
Some Uses of Higher-Order Logic
in Computational Linguistics

Dale A. Miller and Gopalan Nadathur
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104 – 3897

April 1986

Abstract
Consideration of the question of meaning in the

framework of linguistics often requires an allusion to
sets and other higher-order notions. The traditional ap-
proach to representing and reasoning about meaning in
a computational setting has been to use knowledge rep-
resentation systems that are either based on first-order
logic or that use mechanisms whose formal justifications
are to be provided after the fact. In this paper we shall
consider the use of a higher-order logic for this task.
We first present a version of definite clauses (positive
Horn clauses) that is based on this logic. Predicate
and function variables may occur in such clauses and
the terms in the language are the typed λ-terms. Such
term structures have a richness that may be exploited in
representing meanings. We also describe a higher-order
logic programming language, called λProlog, which rep-
resents programs as higher-order definite clauses and in-
terprets them using a depth-first interpreter. A virtue of
this language is that it is possible to write programs in it
that integrate syntactic and semantic analyses into one
computational paradigm. This is to be contrasted with
the more common practice of using two entirely differ-
ent computation paradigms, such as DCGs or ATNs for
parsing and frames or semantic nets for semantic pro-
cessing. We illustrate such an integration in this lan-
guage by considering a simple example, and we claim
that its use makes the task of providing formal justifica-
tions for the computations specified much more direct.

This work has been supported by NSF grants MCS-82-
19196-CER, MCS-82-07294, AI Center grants MCS-83-
05221, US Army Research Office grant ARO-DAA29-
84-9-0027, and DARPA N000-14-85-K-0018.

1. Introduction
The representation of meaning, and the use of such

a representation to draw inferences, is an issue of central
concern in natural language understanding systems. A
theoretical understanding of meaning is generally based
on logic, and it has been recognized that a higher-order
logic is particularly well suited to this task. Montague,
for example, used such a logic to provide a compositional
semantics for simple English sentences. In the compu-
tational framework, knowledge representation systems
are given the task of representing the semantical no-
tions that are needed in natural language understand-
ing programs. While the formal justifications that are
provided for such systems are usually logical, the actual
formalisms used are often distantly related to logic. Our
approach in this paper is to represent meanings directly
by using logical expressions, and to describe the process
of inference by specifying manipulations on such expres-
sions. As it turns out, most programming languages are
poorly suited for an approach such as ours. Prolog, for
instance, permits the representation and the examina-
tion of the structure of first-order terms, but it is not
easy to use such terms to represent first-order formulas
which contain quantification. Lisp on the other hand al-
lows the construction of lambda expressions which could
encode the binding operations of quantifiers, but does
not provide logical primitives for studying the internal
structure of such expressions. A language that is based
on a higher-order logic seems to be the most natural ve-
hicle for an approach such as ours, and in the first part of
this paper we shall describe such a language. We shall
then use this language to describe computations of a
kind that is needed in a natural language understanding
system.

Before we embark on this task, however, we need to
consider the arguments that are often made against the
computational use of a higher-order logic. Indeed, sev-
eral authors in the current literature on computational
linguistics and knowledge representation have presented
reasons for preferring first-order logic over higher-order
logic in natural language understanding systems, and
amongst these the following three appear frequently.
(1) Gödel showed that second-order logic is essentially

incomplete, i.e. true second-order logic statements
are not recursively enumerable. Hence, theorem
provers for this logic cannot be, even theoretically,

1

complete.
(2) Higher-order objects like functions and predicates

can themselves be considered to be first-order ob-
jects of some sort. Hence, a sorted first-order logic
can be used to encode higher-order objects.

(3) Little research on theorem proving in higher-order
logics has been done. Moreover, there is reason
to believe that theorem proving in such a logic is
extremely difficult.
These facts are often used to conclude that a higher-

order logic should not be used to formalize systems if
such formalizations are to be computationally meaning-
ful. While there is some truth in each of these observa-
tions, we feel that they do not warrant the conclusion
that is drawn from it. We discuss our reasons for this
belief below.

