.6 (August 1987, UPenn, Miller and Nadathur)

LP2.7 (July 1988, Duke and UPenn, Miller and
Nadathur) Available in C-Prolog and Quintus
Prolog version (4100 lines of code). Does not
illlplernent the full dynamic lllodule facility
anticipated by the theory. Does provide a
depth-first illlplernentation of full higher-order
unification. Sources and several cOlllplete examples
are in the distribution, which is available frolll

Gopalan Nadathur
Com.puter Science. Department
Duke University
Durhalll, NC 27706 USA
(gopalan@cs.duke.edu)

eLP (expected Winter 88, CMU) Written in
Comlllon Lisp. Will be used as a meta langl1age
within the ERGO program development project.
Should illlplelllent the full theory of hohh as well
as certain enhancements. Implementation being
done by Conal Elliott and Frank Pfennillg.

asflp/l/lprolog Miller /Septelllber 1988 1-8 asflp/l/lprolog Miller/Septelnber 1988 1-9
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Meta Mathelllatical Properties of SOllle Logics

First-order logic

o Valid formulas are precisely theorems
(soundness and cOlllpleteness).

o Theorem are described syntactically via
axioms and inference rules.

o Valid formulas are described semantically via
lllodels.

Second-order "logic"

o Valid formulas are those provable in the
standard model of the integers.

o G5del showed that there is no (reasonable)
syntactic characterization of these valid
formulas.

o Second-order "logic" is more mathematics
than logic.

Higher-order logic

o Syntactic tools are used to describe the nature
of predicate and function quantification.

o Typed A-calculus is ·generally used to denote
terms of higher-type (see Church [3]).

o Theorems are de~cribed syntactically: some
approaches have complete model theories,
some do not.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

An ExaIllple of Higher-Order Reasoning

VB (B c open ~ open(U B))

open set axiom

Vz (Az ~ 3G (open(G) /\ Gz /\ G C A))

assuInption

{G I G C A /\ ope~n(G)} Copen

simple

open(U{GIG C A /\ open(G)} )

Modus Ponens 1, 3

U{G IG C A /\-open(G)} C A

siTIlple

A C U{G I G C A /\ open(G)}

simple (uses 2)

open(A)

4, 5, 6, and extensionality

0~

asflp/l/111eta Miller/Septel11ber 1988 1-14 asflp /1 j ll1eta Miller jSeptell1ber 1988 1-15



Another ExanIple of Higher-Order Reasoning

believes(John, "The sun rises in the east.")

~ "The sun rises in the east." "Nixon lied."

Therefore, believes(John, "Nixon lied.")

The problelll illustrated above is generally
addressed by eInbellishing the underlying logic
to provide an analysis of the intensionality of a
proposition.

However, a weak enough logic can also block such
conclusions.

Extensional / Non-Extensional/Intensional

Extensionality: .Predicates (and function) are
equal if they have the saIne extensions. Generally
assumed in mathematics.

Direct higher-order extensions to first-order logic
do not guarantee extensionality. AxiolllS such as

'v'x[Px = Qx] ~ P == Q

lllUSt be added explicitly to get an extensional
logic.

Intensional logics, such as those of Montague and
Gallin, are embellishlllents of extensional higher
order logics with extra constants (e.g. intensional
oper'ators, modal operators) and with additional
axioms and inference rules.

With regard to such "selllantic" issues, we shall
focus on a very weak higher-order extension to
first-order logic.

asftp /1 /Illeta Miller /Septelllber 1988 1-16 asflp/1/111eta Miller /Septelllber 1988 1-17



Higher-Order Logic as an

Object and Meta Language

Original examination of higher-order logic was
to forIllalize matheIIlatics and then to study the
resulting formalisIn to conclude properties of
rnathelllatics. See Church [3] and Andrews [2].

Higher-order logic can makes a very interesting and
powerful Ineta language. SOIne recent 'work has
focused on the following three areas.

o theorelll provers: Felty and Miller [4], Paulson
[26], Pfenning [24]

o program transformers: Hannan and Miller [6]
and [7], Miller and Nadathur [18], Pfenning
and Elliott [25].

o natural language semantics: Miller and
Nadathur [17].

Simply Typed A-TerIllS

Types:

o A set of ground types {o, b1 , ... , bn }

o All types a --+ (3 where a and (3 are types.
et. --)~

Ternas: I' ~r--- 7

c I x I AX.t (t 1 t2 )
0( I 'of' L _

CJ,. ->(3~
Equivalence of Terms:

a Ax·(fx) -a Ay.(fy)

(3 (Ag.AX.(g x)) f -f3 Ax·(f x)
TJ AX·(fx ) - 1] - f

Functions are expressions of functional type, that
is, of type a --+ (3.

Predicate are functional expression~ of target type
0, that is, of type ao ~ · · · ~ an ~ o.

Propositions are expressions of type o.

asftp/ljl11eta Miller jSeptel11ber 1988 1-18
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An ExaDlple of A-Conversion Adding Logic to A-Terllls

\I(AX P) is abbreviated as \Ix P.

3(AX P) is abbreviated as 3x P.

AX(X + 1)

AIAz(f(fz))

(>"f>..z(f (f z))) >..x(x + 1) c

>..z((>..x(x + 1))(>"x(x + 1)z)) c

AZ((AX(X + 1))(z + 1)) c

AZ((Z + 1) + 1) c

((c+1)+1)

'o--+-o

v 0--+-(0--+-0)

1\0--+-( 0--+-0)

=> o--+- ( o--+- 0 )

\I(0.---+0 )---+0

:3(0.---+0)---+0

negation

disjunction

conjunction

iIllplication

universal a-set recognizer

non-eIllpty a-set recognizer

Type association is to the right: 0 ~ (0 ~ 0) is

written more simply as 0 -7 0 -7 O.

asflp/l/stt Miller/Septelnber 1988 1-20 asflp/l/stt Miller/Septelllber 1988 1-21



Forlllulas as A-Terms

"Every Illan loves a wom.an."

Vx (rnan(x) :> 3y (wornan(y) /\ loves(x, y)))

VAx((rnan x) ~ 3Ay((wornan y) /\ (loves x y)))

"uncle whose children are doctors"

Ax((uncle x) /\ (VAy((child x y) :> (doctor y))))

Another Exalllple of A-Conversion

U ::== ABAx3G (BG /\ Gx)

C ::== APAQVX (Px ~ Qx)

{G I G C A /\ (open G)} ::== AG. G C A /\ (open G)

U{G I G C A /\ (open G)}

[ABAx3G (B G /\ G X)][AG. G C A /\ (open G)]

Ax:lG [AG. G C A /\ (open G)]G /\ Gx

Ax3G [G C A /\ (open G) /\ Gx]

Ax3G [Vx [Gx ~ Ax] /\ (open G) /\ Gx]

asflp/l/stt Miller18eptember 1988 1-22 asflpilis t t MilleriSeptel11ber 1988 1-23



An Informal Description of T

If A A-converts to A' and J-- A, then J-- A'.

All constants and variables h,ave simple types.

Quantification over predicates and function is
perIllitted.

AxioIlls and inference rules for the classical (resp.
intuitionistic) version of T are those of classical
(resp. intuitionistic) first-order logic plus the
inference rule of A-conversion:

This is roughly equivalent to thinking of equality of
terms as being Illodulo A-conversion.

AxioIlls of extensionality, description, choice and
infinity are not used in T.

See Church 1940 [3] and Andrews 1986 [2] for more
about this kind of higher-order logic.

Meta theoretic results:

Table of Contents
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.Which Formulas Should Be Considered

. Higher-Order Horn Clauses?

Most certainly, the following should be examples of
higher-order Horn clauses.

rnappred P nil nil
(P X Y) /\ (rnappred P L K) ~

(rnappred P (cons XL) (cons Y K))

mapfun F nil nil
(rnapfun F L K) ~

(mapfun F (cons X L) (cons (F X) K))

Here the types for the four non-logical constants
would be something like the following:

nil: list
cons: i ~ list ~ list

rnappred : (i --+ i ~. 0) ~ list ~ list ~ 0
rnapfun : (i ~ i) --+ list --+ list ~ 0

Can the Head of a Clause Be a

Predicate Variable?

Consider the following two forlllulas:

\:IP \:IX ((q X) ~ (P X))

(q a)

Frolll these two clauses, any forlllula is provable.
To prove an arbitrary forlllula, say r, use the
instance P 1-+ AX.r "and X 1-+ a to get

(q a) ~ r.

These clauses are, thus, inconsistent.

The predicate head of a Horn clause describes
which procedure that clause is helping to define.

asflp/2/which Miller jSeptember 1988 11-1
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Higher-Order Horn Clauses

Let 1{+ be the set of all A-norInal forInulas built

froIn non-logical constants, variables, and the

logical constants true, /\, V and 3.