The point regarding the essential undecidability of
second-order logic has actually little import on the com-
putational uses of higher-order logic. This is because
the second-order logic as it is construed in this observa-
tion, is not a proof system but rather a truth system of
a very particular kind. Roughly put, the second-order
logic in question is not so much a logic as it is a branch
of mathematics which is interested in properties about
the integers. There are higher-order logics that have
been provided which contain the formulas of second-
order logic but which do not assume the same notion
of models (i.e. the integers). These logics, in fact, have
general models, including the standard, integer model,
as well as other non-standard models, and with respect
to this semantics, the logic has a sound and complete
proof system.

From a theoretical point-of-view, the second obser-
vation is important. Indeed, any system which could not
be encoded into first-order logic would be more power-
ful than Turing machines and, hence, would be rather
unsatisfactory computationally! The existence of such
an encoding has little significance, however, with regard
to the appropriateness of one language over another for
a given set of computational tasks. Clearly, all general
purpose programming languages can be encoded onto
first-order logic, but this has little significance with re-
gard to the suitability of a given programming language
for certain applications.

Although less work has been done on theorem prov-
ing in higher-order logic than in first-order logic as

claimed in the last point, the nature of proofs in higher-
order logic is far from mysterious. For example, higher-
order resolution [1] and unification [8] has been devel-
oped, and based on these principles, several theorem
provers for various higher-order logics (see [2] and its
references) have been built and tested. The experience
with such systems shows that theorem proving in such
a logic is difficult. It is not clear, however, that the dif-
ficulty is inherent in the language chosen to express a
theorem rather than in the theorem itself. In fact, ex-
pressing a higher-order theorem (as we will claim many
statements about meaning are) in a higher-order logic
makes its logical structure more explicit than an encod-
ing into first-order logic does. Consequently, it is rea-
sonable to expect that the higher-order representation
should actually simplify the process of finding proofs.
In a more specific sense, there are sublogics of a higher-
order logic in which the process of constructing proofs
is not much more complicated than in similar sublog-
ics of first-order logic. An example of such a case is
the higher-order version of definite clauses that we shall
consider shortly.

In this paper, we present a higher-order version of
definite clauses that may be used to specify computa-
tions, and we describe a logic programming language,
λProlog, that is based on this specification language.
We claim that λProlog has several linguistically mean-
ingful applications. To bolster this claim we shall show
how the syntactic and semantic processing used within a
simple parser of natural language can be smoothly inte-
grated into one logical and computational process. We
shall first present a definite clause grammar that anal-
yses the syntactic structure of simple English sentences
to produce logical forms in much the same way as is
done in the Montague framework. We shall then show
how semantic analyses may be specified via operations
on such logical forms. Finally, we shall illustrate interac-
tions between these two kinds of analyses by considering
an example of determining pronoun reference.

2. Higher-Order Logic
The higher-order logic we study here, called T , can

be thought of as being a subsystem of either Church’s
Simple Theory of Types [5] or of Montague’s intensional
logic IL [6]. Unlike Church’s or Montague’s logics, T
is very weak because it assumes no axioms regarding

2

extensionality, definite descriptions, infinity, choice, or
possible worlds. T encompasses only the most primitive
logical notions, and generalizes first-order logic by intro-
ducing stronger notions of variables and substitutions.
Our use of T is not driven by a desire to capture the
meaning of linguistic objects, as was the hope of Mon-
tague. It is our hope that programs written in T will do
that.

The language of T is a typed language. The typing
mechanism provides for the usual notion of sorts often
used in first-order logic and also for the notion of func-
tional types. We take as primitive types (i.e. sorts) o for
booleans and i for (first-order) individuals, adding oth-
ers as needed. Functional types are written as α → β,
where α and β are types. This type is intended to denote
the type of functions whose domains are α and whose
codomains are β. For example, i → i denotes the type
of functions which map individuals to individuals, and
(i → i) → o denotes the type of functions from that
domain to the booleans. In reading such expressions we
use the convention that → is right associative, i.e. we
read α → β → γ as α → (β → γ).

The terms or formulas of T are specified along with
their respective types by the following simple rules: We
start with denumerable sets of constants and variables
at each type. A constant or variable in any of these
sets is considered to be a formula of the corresponding
type. Then, if A is of type α → β and B is of type
α, the function application (AB) is a formula of type
β. Application associates to the left. Finally, if x is a
variable of type α and C is a term of type β, the function
abstraction λxC is a formula of type α → β.

We assume that the following symbols, called the
logical constants, are included in the set of constants of
the corresponding type: true of type o, ∼ of type o → o,
∧, ∨, and ⊃ each of type o → o → o and Π and Σ of
type (A → o) → o for each type A. All these symbols
except the last two correspond to the normal proposi-
tional connectives. The symbols Π and Σ are used in
conjunction with the abstraction operation to represent
universal and existential quantification: ∀x P is an ab-
breviation for Π(λx P) and ∃x P is an abbreviation for
Σ(λx P). Π and Σ are examples of what are often called
generalized quantifiers.

The type o has a special role in this language. A for-
mula with a function type of the form t1 → . . . → tn → o

is called a predicate of n arguments. The ith argument
of such a predicate is of type ti. Predicates are to be
thought of as representing sets and relations. Thus a
predicate of type i → o represents a set of individuals,
a predicate of type (i → o) → o represents a set of sets
of individuals, and a predicate of type i → (i → o) → o

represents a binary relation between individuals and sets
of individuals. Formulas of type o are called proposi-
tions. Although predicates are essentially functions, we
shall generally use the term function to denote a formula
that does not have the type of a predicate.

Derivability in T , denoted by `T , is defined in the
following (simplified) fashion. The axioms of T are the
propositional tautologies, the formula ∀x Bx ⊃ Bt, and
the formula ∀x (Px∧Q) ⊃ ∀x Px∧Q. The rules of infer-
ence of the system are Modus Ponens, Universal Gen-
eralization, Substitution, and λ-conversion. The rules
of λ-conversion that we assume here are α-conversion
(change of bound variables), β-conversion (contraction),
and η-conversion (replace A with λz(Az) and vice versa
if A has type α → β, z has type α, and z is not free in
A). λ-conversion is essentially the only rule in T that
is not in first-order logic, but combined with the richer
syntax of formulas in T it makes more complex infer-
ences possible.

In general, we shall consider two terms to be equal
if they are each convertible to the other; further dis-
tinctions can be made between formulas in this sense by
omitting the rule for η-conversion, but we feel that such
distinctions are not important in our context. We say
that a formula is a λ-normal formula if it has the form

λx1 . . . λxn (h t1 . . . tm) where n,m ≥ 0,

where h is a constant or variable, (h t1 . . . tm) has
a primitive type, and, for 1 ≤ i ≤ m, ti also has the
same form. We call the list of variables x1, . . . , xn the
binder, h the head, and the formulas t1, . . . , tm the ar-
guments of such a formula. It is well known that every
formula, A, can be converted to a λ-normal formula that
is unique up to α-conversions. We call such a formula
a λ-normal form of A and we use λnorm(A) to denote
any of these alphabetic variants. Notice that a proposi-
tion in λ-normal form must have an empty binder and
contain either a constant or free variable as its head.
A proposition in λ-normal form which has a non-logical
constant as its head is called atomic.

3

Our purpose in this paper is not merely to use a
logic as a representational device, but also to think of
it as a device for specifying computations. It turns out
that T is too complex for the latter purpose. We shall
therefore restrict our attention to what may be thought
of as a higher-order analogue of positive Horn clauses.
We define these below.