Let G be a syntactic variable for propositions in
1{+.

Let A be a syntactic variable for propositions in

1{+ with non-logical constants as their head. Such

formulas are called atoms.

A higher-order Horn clause is the universal closure

of a forInula of the forlll G J A or simply A.

Let P be a syntactic variable for sets of Horn

clauses.

A Possible Problem

Consider a proof of 3Y pY from the higher-order
Horn claus~

VQ (Q ~ pa)

There is a proof with answer substitution Y ~ a.
The instance of this Horn clause used in this proof
IS

true => pa.

There is another proof, however, which yields no
answer substitution. First, instantiate x with ,pb
to get the forllluia

which is equivalent (classically) to the disjunction

pb V pa.

The forIllula ~Y pY is then provable with the
"disjunctive" answer substitution Y 1---+ a or Y r---+ b.

The higher-order substitution instance of a higher
order Horn clause is not necessarily a higher-order
Horn clause.
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An Approach to Solving This Problelll

Notice that if s, t E 1i+ then [x := s]t E 1i+, that
is, 1i+ is closed under substitutions from 1i+.

Thus, higher-order Horn clauses are closed under

instantiations from 1i+.'

Approach: If G is provable frolll a set of higher

order Horn clauses then it i~ provable by a proof

whose only substitution terms are taken from 1i+.

Thus, 1i+ is the Herbrand Universe" for higher

order Horn clauses.

Positive Instances

~et P be a set of higher-order Horn clauses.

Get [P] be the smallest set of higher-order Horn

~lauses such that

o P C [P], and

o if \/x D E [P] and t E 1i+ is closed and the

same type as x, then [x :== t]D E [P].
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Provability frolll Horn Clauses

Theorelll: Let Gt , G2 , ,A, 3x Bx E 1-l+ each be
closed propositions. Let P be a set of higher-order
Horn clauses. Let J-T be classical provability over
T. The following are true:

o P J-T true.

o P J-T G1 /\ G2 if and only if P J- T G1 and
P J-T G2 •

o P J-T Gl V G2 if and only if P ~T G1 or
P J-r G2 •

o P J-T 3x B if and only if there is a closed
formula t E 7-{+ such that P I-r [x := t]B.

a P J-T A if and only if A E [P] or there is a
G :J A E [P] and P J-T G.

Proof: See Nadathur's dissertation [21] or the
joint paper [22]. See also [16].

Some AProlog Syntax

The syntax of terms is similar to that for Lisp
(functions are represented as curried expression).
Major differences are:

a A-abstraction is written with an infix \.

a Lists are written as in Prolog.

(redu·ce (lambda (x y)~ (x+y)) '(1 2 3) 0)=6
(reduce X\Y\ (X + Y) [1,2,3J 0 6)

The syntax of clauses and goals is similar to that
for Prolog. The major difference is the possibility
of having explicit existential quantification in goals.

?- sigma Y\(generate X Y, test Y Z).
B

The syntax of type declarations is similar to that
for ML.

type nil list.
type cons i -) l~st -) list.
type mappred (i -)"i -) 0) -)

list -) list -) o.
type mapfun (i -) i) -) list -) list -) o.
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Polymorphic Typing

Types are a language of first-order terlllS that is
separate frOIll the language of A-terllls.

Prilllitive types:

0, int, string,

Type constructors:

(list int), (pair int string),
(list (pair int int)),

The Mappred Progralll

type mappred (A -) B -) 0) -)
(list A) -) (list B) -) o.

mappred P nil nil.
mappred P [XIL1] [YIL2] :- P X Y,

mappred P L1 L2.

The predicate variable P appears both as an
argulllent and as taking argulllents. Consider the
following silllple clauses:

Polymorphic types: Allow first-order variables in
type expressions.

Functional types:

int -) int,

type [_1_]

type []
type pair

int -) (list int) -) 0,

A -) (list A) -) (list A)
(list A)
A -) B ->. (pair A B)

. . '.

type age person -) int -) 0.

age bob 23.
age sue 24.
age ned 23.

and now consider the following query:

?- mappred X\Y\(age X V). [ned, bob, sue] L.

This query essentially asks for the ages of
the individuals ned, bob and sue. An answer
substitution for L is [23, 23, 24].

asflp/2/syntax Miller/Septell1ber 1988 11-9 asflp/2/syntax Miller /Septelllber 1988 11-10



The Sublist Progralll

type sublist (A -) 0) -)
(list A) -) (list A) -) o.

sublist p [XIL] [XIK] :- P X, sublist P L K.
sublist P [XIL] K :- sublist P L K.
sublist P [] [].

type have_age (list person) ->
(list person) -) o.

have_age L K :-
sublist Z\(sigma X\(age Z X)) L K.

type same_age (list person) -)
(list person) -) o.

same_age L K :- sublist Z\(age Z A) L K.

Flexible Goals

P bob 23.

One answer to this query is the substitution
(X\Y\ (age X Y)) for P. Many other substitutions
are also valid. Let G be any provable closed query.
The substitution X\Y\G for P is a legal answer
substitution.

For example, substituting

X\Y\ (memb 4 [3,4,5])

for P is also an answer substitution.
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Constraining Flexible Goals

Such queries are essentially ill-posed. The range of
a predicate quantifier should be restricted by the
programlller. For exalllple,

type primrel (person -) 0) -) o.
type reI . (person -) 0) -) o.
type mother person -) o.
type wife person -) o.

primrel mother.
primrel wife.
reI R :- primrel R.
reI X\Y\ (sigma Z\(R X Z , S Z V)) :

primrel R , primrel S.
mother jane mary.
wife john jane.

The query

?- reI R, R john mary,

has the unique answer substitution for R

X\Y\(sigma Z\(wife X Z, mother Z V))

Interpretations for Higher-Order Horn Clauses

An interpretation is any set of closed, atomic
propositions in 1-{+.

The following cOlllpositional definition of
satisfaction is problematic.

o I F true

o I F G if G is atomic and G E I.

o I F G 1 V G 2 if I F G1 or.I F G2 ·

o I F G 1 /\ G2 if I F G1 and I F G2 .

o I F 3x B if there is a closed term t E 1-{+ such
that I F [x := t]B.

The problelll with this definition is that the
recursion in the last line is not well-founded: the
forIllula [x :== t]B can have lllore logical connectives
that the formula 3x B.

3P (Pa)
P ~ Az(3P (Pa) /\ q)

3P (Pa) /\ q
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A Non-Compositional Notion of Satisfaction

Let I be an interpretation and G a proposition
in 1l+. Write I H= G if there is a sequence of
forlllulas

G1 , , Gn == G

such that for i = 1, ,n, either

o G i is true, or

o G i E I, or

o G i == G' 1\ G" and {G', G"} C {G1 , ... , Gi - 1 },

or

o G i == G' V G" and G' or G" E {G1 , ... , Gi - 1 },

or

o G i == :3x G' and there is atE 1l+ such that
[x :== t]G' E {G1 , ... ,Gi - 1 }.

A Least Fixpoint Interpretation

Let P be a given set of higher-order Horn clauses.
Define the following function froIn interpretations
to interpretations:

Tp(I):=={AIA E [P]orG ~ A E [P]
and I H= G}.

It is not difficult to see that Tp is Inonotone and
continuous on the _.set of all interpretations.

The least fixpoint of Tp is therefore

00

T:P(0) := UTp(0).
n=O

It is this subset of 1l+ that we think of as being
deterlllined by P, and we call it the denotation of
P.

Theorell1: Let G E 1l+ be a closed proposition.
Then T:P(0) H= G if and only if P ~T G. See [21].
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The Mapfun PrograIll

. Consider the following progralll

type mapfun (A -> B) ->
(list A)·-> (list B) -> o.

mapfun F [XIL1] [(F X)I L2] .
mapfun F L1 L2.

mapfun F [] [].

The Mapfun PrograIll in "Reverse"

Consider the following query:.
?- mapfun F [a, b]. [(g a ~), (g a b)].

There is precisely one answer for this query,
namely the substitution X\ (g a X) for F. The
unification problelll (F a) and (g a a) needs to be
solved here. There are four unifiers for F:

There is no "function" (that is, A-term) which
maps a to c and lllaps b to d.

If any but the second is selected first, the choice of
unifier would need to be backtracked over.

Notice that the following qoal is not provable:

mapfun F [a, b] [c, d].

and consider the following query

?- mapfun X\(g a X) [a, b] L,

The answer substitution for L is

[(g a a), (g a b)]

An interpreter would need to form the terms
«X\ (g a X)) a) and «X\ (g a X)) b) and then
reduce these terlllS using the rules of A-conversion.

X\(g X ~),

X\(g X a),

X\(g aX),
X\(g a a).
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A-terms as Data Structures

A-terms capture the higher-order abstract syntax of
objects like forlllulas and prograllls [25].

Vx (p(x) V q(x))

(all X\ ((p X) or (q X)))

The Advantage of Such a Representation

The equivalence of the the two formulas

Vx (p(x) V q(x)) and Vy (p(y) V q(y))

is captured by the a-convertibility of

(all X\ ((p X) or (q X)))
(all Y\ ((p y) or (q Y)))

sum rn n if (rn == 0) then n
else sum (m - 1) (n + 1)

Substitution is implemented by ,B-reduction. For
exaIllple, the result of instantiating Vy (p(y) V q(y))
with f( a) is the represented by the A-normal forlll
of

(X\ ((p X) or (q X))) (f a)

(fixpt Sum\M\N\
(cond (M = 0) N

(Sum (M - 1) (N + 1))))

Higher-order unification illlplements sophisticated
pattern matching. Consider unifying an expression
against the following two higher-order telllplates:

(all X\ ((P X) or (Q X)))
(all X\ (P or (Q X)))
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Prograllls as Data Objects

Programs have a rich structure:

o variable bindings (for forlllal parameters)

o function bindings (for defining new functions)

Consider using Lisp as the llleta-language:

o Use Lisp's notation for A-terllls to represent
programs.

o The only primitive lllechanisllls for ,
manipulating such terlllS are CAR, CDR,
CONS.

o Lisp implementations produce obscure
descriptions of progralll analysis.

Need more sophisticated analysis techniques

Programs as A-terms

Consider a siIllple functional language with a
conditional operator, lists, and recursion. The
append progralll lllight appear as

fun append K L ==
(if (null K) L

(cons (car K) (append (cdr K) L)))

By introducing new co~stants to denote each
progralllming language construct, we can represent
this program by the the terlll

fix F\K\L\ (if (null K) L
(cons (car K) (F (cdr K) L)))

o Bindings in the object language are
represented by bound variables (abstractions)
in the meta language

o Two object level programs differing only in
renallling of bound variables are treated as
equivalent terms.

o Substitution for forlllal parameters in the
object language is acheived by ,B-reduction.
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Analyzing the Append Progralll

Consider uinifying the code for appen'd

fix F\K\L\ (if (null K) L
(cons (car K) (F (cdr K) L)))

Lecture III

Higher-Order Unification and

a Generalization of SLD-Resolution

against the template Table of Contents

fix F\M\N\ (if (C M) (G M N)
(H (F (K M) N) M))

with free variables C, G, H, and K. It unifies with
the "append" term with the substitution

Unification such as this provides a new method
of analyzing program structure. It is very
different from representing programs as lists and
manipulating them using CAR or CDR in Lisp or
first-order unification and =.. in Prolog.

· . 111-3
· . 111-4
· . 111-5
· . 111-6

· . . . . . 111-7
· . 111-8
· . 111-9

111-10
· . . . . 111-11

111-12
· . . . . 111-13
· . . . . 111-14

. . . . 111-15
111-16
111-17

· . . . . 111-18
111-19
111-20
111-21
111-22

Higher-Order Unification . 111-1
Some References on Higher-Order Unification . . . 111-2
Some Structural Properites of

Higher-Order Unification
Some Additional Properties . . . . . . . . .
Nesting of Abstractions . . . . .
An Example .
A Simple Tail Recursion Schema .
Matching the Tail Recursive Schema
A More General Tail Recursion "Template"
The Structure of A-normal Terms
Disagreement Pairs of A-terms
Simplifying Rigid-Rigid Pairs
Processing Flexible-Rigid Pairs
Example 1: Occurs Check .
Example 2
Example 3 .
Example 4 .
Example 5 .
Generalizing SLD-Resolution
P-Derivation . . . . . . . .
P-Derivation (continued)
Fixing Choices in P-Derivations

X\ (null X)
X\Y\ Y
X\Y\ (cons (car Y) X)
X\ (cdr X)

c --)
G --)
H --)

K --)

asflp/2/pods Miller jSepteluber 1988 11-23 MillerjSepteulber 1988



Higher-Order Unification

Given any two (simply typed) terlllS sand t of the
same type, the task of finding a substitution a,
if one exists, such that a(s) == a(t), is known as
higher-order unification.

[A better name is simply typed A-term unification
modulo a{31]-conversion.]

Some characteristics of higher-order unification:

o It is a semi-decidable problem (even for just
second-order unification).

o If unifiers exists, there is not necessarily a
Inost general unifier. In fact, there may be
infinitely Illany independent unifiers.

o General non-redunant search can only be
achieved for pre-unifiers and not unifiers.

o SOllle unification problems, called ftexible
flexible problems, can produce so Inany
unifiers that solving them is best delayed.
Flexible-flexible problems are treated as
constraints.

SOIne References on Higher-Order Unification

Huet in [9] gave the first full description of higher

order unification.

Gallier and Snyder. in [5] redo Huet's approach

using the sets of transformations of Herbrand

Martelli-Montanari.

Miller in [15] consigers higher-order unification

in the presence of a mixed prefix, i. e. adrnitting

quantifier alternations.

Elliott's Ph. D. thesis at Carnegie Mellon

University will be on extensions to higher-order

unification.
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Some Structural Properites of

Higher-Order Unification

Dependence on an abstraction. A terlll t is
dependent on its i th abstraction if a A-normal form
of t is of the form

and Xi is free in t'. t' may be a of functional type
itself.

The term

to == AUAVAWAh (F u h(G v))

is dependent on its first, second and fourth
abstractions but not its third.

SOIne Additional Properties

Dependency Invariance. Let t be a term that
is dependent on its i th abstraction. If t A-converts
to s, then s is dependent on its i th abstraction.

That is, dependence on an abstraction is well
defined with respect ~o term equality.

Dependency and Substitution. Let t be a
terlll and a a substitution. If a(t) is dependent
on its i th abstraction, then t is dependent on its i th

abstraction.

That is, abstraction dependencies cannot be
introduced by substitution.

For example, let

t = AxAy.(F x)
a==[F~(cy)]

Then a(t) == AXAZ.(C y x).
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Nesting of Abstractions

Nested Dependency. Let t be a A-norlllal terlll,
let a be a substitution, such that

t == AXI ... AXn.t'
a(t) = AXl · .. AXn.t"

Let Xi, Xj E {Xl, ... ,Xn}.

If every occurrence of Xi in t' is in the scope of an
occurrence of X j in t'
then every occurrenc~ of Xi in t" is in the scope of
an occurrence of X j in t".

That is, the "in the scope of" relationship .
between bound variables does not change under
substitution.

Consider again the term

to == AUAVAWAh.(F U (h(G v)))

For any substitution (]" (for F and G), every
occurrence of v in the terlll a(to) will be in the
scope of h.

An Example

Consider the term (higher-order template)

to == AUAVAWAh.(F U (h (G v)))

which we will try to unify with each of the terms

tl == AUAVAWAh.((2 * w) + h(3 * v))
t2 == AUAVAWAh.((2 * u) + (3 *v))
t3 == AUAVAWAh.((2 * u) + h(3 * v))

o For any. substitution a, a(t1) is dependent
upon its third abstraction (w) while to is not
dependent of its. third abstraction. Hence, t 1

does not unify with to.

o Since all occurrences of v in to are restricted
to be in the scope of h and since v is not so
restricted in t2, to does not unify with t2.

o t3 does unify with to, with substitution (]" ==

[F ~ AxAy.((2 *x) + y), G ~ Ax.(3 * x)]

See [7] for lllore of this kind of analysis.
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A Silllple Tail Recursion Schellla

Consider the following scheIlla (open higher-order
terIll) :

(fix AfAxAy (if (0 x y) (B x y)
(f (E1 X Y) (E2 X y))))

From our properties, we have the following
constraints on closed instances of this terlll:

o They are terms denoting recursive prograIll of
two arguments and the body of the program
lllUSt be an if expression.

o No recursive calls (f) are possible in the
"conditional" and "then" parts of the
prograIll.

o There is exactly one recursive call in the "else"
part of the progralll and it occurs at the top
level.