We shall henceforth assume that we have a fixed
set of nonlogical constants. The positive Herbrand Uni-
verse is identified in this context to be the set of all the
λ-normal formulas that can be constructed via function
application and abstraction using the nonlogical con-
stants and the logical constants true, ∧, ∨ and Σ; the
omission here is of the symbols ∼,⊃, and Π. We shall
use the symbol H+ to denote this set of terms. Proposi-
tions in this set are of special interest to us. Let G and A

be propositions in H+ such that A is atomic. A (higher-
order) definite clause then is the universal closure of a
formula of the form G ⊃ A, i.e. the formula ∀x̄ (G ⊃ A)
where x̄ is an arbitrary listing of all the free variables
in G and A, some of which may be function and predi-
cate variables. These formulas are our generalization of
positive Horn clauses for first-order logic. The formula
on the left of the ⊃ in a higher-order definite clause
may contain nested disjunctions and existential quan-
tification. This generalization may be dispensed within
the first-order case because of the existence of appropri-
ate normal forms. For the higher-order case, it is more
natural to retain the embedded disjunctions and exis-
tential quantifications since substitutions for predicate
variables have the potential for re-introducing them. Il-
lustrations of this aspect appear in Section 4.

Deductions from higher-order definite clauses are
very similar to deductions from positive Horn clauses
in first-order logic. Substitution, unification, and back-
chaining can be combined to build a theorem prover
in either case. However, unification in the higher-order
setting is complicated by the presence of λ-conversion:
two terms t and s are unifiable if there exists some sub-
stitution ϕ such that ϕs and ϕt are equal modulo λ-
conversions. Since β-conversion is a very complex pro-
cess, determining this kind of equality is difficult. The
unification of typed λ-terms is, in general, not decidable,
and when unifiers do exist, there need not exist a sin-
gle most general unifier. Nevertheless, it is possible to
systematically search for unifiers in this setting [8] and

an interpreter for higher-order definite clauses can be
built around this procedure. The resulting interpreter
can be made to resemble Prolog except that it must
account for the extra degree of nondeterminism which
arises from higher-order unification. Although there are
several important issues regarding the search for higher-
order unifiers, we shall ignore them here since all the
unification problems which arise in this paper can be
solved by even a simple-minded implementation of the
procedure described in [8].

3. λProlog
We have used higher-order definite clauses and a

depth-first interpreter to describe a logic programming
language called λProlog. We present below a brief expo-
sition of the higher-order features of this language that
we shall use in the examples in the later sections. A
fuller description of the language and of the logical con-
siderations underlying it may be found in [9].

Programs in λProlog are essentially higher-order
definite clauses. The following set of clauses that de-
fine certain standard list operations serve to illustrate
some of the syntactic features of our language.

append nil K K.

append (cons X L) K (cons X M) :- append L K M.

member X (cons X L).

member X (cons Y L) :- member X L.

As should be apparent from these clauses, the syntax
of λProlog borrows a great deal from that of Prolog.
Symbols that begin with capital letters represent vari-
ables. All other symbols represent constants. Clauses
are written backwards and the symbol :- is used for ⊂.
There are, however, some differences. We have adopted
a curried notation for terms, rather than the notation
normally used in a first-order language. Since the lan-
guage is a typed one, types must be associated with
each term. This is done by either explicitly defining the
type of a constant or a variable, or by inferring such a
type by a process very similar to that used in the lan-
guage ML [7]. The type expressions that are attached
to symbols may contain variables which provide a form
of polymorphism. As an example cons and nil above
are assumed to have the types A -> (list A) -> (list

A) and (list A) respectively; they serve to define lists
of different kinds, but each list being such that all its
elements have a common type. (For the convenience of

4

expression, we shall actually use Prolog’s notation for
lists in the remainder of this paper, i.e. we shall write
(cons X L) as [X|L]). In the examples in this paper,
we shall occasionally provide type associations, but in
general we shall assume that the reader can infer them
from context when it is important. We need to represent
λ-abstraction in our language, and we use the symbol \
for this purpose; i.e. λX A is written in λProlog as X \

A.
The following program, which defines the operation

of mapping a function over a list, illustrates a use of
function variables in our language.

mapfun F [X|L] [(F X)|K] :- mapfun F L K.

mapfun F [] [].