Matching the Tail Recursive Schellla

(fix AfAxAy (if (0 x y) (B x y)
(f (E1 X y) (E2 X y))))

The following terIll representing the append
prograIll does not unify with this scheIlla:

(fix AfAkAl (if (null k) l
(cons (car k) (f (cdr k) l))))

The following terIll representing the reverse
prograIll,

(fix AfAkAl (if (null k) l
(f (cdr k) (cons (car k) l))))

does unify with this scheIlla with substitution

o ~ AxAy.(null x)
B ~ AxAy.y .
E 1 ~ AxAy.(cdr x)
E 2 ~ AxAy.(cons (car x) y)
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A More General Tail Recursion "Template"

type tail_rec_body «Ai -> A2 -> A3) ->

Ai -> A2 -> A3) -> o.

type tailrec (Ai -> A2 -> A3) -> o.

tailrec (fix Prog):- tail_rec_body Prog.

tail_rec_body (F\X\Y\ (H X V)).
tail_rec_body (F\X\Y\ (F (G X Y) (H X V))).

tail_rec_body

(F\X\Y\ (if (C X Y)

(Hi F X Y) (H2 F X V))) :

tail_rec_body Hi, tail_rec_body H2.

For more analysis and an 'extension of this 'xProlog

program see [18]. See also Huet and Lang [10].

The Structure of 'x-norlllal TerlllS

All ,x-norIllal ~erIlls can be put into the form

t = AXI ... AXn (h el · · · em)

where n, rn > 0 and (h el · · · em) is of primitive

type.

The list Xl, ... ,Xn -is called the binder.

The variable or constant h is called the head.

The terms el, ... ,em are the arguments.

If h is a constant or a member of the binder, the

terlll is rigid.

Otherwise, h is a variable not a member of its

binder and the term is flexible.
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Disagreement Pairs of A-terms

A disagreement pair is a pair of two A-norlllal
terms of the same type. Given a- and 1]-.

conversions, two such terIIlS can be rewritten into
equivalent terms with the same binder. Thus we
write disagreeInent pairs as

AXI · · · AXn (h el · · · eml , k 11 · · · f m2)

Simplifying Rigi~-RigidPairs

Consider the rigid-rigid disagreement pair

AXI · · · AXn (h el .. · eml , k 11 · · · 1m 2).

This pair is not unifiable if h is not identical to k.

Thus for this pair to be unifiable then h == k and
1111 . 1112 == rn and the list of disagrement pairs

AXI ... AXn , (el' il), . . . , AXl···AXn (em,lm)
DisagreeIllent pairs fall into three classes:

rigid-rigid both terlllS are rigid

flexible-rigid one terIn is flexible and one
rigid. We aSSUllle the first one
listed is flexible, otherwise swap
theIne

flexible-flexible both terlllS are flexible

are all siIllultaneously unifiable.

If the types of hand k are different, then they
lllUSt be unifiable. Use the Ingu of the type
expreSSIons.

A list of disgreement pairs can either be recognized
as non-unifiable or can be simplified to an
equivalent unification problem with only flexible
rigid or flexible-flexible pairs.
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Processi.ng Flexible-Rigid Pairs

Given the fle~ible-rigiddisagreelllent pair

There are two possible and incomparable ways
to get (h el ... ernl ) to have rigid he~d k after
substitution and norlllalization.

Illlitate The flexible terlll gets k as its head
directly. This can work only if k is not
in the binder.

ExaIllple 1: Occurs Check

Consider the unification problelll

x == (F X)

where both X and F are variables. Notice that
X occurs free in (F X). Does this unification
problem have a solution?

Yes. In fact two general ones, naIllely

Project

h 1--+ AWl ... AWrn1 (k (hIWI ... wrn1 )···
(hrn2 WI · · · wrnJ)

The flexible terlll gets k as its head
indirectly by projecting one of the
argulllents 11, · · · ,1m 2 into the head
position.

h 1--+ AWl . . · AWrnl (Wi (hI wI · · · wrn1 ) · ...
(hpWI · · · wrnJ)

wllere 1 < i < rn1 and p > 0 is
determined by the type of Wi.

F ....-+ Aw.w, and F ~ Aw.X.

There are generalizations of the first-order occurs
check that can be used in the higher-order setting
to recognize failing unification problellls.

Of course, the unification problelll X == t where t is
a terIll not containing X free has the single unifier
X ....-+ t.
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Example 2 ExaInple 3

(F a, 9 a)

Let F be a variable of type i ~ i, 9 a constant of
type i ~ i, and a a constant of type i.

~

project H ~ AW.W iInitate not possible

/.
AX (x, x)

AX (F X, 9 x)
;1 '\

iInitate F ~ Aw.g(H w) project F ~ AW.W

I \
, AX (g (H x), 9 x) AX (x, gx)

AX (H x, x) . F"

Answer substitution: F ~ AW.gW

'\
project F ~ AW.W

\
·(a, ga)

Fer:"
. ~\

project j[ 1---+ AW.W

\
(a, a)

iInitate H ~ Aw.a

j
(a, a)

/
iIn~tate F ~ Aw.g(H '}1J)

/,
·(g(H a),g a)
(H a, a)

/.

Answer substitutions: F ~ Aw.ga and F ~

AW.gW
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Example 4

Let X be a variable of type (i ~ i) ~ i.

(X, AU (U(X(AV.V))))
AU (Xu, U(X(AV.V)))

- /- '\
project X ~ Aw.w(H w) imitate not possible

t/
AU (u(H u), U(H(AV.V)))

AU (H u, H (AV.V))

This ·final disagreeIllent pair is flexible-flexible.
This has the solution H t----+ AW.Y which yields
X t---+ AW.W Y as an answer substftution.

Exarnple 5

Let 9 be a constant of type i ~ i ~ i, let F be a
variable of type i -4- i, and let Z be a variable of
type i.

AXAy (F x, 9 Z y)

/ \
imitat~ F 1-+ Aw(g(H1w)(H2w)) p;oject F 1-+ AW.W

-t? \
AXAy (g(H1x )(H2 x), 9 Z y) AXAy (x, 9 Z y)
AXAy (Hl x, Z), AXAy (H2 x, y)

/- - ~

project H 2 t----+ AW.W imitation not possible

I
AXAy (H1 x, Z), AXAy (x, y)

The rigid-rigid disagreIllent pair above is not
unifiable.
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2,

Generalizing SLD-Resolution

The state of a resolution-style theorelll prover is

the following:

o a program P which is a finite set of higher

order Horn clauses.

a a list of 4-tuples (9, U, (), V) where

a 9 is a list of goals that need to be proved,

a U is a list of disagreelllent pairs that need

to be unified,

a () is a substitution, and

o V is a list of free variables including all

those free in 9, U, and ().

P-Derivation

(92, U2 , ()2, V2 ) is P -derived froIn (91, U1 , (}1, VI)

if UI is siInplified and not a failed unification

probleIn and:

Goal reduction step: ()2 == 0, U2 == U l , and there

is a goal forlllula G E 91 (9' :== 91 - {G}) s.t.

a G is G l /\ G2 and 92 == 9' U {G I , G2 } and

V2 == VI, or ."

a G is GI V G2 and, for i == 1 or i

92 == 9' U {Gi } and V2 == VI, or

a G is 3x P and for SOllle variable y tf- VI,

V2 == VI U {y} and 92 == 9' U {[x :== y]P}.
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P-Derivation (continued)

Backchaining step: Let G E 91 be a rigid

atolll, and let D E P be such that D =
VX1 ... VX n (G' => A) for some sequence of

new variables Xl, · · · ,Xn . Then ()2 = 0, V2 ==
VI U {Xl, . · · , X n }, ~h = 91 - {G} U {G'}, and
let U2 be the simplified form of U1 U {(G, A)}.

Unification step: U1 is not a solved set and for

some flexible-rigid pair (F1 , F2 ) E U1 there is an

imitation or projection substitution terlll, call it

()2, and 92 == ()2 (91 ), U2 is the silllplified form of

()2 (U1 ), and V2 is updated by the new variables in

()2.

See Nadathur's dissertation [21] or the joint paper

[22].

Fixing Choices in P-Derivations

Illlpose a depth-first discipline on the following
choices.

o Goals processed in left-to-right order.

o Left disjuncts attempted before right disjunct.

o Clauses tried in top-down fashion.

o Reduce unification problems to flexible-flexible
prior to solving goals.

o Do irnitations prior to projections. [This is a
switchable option in LP2.7.]

o Postpone flexible goals as well as flexible
flexible disagreement pairs. [Flexible goals not
postponed in LP2.7.]
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Lecture IV

Hereditary Harrop ForInulas and

U niforlll Proofs

Characterizing Proofs frolll Horn Clauses

Every goal is attelllpted with respect to the saIne

o program clauses, and

o constants.

· . IV-l
· . IV-2
· . IV-3

IV-4
· . IV-5
· . IV-6

Table of Contents

There are natural interpretations of irnplications
and universal quantification in goals that can
provide these scoping lllechanisrns.

Such scoping lllechanislll would, however, provide
natural lllechanisrns for rnodular prograrnrning and
abstract datatypes.