Given these clauses, (mapfun F L1 L2) is provable only
if L2 is a list that results from applying F to each ele-
ment of L1. The interpreter for λProlog would therefore
evaluate the goal (mapfun (X\(g X X)) [a, b] L) by
returning the value [(g a a),(g b b)] for L.

The logical considerations underlying the language
permit functions to be treated as first-class, logic pro-
gramming variables. In other words, the values of such
variables can be computed through unification. For ex-
ample, consider the query

(mapfun F [a, b] [(g a a), (g a b)]).

There is exactly one substitution for F, namely X\(g a

X), that makes the above query provable. In searching
for such higher-order substitutions, the interpreter for
λProlog would need to backtrack over choices of sub-
stitutions. For example, if the interpreter attempted to
prove the above goal by attempting to unify (F a) with
(g a a), it would need to consider the following four
possible substitutions for F:

X\(g X X) X\(g a X) X\(g X a) X\(g a a).

If it chooses any of these other than the second, the
interpreter would fail in unifying (F b) with (g a b),
and would therefore have to backtrack over that choice.

It is important to notice that the set of func-
tions that are representable using the typed λ-terms
of λProlog is not the set of all computable functions.
The set of functions that are so representable are in fact
much weaker than those representable in, for example,

a functional programming language like Lisp. Consider
the goal

(mapfun F [a, b] [c, d]).

There is clearly a Lisp function which maps a to c and
b to d, namely,

(lambda (x) (if (eq x ’a) ’b

(if (eq x ’c) ’d ’e)))

Such a function is, however, not representable using
our typed λ-terms since these do not contain any con-
stants representing conditionals (or fixed point opera-
tors needed for recursive definitions). It is actually this
restriction to our term structures that makes the deter-
mination of function values through unification a rea-
sonable computational operation.

The provision of function variables and higher-order
unification has several uses, some of which we shall ex-
amine in later sections. Before doing that we consider
briefly certain kinds of function terms that have a spe-
cial status in the logic programming context, namely
predicate terms.

4. Predicates as Values
From a logical point of view, predicates are not

much different from other functions; essentially they are
functions that have a type of the form α1 → . . . →
αn → o. In a logic programming language, however,
variables of this type may play a different and more
interesting role than non-predicate variables. This is
because such variables may appear inside the terms of
a goal as well as the head of a goal. In a sense, they
can be used intensionally and extensionally (or nomi-
nally and saturated). When they appear intensionally,
predicates can be determined through unification just
as functions. When they appear extensionally, they are
essentially “executed.”

An example of these mixed uses of predicate vari-
ables is provided by the following set of clauses; the
logical connectives ∧ and ∨ are represented in λProlog
by the symbols , and ;, true is represented by true

and Σ is represented by the symbol sigma that has the
polymorphic type (A -> o) -> o.

sublist P [X|L] [X|K] :- P X, sublist P L K.

sublist P [X|L] K :- sublist P L K.

sublist P [] [].

have_age L K :-

5

sublist Z\(sigma X\(age Z X)) L K.

same_age L K :- sublist Z\(age Z A) L K.

age bob 23.

age sue 24.

age ned 23.

The first three clauses define the predicate sublist

whose first argument is a predicate and is such that
(sublist P L K) is provable if K is some sublist of L and
all the members in K satisfy the property expressed by
the predicate P. The fourth clause uses sublist to define
the predicate have_age which is such that (have_age L

K) is provable if K is a sublist of the objects in L which
have an age. In the definition of have_age a predicate
term that contains an explicit quantifier is used to in-
stantiate the predicate argument of sublist; the predi-
cate (Z\(sigma X\(age Z X))), which may be written
in logic as λz ∃x age(z, x), is true of an individual if
that individual has an age. This predicate term needs
to be executed in the course of evaluating, for example,
the query (have_age [bob,sue,ned] K). The predi-
cate same_age whose definition is obtained by dropping
the quantifier from the predicate term defines a different
property; (same_age L K) is true only when the objects
in K have the same age.