That is, there are no scoping mechanisrns available
for either progralll clauses or constants.

In particul~r, irnplicational goals can be used
to aSSUITle and discharge prograrn clauses and
universal goals can be used to assurne and
discharge constants.
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Search Semantics for the Connectives Cut-Free Sequential Proofs

r ---+ ~,C B, C, ~ ---+ eLet P ~0 G mean G succeeds given P.

The intended success/failure semantics for each
connective may then be given by the following:

r ----+ ~,B

r ---+ ~,B /\ C

B,~ ---+ 8

A-R A-L

B A C, ~ ---+ e

c,~ ---+ e
V-L

AND P ~o G1 A G2 only if P ~o G1 and
BVC,~ ---+ e

P ~o G2
r ----+ ~,B r ~ ~,c

v-R V-R

OR P 1-0 G1 V G2 only if P ~o G1 Of
r ---+ ~,BVC r ~ ~,BVC

P~o G2 r ---+ e, B c,r ---+ ~ B,r ~ 8,C
:)-L =:>-R

INSTANCE P 1-0 3x G only if P 1-0 G[t/x] fOf
B :) C, r ---+ ~ U 8 r ~ 8,B:) C

SOllle term t r, [x/t]P ~ e r ~ 8, [x/t]P
'v'-L ~-R

AUGMENT P ~o D :) G only if P U {D} 1-0 G r, "Ix P ---+ 8 r ~ 8,~x P

GENERIC P ~o \Ix G only if P r-o G[c/x] for
r, [x/y]P ---+ e r ---+ e, [x/y]P

3-L 'v'-R

SOllle constant c that does not appear r,~xp ---+ e r ---+ 8, 'v'x P

in P or in G. r ---+ 8,-.L
-.L-R

r ---+ 8, B

r ~ ~ is initial if r n ~ contains an atolllic
fOflllula. Standard proviso on \I-R and 3-L.
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Definition: (V, Q, ~R) is an abstract logic
programming language (ALPL) if and only if for
every finite P C V and G E Q, P ~R G if and only
if P ~o G. See [19] and [20].

U niforrn Sequential Proofs

Definition: A uniform proof is a cut-free,
atomically closed sequent proof in which

o at IIlOSt one formula occurs in the succedent of
each sequent, and

o every sequent in the proof that contains a non
atomic formula in its succedent is the lower
sequent of the inference figure introducing that
formula's top-level connective.

Intuitively, a unifortn proof is one in which
complex goals are illlmediately simplified (reading
bOttOIIl-Up) .

Definition: P J-o G if and only if the sequent
P ~ G has a uniforrn proof.

~R

Q

V

Abstract Logic ProgralllIlling Languages

a forIllulation of logic containing the
connectives /\, V, =>, :3 and V (it IIlay
include others, say negation and equality.)

a derivability relation for £-forIIlulas

a set of £-forIllulas (goal forIllU1as).

a set of £-forIllulas (definite or program
forIIlulas) .
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Exalllpies of ALPLs Languages Which Are N ot

Abstract Logic Progralllllling Languages
fohe First-order Horn clauses with classical or

intuitionistic provability

hohc Higher-order Horn clauses with classical
or intuitionistic provability

fohh First-order hereditary Harrop forlllulas
with intuitionistic provability

hohh Higher-order hereditary Harrop forlllulas
with intuitionistic provability

p(a) V p(b) 1-1 ,0 ::Ix p(x)

p(a) V p(b) 1-1,0 p(b) V p(a)

q ~ p(a), -'q ~ p(b) ~c 3x p(x)

No uniforIll proofs exist in these cases.

p(a) V p(b) ~ 3x p(x)

This proof is both classically and intuitionistically
valid. It is not, however, uniforIll.

p(b) ~ p(b)______ 3-R3-R
p(a) ~ p(a)

p(a) ~ 3x p(x) p(b) ~ 3x p(x)_______________ V-L

hohh

/ \
fohh hohe

~/
fohc

~ denotes containlllent
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First-Order Harrop Formulas

A:= atolllic formula

G:== arbitrary formula

D :== A IG :) D IVx D ID 1 /\ D

First-Order Hereditary Harrop Formulas

A := atomic formula

D := A IG => A IVx D ID 1 /\ D 2

G := A IG1 /\ G2 IG1 V G2 IVx G I :3x G ID => G

or

D := A IG => A IVx D ID 1 /\ D 2
v
Q

set of closed D-formulas

set of closed G-formulas

Theorem (Harrop [8])

Let 1-{ be a set of D-forlllulas. Then

a If 1-{ r- I A V B then 1-{ r- I A or 1-{ r-lB.

o If 1-{ r-I :3x B then for some t, 1-{ r-I [x/t]B.

a If 1-{ r- I A /\ B then 1-{ r- I A and 1-{ r-lB.

a If 1-{ r- I A :) B then A, 1-{ r-lB.

a If1-{ r-I VX B then 1-{ r-I [x/y]B for any new

parameter y.

(F, V, Q, r- I) is a logic programIlling language.

(F, V, Q, r-c) is not a logic prograIllming language.

~or example, there is a classical proof of the

,equent

(p(a) /\ p(b) => q) ~ 3x (p(x) => q)

while there is no uniform proof.
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A Classical and N on-Intuitionistic Proof A Nasty Classical Equivalence

--------------- 3-R.

V-R

~-R

D ~ G l ,G2

~ G l ,D ~ G2

G1 V (D :) G2 ) =Gl V -,D V G2

- -,D V G l V G2

=(D:) G1 ) VG2

- (D ~ G l ) V CD ~ G2 )

The classical equivalence of p ~ q with -'p V q
underlllines the intended scoping of illlplications.

=>-L

3-R

~ q

=>-R

=>-R

p(a ), p( b) --+ p(a) 1\ p(b)

pea) 1\ pCb) => q ----+ 3x (p(x) => q)

p(a) 1\ p(b) => q, p(a ), p(b) -+ q

p(a) 1\ p(b) => q, p(a ) ~ q, p(b) => q

p(a) 1\ p(b) => q ----+ p(a) => q, p(b) => q

pea) 1\ pCb) ~ q ----+ pea) => q, 3x (p(x) => q)

--------------- I\-R
p(a ), p( b), q

pea), pCb) ----+ pea) . pea), pCb) ----+ pCb)

~ G l ,Gl V.(D ~ G2 )

~ Gl V (D :) G2 )

V-R

Perillitting lllore than one forIllula on the right
works against our intented interpretation of the
logical connectives.
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The Sterile J ar ProblelTI Extending Universal Quantifiers in Goals

Perlllit V-quantifiers in goals to quantify functions
and predicate syrnbols.

While this could technically be called a higher
order extension, this extension does not need
to be accolllpanied with A-terllls and higher
order unification to be given a (theoretically)
cornplete implementation. An "essentially first
order" implementation will correctly provide this
extension.

pi X\(bug X=> in X Y=> dead X).
:- headed Y, in X Y, bug X.

type sterile jar -> o.
type bug insect -> o.
type dead insect -> o.
type heated jar -> o.
type in insect -> jar -> o.
type j Jar ·

sterile Y :
dead X
heated j.

?- sterile j
?- pi X\(bug X => in X j => dead X)
?- bug b => ln b j => dead b

bug b ?- (in b j) => (dead b)
in b j ?- dead b

?- headed j, in b j, bug b
?- headed j
?- in b j
?- bug b .

This extension simply permit predicates and
function symbols to be given-scope a long with
first-order individuals.
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Signatures A N on-Deterlllinistic Interpreter

Let a signature be an association list between
tokens and arities (or between tokens and types).

For exalllple, b
signature.

{f /1, g/2, a/O, biD}, is a

A state or our interpreter is a triple (~, P, G)
where

o ~ is the current signature,

o P is the current program (a set of ~
formulas), and

o G is the current goal (a ~-formula).

Let the Herbrand Universe determined by ~, "
written as H(~), be the set of all first-order terms
built using terms in ~.

A b-formula is a forITlula all of whose non-logical
constants are frolll ~.

. For the discussion here, we shall perlllit the
confusion of terms from H(~) with atomic ~

forlllulas.

Defintion: [Ph~ is the smallest set of fohh
forITlulas such

(1) P C [P]E.

(2) If D 1 /\ D 2 E [P]E then D 1 , D 2 E [P]E.
(3) If Vx D E [P]E and t E H(b) then

[x := t]D E [P]E.
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A Non-Deterlllinistic Interpreter (Continued) A Deterlllinistic Interpreter

The interpreter can be describe at a very high-level
as follows:

((~, P, G)) denotes the proposition that the
interpreter succeeds given the current signature
~, the current prograIn P, and the goal G.