Another example is provided by the following set of
clauses that define the operation of mapping a predicate
over a list.

mappred P [X|L] [Y|K] :- P X Y, mappred P L K.

mappred P [] [].

This set of clauses may be used, for example, to evaluate
the following query:

mappred (X\Y\(age Y X)) [23,24] L.

This query essentially asks for a list of two people, the
first of which is 23 years old while the second is 24 years
old. Given the clauses that appear in the previous ex-
ample, this query has two different answers: [bob, sue]

and [ned, sue]. Clearly the mapping operation defined
here is much stronger than a similar operation consid-
ered earlier, namely that of mapping a function over a
list. In evaluating a query that uses this set of clauses
a new goal, i.e. (P X Y), is formed whose evaluation
may require arbitrary computations to be performed.
As opposed to this, in the earlier case only λ-reductions
are performed. Thus, mappred is more like the mapping
operations found in Lisp than mapfun is.

In the cases considered above, predicate variables
that appeared as the heads of goals were fully instan-
tiated before the goal was invoked. This kind of use
of predicate variables is similar to the use of apply and
lambda terms in Lisp: λ-contraction followed by the goal
invocation simulates the apply operation in the Prolog
context. However, the variable head of a goal may not
always be fully instantiated when the goal has to be
evaluated. In such cases there is a question as to what
substitutions should be attempted. Consider, for exam-
ple, the query (P bob 23). One value that may be
returned for P is X\Y\(age X Y), and this may seem
to be the most “natural” value. There are, however,
many more substitutions for P which also satisfy this
goal: X\Y\(X = bob, Y = 23), X\Y\(Y = 23), X\Y\(age
sue 24), etc. are all terms that could be picked, since
if they were substituted for P in the query they would
result in a provable goal. There are, clearly, too many
substitutions to pick from and perhaps backtrack over.
Furthermore several of these may have little to do with
the original intention of the query. A better strategy
may be to pick the one substitution that has the largest
“extension” in such cases; in the case considered here,
such a substitution for P would be the term X\Y\true.
It is possible to make such a choice without adding to
the incompleteness of an interpreter.

Picking such a substitution does not necessarily
trivialize the use of predicate variables. If a predicate oc-
curs intensionally as well as extensionally in a goal, this
kind of a trivial substitution may not be possible. To
illustrate this let us consider the following set of clauses:

primrel father.

primrel mother.

primrel wife.

primrel husband.

rel R :- primrel R.

rel X\Y\(sigma Z\(R X Z, S Z Y)) :-

primrel R, primrel S.

The first four clauses identify four primitive relations
between individuals (primrel has type (i -> i -> o)

-> o). These are then used to define other relations
that are a result of “joining” primitive relations. Now
if (mother jane mary) and (wife john jane) are
provided as additional clauses, then the query (rel R,

R john mary) would yield the substitution X\Y\(sigma

Z\(wife X Z, mother Z Y)) for R. This query asks for

6

a relation (in the sense of rel) between john and mary.
The answer substitution provides the relation mother-
in-law.

We have been able to show (Theorem 1 [9]) that
any proof in T of a goal formula from a set of definite
clauses which uses a predicate term containing the logi-
cal connectives ∼, ⊃, or ∀, can be converted into another
proof in which only predicate terms from H+ are used.
Thus, it is not possible for a term such as

λx (person(x) ∧ ∀y (child(x, y) ⊃ doctor(y)))

to be specified by a λProlog program, i.e. be the unique
substitution which makes some goal provable from some
set of definite clauses. This is because a consequence
of our theorem is that if this term is an answer substi-
tution then there is also another λ-term that does not
use implications or universal quantification that can be
used to satisfy the given goal. If an understanding of
a richer set of predicate constructions is desired, then
one course is to leave definite clause logic for a stronger
logic. An alternative approach, which we use in Section
6, is to represent predicates as function terms whose
types do not involve o. This, of course, means that such
predicate constructions could not be the head of goals.
Hence, additional definite clauses would be needed to
interpret the meaning of these encoded predicates.