SUCCESS

AND

OR

INSTANCE

AUGMENT

GENERIC

((~, P ,- true))

((~,P,Gl/\G2)) if both ((~,P,Gl))

and ((~, P, G2 )).

((~, P, G1 V G2 )) if either
((~, P, G1)) or ((~, P, G2) ).
((~, P, 3x G)) if for SOIne t E H(~),

((~, P, [x := t]G)).

((~, P, D => G)) if ((~, P U {Dr, G)).

((~, P, Vx G)) if for SOIne c ~ ~,

((~ U {e}, P, [x := e]G)).

Add a depth-first discipline to backtracking.

Use logical variables (free variables) in
BACKCHAIN and INSTANCE instead of guessing
at a closed terlll.

Process conjuncts and disjuncts in a left-to-right
order.

When adding a clause during AUGMENT, add it
to the top of the list.

In BACKCHAIN, select clauses in a top-down
fashion.

How does one handle the problelll of quantifier
.alternation? Howto modify unification in the
presence of the restriction posed by GENERIC?

BACKCHAIN ((~, P, A) ) (where A is atomic) if
either A E [P]~ or G ~ A E [P]~

and ((~, P, G)).
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Four Implelllentations of GENERIC

Given the query

P(x) 7- Vy(G(y,z)).

where x and z are lists of free (logical) variables
(possibly overlapping).

(1) Reduce to P(x) 7- G(c, z) where c
is a new constant (added to the current
signature). Modify unification to respect
the constraint that the variables in x and z
cannot get instantiated with terlllS containing
c.

(2) Reduce to P(x) 7- G(f(x, z), z) where
f is a skolelll function. Unification is
unchanged. The occur-check is required to
enforce restriction.

(3) Higher-order unification provides a different
approach (called raising).

(4) Keep an explicit prefix as a, constraint.

Raising: A Dual to Skolernization

Notice that inner-lllost universals are related to
A-abstraction.

r- 3xVy [t1 = 81 /\ · · · /\ tn = Sn]

if and only if

While a prefix can be simplified by having
Skolernization introduce new constants of higher
type, prefixes can also be simplified by introducing
new variables of higher-type.

J-- Vx3yVz.P(x, y, z)

if and only if

J-- 3hVxVz.P(x, h(x), z)

This approach is used in LP2.7. See [15] for
cornplete description and correctness proofs.
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Explicit Prefix as a Constraint

Consider quantified sequents for representing
current states with free varialbes. The free
variables are existentially quantified while melllbers
of the signature are universally quantified. The
position of an existential quantifiers in the prefix
determines which constants can appear in the
substitution term for the existentially quantified
variable.

For exatnple,

Vx 3y Vz 3u (P ----4' G)

describes a state with signature {X, z} and where
the logical variable y can be instantiated with a
terlll frolll H ({x }) and the logical variable u can be
instantiated with a terlll from H( {x, z}).
INSTANCE and BACKCHAIN add =:I-quantifiers
to the prefix.

GENERIC adds V-quantifiers to the prefix.

This approach is used in eLP. See [15] for complete
description and correctness proofs.

Lecture V

An Approach to Modules and

Lexical Scoping
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Formulas That Are Both Progralll Clauses

and Goal Forlllulas

TheoreIn: If M is both a prograIll clause and
a goal formula then r l-0 M /\ G if and only if
r l-0 M /\ [M :) G].
Such formulas can be stored after being proved
to hold. Such storing does not make new goals
provable. Instead it possibly provides shorter
proofs for existing provable goals.

The core of an abstract logic prograInrning
language (£, V, g, l-R) is the intersection, V U g.
The core of (extended) fohh is

M :==' A IM J A IM 1 /\ M 2 IVx M,

where the universal quantification is strictly first
order. This is the fraglllent of fohh that does not
contain occurrences of disjunctions of existential
quantifiers. It contains fohe.

The core for fohe is simply the set of closed atomic
formulas.

Extension Tables

We use the very siIllple exalllple of the Fibonacci
program to illustrate how iIllplicational goals can
be used to build "scoped extension tables."

fib(O,O).
fib(1,1).
fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),

fib(N2,F2), F is F1+F2.

fib(N,M) :-
memo(O,O) => memo(1,1) => fiba(N,M,2).

fiba(N,M,I) :- memo(N,M).
fiba(N,M,I) :-

N1 is 1-1, N2 is !-2, memo(N1,F1),
memo(N2,F2), F is F1+F2, Ii is 1+1,
memo(I,F) => fiba(N,M,I1).
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Example of Lexical Scoping

reverse L K :- pi Rev\ (

(pi L\ (Rev [] L L),

pi X\pi L\pi K\pi M\(Rev [XIL] K M :

Rev L K [XIM]))

=> Rev L K [])

reverse L K :- pi Rev\ (

( (Rev [] K),

pi X\ pi L\ pi M\(Rev [XIL] M -

Rev L [XIM]))

=> Rev L [])

IrnplelTIenting Fa~l and Succeed

How do we iIllplement the predicate fail that is
never provable? One way is to have the prograIll
for fail be eIIlpty.

In this dynamic logic (fohh), a programmer may
add to the current prograIll clauses that add
IIleaning to f ai1.

The goal
'tIp.p

will always fail: it picks a new predicate name,
that is, it is guaranteed to have no program clauses
defining it, and then a proof for it is attelllpted.

Similarly, how do you implement the predicate
succeed which is to succeed exactly once?

The goal
'tip .p :> p

will succeed exactly once.
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MiniIllal Logic Negation

Pick 1.. as a special non-logical constant.
Expressions of the forIn A :>1.. will be read as ....,A.

p(a) /\p(b) ~1..

p(a)

?~ p(b)

?- p(b) ~1..

p(a) 1\ p(b) :>1..

p(a)

p(b)

?- p(c)

See [13] and [12] for more on this kind of negation.

A Silllple Database Exalllple

enrolled(jane,102).
enrolled(bill,100).
1.. :- enrolled(X,101),enrolled(X,102).

db :- read(Command), do(Command), db.
do(enter(Fact)) :- Fact => db.
do(retract) :- fail.
do(commit) :- repeat.
do(check(Query))" :-

(Query, write(yes), nl,!;
Query => 1.., write(no),nl,!;
write('no, but it could be true'),nl).

do(consis) :- (not 1.., write(yes),!;
write(no))., nl.

?- db.
?- check(enrolled(jane,102)).
yes
?- check(enrolled(jane,101)).
no
7- check(enrolled(bill,101)).
no, but it could be true
?-
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Reirnplelllenting Consult

Let classify, scanner, misc be the nallle of files

containing Prolog code.

Consider solving the goal

misc => «classify => (Gl, scanner => G2)),

G3).

An interpreter will need to consider showing

o Gl frolll mise and classify,

o G2 froIn mise, classify, and scanner, and

o G3 frolll misc.

"New" code becomes accessible and disappears in a

stack-disciplined fashion.

Modules

module ModuleName.

Declarations of operators, types, modes, etc.

Collection of clauses

For exalllple,

module lists.

append ( [] ,X,X) .

append([UIL],X,[UIM]) :- append(L,X,M).

member(X,[X,IL]) :- !.

member(X,[YIL]) :- member(X,L).

memb(X,[XIL]).

memb(X,[YIL]) :- memb(X,L).
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Parametric Modules

module sort(Order).

: bsort (L1 , L2) :

append(Sorted,[Big,SmallIRest],L1),

Order(Big,Small),
I. ,
append(Sorted,[Small,BigIRest] ,L3),

bsort(L3,L2).

bsort(L1,L1).

COlllbining Modules

?- lists => sort«) => bsort([3,2,1] ,X)

lists, sort«) ?- bsort([3,2,1] ,X)

module sort(Order).
bsort(L1,L2) :-

(lists =>
(append(Sorted,[Big,SmallIRest] ,L1),
Order(Big,Small),
I. ,
append(Sorted,[Small,BigIRest] ,L3),
bsort(L3,L2)

) .
bsort(L1,L1).
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For each clause of the forlll

Vw(G :) A)

Imodule M 1

I
I PI

Importing Modules

Illodule M 2 (x) Imodule M 3 (y, z)
Iilllport M 1 M 2 (y)

P2 (x) IP3 (z)

Programs as Possible Worlds

Fix the signature ~ and assume that universal
quantifiers are removed froIll all goals and the
body of programs.

o Let W be the set of all programs. This set will
be used as the set of possible worlds.

o A function I froIll W to a subset of H (~) is
an interpretation if

in P3 replace it with one of the form

See [13] and [12] for several examples of using this
forlll of importing.

o (W, c, I) is a Kripke Illodel.

o Define each of the following for interpretations
II and 12 .

II L 12 :== Vw E W[II (w) C 12 (w)]

(II U I2 )(w) :== I l (w) U I 2 (w)

(II n I 2 )(w) :== I l (w) n I 2 (w)

o The set of interpretations is a complete lattice
under c.

o The minimal interpretation is 11- where
I 1- ( w) == 0 for all w E W.
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A Continuous Operator on Interpretations

Define I, w H== G as follows:

o I,w~T.

o I, w H== A if A E I (w ) .

o I, W H== G1 /\ G2 if I, w H== G1 and I, w H== G2 ·

o I,w H== G1 V G2 if I,w ~ G1 or I,w H== G2 .

o I, w H== P~ G if I, w U {D} H== G.

Define T as a mapping frolIl interpretation to
interpretations as follows:

T(I)(w) := {A Iif A E [wh~ or G ~ A E [w]~

and I, w H== G}

Kripke-lllodel Fixed Point

The least fixed point of T is

TOO(Il-) := T(Il-) U T 2(Il-) U T 3 (Il-) U ...

and has the following properties:

Theorem: If P is a program and G is a goal

forlIlula, then P ~ I G if and only if TCO (I1- ), P ~

G. (See [13] and [12].)

Theorelll: If G is a goal formula and J- I G then G

is true in TOO(I1-) in the usual Kripke Illodel sense

(replace H== with 1=).
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A Mechanislll for Abstract Datatypes

Consider solving the goal

3x Vy (D(y) ~ G(x)).

o Substitution terms determined for x cannot
contain the constant introduced for y.

o V provides a llleans for hiding data in llloduies.

Allow existential quantifiers around program
clauses. Such existential quantifiers are interpreted
as follows: .

Stacks as Abstract Datatypes

Let stack stand for the following expression:

3empty 3stk [ emptystack(empty) 1\
VsVx(push(x,s, stk(x, s))) /\
VsVx(pop(x, stk(x, s), s))]

?- 3x(stack ~ 3y[G(x, y)])

?- 3x Vempty Vstk (stack' ::) 3y[G(x, y)])

(3x D) :) G Vx (D :> G)

provided x is not bound in G (otherwise, renallle x
first) .

This is intuitionistically (hence, classically) valid.
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Module Definition for Stackes Binary Trees As an Abstract Data Types

module stack.

kind stack type -> type.
type empty (stack A) -> o.
type pop A -> (stack A) -> (stack A) -> o.
type push A -> (stack A) -> (stack A) -> o.

btsort L K :- build L Bt, traverse Bt K.

int -> bt -> o.
btree -> list int -> o.
bt.
int -> bt -> bt -> bt.
list int -> bt -> o.
list int -> list int -> o.

module btreesort Order.
import lists.
local insert
local traverse
local root
local bt
local build
type btsort

emp (stack A).
stk A -> (stack A) -> (stack A).

local
local

S
(stk X S)

empty emp.
pop X
push X

(stk X S).
s.

build [] T.
build [NIL] T :- insert N T, build L T.

insert N (bt M T S) :- N = M, ! .
insert N (bt M T S) :- Order N M, ,. ,

insert N T.
insert N (bt M S T) .- insert N T..

traverse root [].
traverse (bt N Left Right) L :

traverse Left K, traverse Right J,
append K [NIJ] L.
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Another Way to Connect Modules

module modi.

p X y

q X Y Z .-

r X Y

module mod2.

p X Y :- pi p\ pi q\ pi r\
(modi =) p X V).

t X Y :- pi p\ pi q\ pi r\
(modi =) q (f X) [] V).

Encapsulating State

nodule accounts.

type print_amt account -) 0 -) o.
type wd_money account -) int -) 0 -) o.
type add_money account· -) int -) 0 -)' o.
type make_account account -) int -) 0 -) o.

nake_account Acc Amt G :- pi Reg\ (
( (Reg Amt) , "

(pi Inc\ (pi H\ (pi Tmp\
(add_money Acc Inc H :-

Reg Val, Tmp is (Val + Inc),
Reg Tmp =) H) ))),

(pi Dec\ (pi H\ (pi. Tmp\
(wd_money Acc Dec H :-

Reg Val, Tmp is (Val - Dec),
Reg Tmp =) H) ))),

(pi Acc\ (pi H\ (pi Val\
(print_amt Acc H :-

Reg Val, write Val, nl, H)))))
=) G).
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Encapsulating State (continued)

type transactions o.
type quit 0 -> o.

transactions :- write ,,»- "
read Entry, ( Entry = quit, !;

Entry transactions).

?- transactions.
»- make_account john 10.
»- add_money john 5.
»- print_amt john.
15
»- wd_money john 14 ..
»- print_amt john.
1
»- quit.
?-

A Need for Elllbedded Illlplications

Assume that the binary relation compare is defined

in the module compound.

?- compmod => btreesort compare =>

btree [3,1,5] L.

?- btreesort (X\Y\(compmod=>compare X V))

=> btree [3,1,5] L.

?- write "Enter an order relation",

read Order,

btreesort Order => btr~e [3,1,5] L,

write L.

For more on how to get thes program-level

abstractions out of (extended) fohh see [14].
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Lecture VI

Higher-Order Hereditary Harrop Formulas .

How Can Hereditary Harrop ForDlulas be

Made Higher-Order?
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This question can loosely be phrased as "Can
progratn-Ievel abstraction can be reflected into
terllls?" In particular, can tnodules be embedded
inside terllls?

There seetn to be two general approaches to
answering this question.

Dynamic This approach pertnits such full
reflection. Serious kinds of run tillle
errors, however, can occur. The
language is very ·strong since it contains
a kind of eval or apply operator.

Static This approach restricts such reflection.
As a result, we can prove the that the
resulting language has no run tiIlle
errors. This conservative approach,
however, disallows tnany sensible
cOIllputations.

rhis dichotollly, which is illustrated on the
following slides, can be dealt with as follows:

o Itnplelllent the Dynalllic language.

o Prove theorellls about the Static language.
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The Dynamic Approach

Let A denote atoIllic forlllulas of the form

where

P is a non-logical constant or variable, and

ti is a SiIIlply typed A-terIll perhaps with
embedded 1\, V, =>, 3, and Y.

Let 9 and V be the G- and D-formulas given by

G ::= A I G1 V G2 I G1 1\ G2 I 3x G I D :> G IYx G

D ::= A I G ~ A IYx D I D1 1\ D2

Strengths of the Dynalllic Language

Perlllits predicates substitutions to carry around
their own code.

?- btreesort X\Y\(compmod => compare X Y)
=> btree [3,1,5] L ..

After computing a terIIl that denotes a prograIIl,
make it into an available program.

7- transform Spec Prog, Prog => G.

Reflection makes meta-interpreters very siIIlple.

tl :- nl, read Command, do Command.

do quit ..
do (enter Prog) :- Prog => tl.
do (solve Goal) :- (Goal, !, write "Yes";

write "No" ),
tl.
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Problems with the Dynamic Language

With negatively occurring predicate variables in
goal forlllulas, it is not possible to guarantee that
the current program is always a subset of V. For
exalllple, in the goal,

?- transform Spec Prog, Prog => G.

transform could output a formula with a top-level
disjunct.

More seriously, SOIne intuitionistic provable
goals forlllulas do not have uniform proofs. The
following such goal (in the dynamic language) is
due to Pfenning.

3Q[VpVq[R(p:> q) :J R(Qpq)] /\ Q(t V 8)(8 V t)].

Here R is a constant of type ° ~ 0, 8 and t
are constants of type 0, Q is a variable of type
o ~ 0 ~ 0, and p and q are constants of type
o.

The only substitution terlll for Q is AXAy(x :) y).
Any proof of this goallllust contain within it a
proof of the sequent t V s ----+ s V t.

The Static Language:

Higher-Order Hereditary Harrop Formulas

Let A denote atomic forInulas of the forIn

where

P is a nonlogical constant or variable, and

ti is a simply typed A-terIll perhaps with
embedded. A, V, 3, and V (no:».

Let A r denote such a forllluia where P is a
nonlogical constant. These are called rigid atoms.

Let Q and V be the G- and D-forlllulas given by

G ::= A I G1 V G2 I G1 A G2 I 3x G I D :> G IVx G

D ::= AT I'G :J AT I Vx D I D 1 A D 2

Then hohh = (7, V, Q, ~ I), where

7 denotes our higher-order logic, and

~ I denotes intuitionistic provability.
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A Meta Interpreter Why This Interpreter Does Not

Interpret Itself

module interpreter.
import lists.

interp Cl true.
interp Cl (Gl , G2) :-

interp Cl Gl , interp Cl G2.
interp Cl (G1 ; G2) :-

interp Cl Gl ; interp Cl G2.
interp Cl ~D => G) :- interp [DICl] .G.
interp Cl (sigma G) :-

sigma T\ (interp Cl (G T)).
interp Cl (pi G) :-

pi X\ (interp Cl (G X)).
interp Cl A :-

memb Clause Cl, instan Clause Inst,
( Inst = A ; Inst = (A :- G),

interp Cl G ).

type
type

interp
instan

(list 0) -> 0 -> o.
o -) 0 -) o.

The clauses which involve "internal quantifiers"
are polymorphic. That is, the. quantification is over
variables of unspecified type.

Consider the instan predicate.

instan (forall P) C :- instan (P T) C.
instan C C.

There is an illlplicit universal quantification of a
type variable for. the type of T in the first clause. If
this program is lllade into a list of clauses, say

[pi C\(pi P\ (instan (forall P) C :
instan (P T) C)),

pi C\ (instan C C)],

to be fed to interp, then this illlplicit type
quantification is lost. It is instead existentially
quantified by being made a ~ree type variable.

instan (pi P) C :- instan (P T) C.
instan C C.
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Specifying the Fornlulas of an Object Logic

The following module provides the signature for
forIllulas of a first-order logic.

Negation N orlllal: Propositional Part

Negation normal formulas are those first-order
formulas in which negations have atoIllic scope.

module logic. module nnf.
import logic.

infix 110 and xfy.
infix 110 or xfy. type nnf bool -> bool -> o.
infix 120 imp xfy.

kind i type.
kind bool type.

type and bool -> bool -> bool.
type or bool -> bool -> bool.
type imp bool -> bool -> bool.
type neg bool -> bool.
type forall (i -> bool) -> bool.
type exists (i -> bool) -> bool.
type false bool.

The formula \Ix 3y (p(y) :) p(x)) is written as the
term

forall X\ (exists Y\ (p X imp p V)).

nnf (A and B) (C and D) :
nnf A C, nnf B D.

nnf (A or B) (C or D) :-
nnf A C, nnf-B D.

nnf (A imp B) (C or D) :
nnf (neg A) C, nnf B D.

nnf (neg (neg A)) B :-

nnf A B.
nnf (neg (A and B)) (C or D) :-

nnf (neg A) C, nnf (neg B) D.
nnf (neg (A or B)) (C and D) :-

nnf (neg A) C, nnf (neg B) D.
nnf (neg (A imp B)) (C and D) .

nnf A C, nnf (neg B) D.
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Negation N orlllal: Quantificational Part

nnf (forall A) (forall B) :
pi X\ (nnf (A X) (B X)).

nnf (exists A) (exists B) :
pi X\ (nnf (A X) (B X)).

nnf (neg (forall A)) (exists B) :
pi X\ (nnf (neg (A X)) (B X)).

nnf (neg (exists A)) (forall B) :
pi X\ (nnf (neg (A X)) (B X)).

nnf A A.

Specifying Inference Rules

type proof sequent -) prf -) o.
type --) (list bool) -) bool -) sequent.
infix 100 --) xfy.

r ~ ~,B r ~ ~,C____________ !\-R

r ~ ~,B /\C

type and_r prf -) prf -) prf.

proof (Gamma --> (A and B)) (and_r Pi P2) .
proof (Gamma --> A) Pi,
proof (Gamma --) B) P2.
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Specifying Inference Rules (continued) Natural Deduction Rules

proof (Gamma --> (A or B)) (or_r P) :
proof (Gamma --> A) P;
proof (Gamma --> B) P.

3xA

[x/t]A
__ 3-1

r -4 Ll,B

r -4 Ll,B V C
V-R

r -4 Ll,C

r -4 Ll,B V C
V-R

A B___ A-I
AAB

A

AvE
V-I

[x/y]A
__ 'V-I
'Vx A

B

AvB
v-

r -4 8, [x/y]P
__~~__ 'V-R

proof (Gamma --> (exists A)) (exists_r P) .
proof (Gamma --> (A T)) P.

r, [x/t]P -4 e
-- 'V-L
r,'Vxp -4 8

r -4 8, [x /t]P______ 3-R

proof (A and B) (and_i Pi P2) :
proof A Pi,
proof B P2. _

proof (A or B) (or_i P) :
proof A P; proof B P.

proof (exists A) (exists_i p) :

proof (A T) P.
proof (forall A) (forall_i P) :

pi T\ (proof (A T) (P T)).

r -48,'VxP

proof (Gamma --> (forall A)) (forall_r P) .
pi T\ (proof (Gamma --> (A T)) (P T)).

type forall_r (i -> prf) -> prf
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Specifying the Discharge of AssuInptions

(A)
B :J-1

A~B

proof (A imp B) (imp_i p) :-

pi PA\ «proof A PA) =>
(proof B (P PA))).

type imp_i (prf -> prf) -> prf.

Inference Rules As Tactics

Ato:m.ic Goals

type pgoal sequent -> prf -> goalexp.

(pgoal (Gamma --> A) P)

r ---+ ~,B r ---+ ~,C____________ I\-R

r ---+ ~,B /\ C

proof (Gamma --> (A and B)) (and_r Pi P2) .
proof "(Gamma --> A) Pi,
proof (Gamma --> B) P2.

and_r_tac (pgoal (A and B) (and_i Pi P2))
(andgoal (pgoal A Pi)

(pgoal B P2)).
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Inference Rules As Tactics (continued)

r, [xly]P --+ e
_____ ·~-L

r,3x P --+ e

exists_l_tae
(pgoal (Gamma1 --) A) (exists_i P))
(allgoal X\ (pgoal ([(B X) IGamma2] --) A)

(P X)))

memb_and_rest (exists B) Gamma1 Gamma2.

A Goal Reduction Tactical

type truegoal goalexp.
type andgoal goalexp -> goalexp ->

goalexp.
type allgoal (A -> goalexp) -> goalexp.
type maptae (goalexp -> goalexp -> 0) ->

(goalexp -> goalexp -> 0) -> o.

maptae Tae truegoal tru~goal.

maptac.Tae (andgoal InGoa11 InGoa12)
(andgoal OutGoa11 OutGoa12) .

maptac Tae InGoa11 OutGoa11,
maptae Tae InGoa12 OutGoa12.

maptac Tae (allgoal InGoal)
(allgoal OutGoal) :-

pi T\ (maptae Tae (InGoal T) (OutGoal T)).

maptae Tae InGoal OutGoal :
Tae InGoal OutGoal.
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Tacticals

then Tae! Tae2 InGoal OutGoal :
Tae! InGoal MidGoal,
maptae Tae2 MidGoal OutGoal.

orelse Tac! Tae2 InGoal OutGoal :
Tac! InGoal OutGoal;
Tac2 InGoal OutGoal.

idtac Goal Goal.

repeat Tac InGoal OutGoal :- .
orelse (then Tae (repeat Tac))

idtac InGoal OutGoal.'

try Tac InGoal OutGoal :-
orelse Tac idtac InGoal OutGoal.

complete Tac InGoal truegoal :
Tae InGoal OutGoal,
goalred OutGoal truegoal.

Silllplifying SOUle Goal Expressions

goalred (andgoal truegoal Goal) OutGoal :
goalred Goal OutGoal.

goalred (andgoal Goal truegoal) OutGoal :
goalred Goal OutGoal.

goalred (allgoal T\ truegoal) truegoal.

goalred Goal Goal.
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Interactive Theorem Proving

query (pgoal A P) OutGoal :-
write A, write "Enter tactic:", read Tac,
Tac (pgoal A P) OutGoal.

interactive InGoal OutGoal :
repeat query InGoal OutGoal.

and_e_query (pgoal C PC)
(impgoal (proof A (and_e1 P))

(impgoal (proof B (and_e2 P))
(pgoal C PC))) :

memo (hyp (A and B) P), .

write "Eliminate this conjunction?",
write (A and B),
read "yes".

For lllore exalllpies on building theorem provers in
this fashion,. see Felty and Miller [4].

The Copy Verification Program

The goal

?- copy_ver Tacs Copy In Out

attelllpts to repeatly copy the goal structure in
Copy onto the goal In to get the goal Out. Tacs
provides the lllethods for decomposing Copy.

copy_ver Tacs (andgoal C1 C2)
(andgoal Ii 12) Out :

copy_ver Tacs C1 11 01,
copy_ver Tacs C2 12 02,
goalred (andgoal 01 02) Out.

copy_ver Tacs (allgoal C) (allgoal I) Out :
pi T\(copy_ver Tacs (C T) (I T) (0 T)),
goalred (allgoal 0) Out.

copy_ver Tacs Copy In Out :
memb Tac Tacs,
Tac Copy NewC, Tac In Mid,
maptac (copy_ver Tacs NewC) Mid Out.

copy_ver Tacs Copy Goal Goal.
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