5. A Simple Parsing Example
The enriched term structure of λProlog provides

two facilities that are useful in certain contexts. The no-
tion of λ-abstraction allows the representation of bind-
ing a variable over a certain expression, and the notion
of application together with λ-contraction captures the
idea of substitution. A situation where this might be
useful is in representing expressions in first-order logic as
terms, and in describing logical manipulations on them.
Consider, for example, the task of representing the for-
mula ∀x∃y(P (x, y) ⊃ Q(y, x)) as a term. Fragments
of this formula may be encoded into first-order terms,
but there is a genuine problem with representing the
quantification. We need to represent the variable be-
ing quantified as a genuine variable, since, for instance,
instantiating the quantifier involves substituting for the
variable. At the same time we desire to distinguish be-
tween occurences of a variable within the scope of the

quantifier from occurences outside of it. The mecha-
nism of λ-abstraction provides the tool needed to make
such distinctions. To illustrate this let us consider how
the formula above may be encoded as a λ-term. Let
the primitive type b be the type of terms that represent
first-order formulas. Further let us assume we have the
constants & and => of type b -> b -> b, and all and
some of type (i -> b) -> b. These latter two constants
have the type of generalized quantifiers and are in fact
used to represent quantifiers. The λ-term (all X\(some

Y\(p X Y => q Y X))) may be used to represent the
above formula. The type b should be thought of as a
term-level encoding of the boolean type o.

A more complete illustration of the facilities alluded
to above may be provided by considering the task of
translating simple English sentences into logical forms.
As an example, consider translating the sentence “Every
man loves a woman” to the logical form

∀x(man(x) ⊃ ∃y(woman(y) ∧ loves(x, y)))

which in our context will be represented by the λ-term

(all X\(man X =>

(some Y\(woman Y & loves X Y))))

A higher-order version of a DCG [10] for performing this
task is provided below. This DCG draws on the spirit of
Montague Grammars. (See [11] for a similar example.)

sentence (P1 P2) --> np P1, vp P2, [.].

np (P1 P2) --> determ P1, nom P2.

np P\(P X) --> propernoun X.

nom P --> noun P.

nom X\(P1 X & P2 X) --> noun P1, relcl P2.

vp X\(P2 (P1 X)) --> transverb P1, np P2.

vp P --> intransverb P.

relcl P --> [that], vp P.

determ P1\P2\(all X\(P1 X => P2 X)) -->

[every].

determ P1\P2\(P2 (iota P1)) --> [the].

determ P1\P2\(some X\(P1 X & P2 X)) --> [a].

noun man --> [man].

noun woman --> [woman].

propernoun john --> [john].

propernoun mary --> [mary].

transverb loves --> [loves].

transverb likes --> [likes].

intransverb lives --> [lives].

7

We use above the type token for English words; the
DCG translates a list of such tokens to a term of some
corresponding type. In the last few clauses certain con-
stants are used in an overloaded manner. Thus the con-
stant man corresponds to two distinct constants, one of
type token and another of type i -> b. We have also
used the symbol iota that has type (i -> b) -> i.
This constant plays the role of a definite description op-
erator; it picks out an individual given a description of
a set of individuals. Thus, parsing the sentence “The
woman that loves john likes mary” produces the term
(likes (iota X\(woman X & loves X john)) mary),
the intended meaning of which is the predication of the
relationship of liking between an object that is picked
out by the description X\(woman X & loves X john))

and mary.
Using this DCG to parse a sentence illustrates the

role that abstraction and application play in realizing
the notion of substitution. It is interesting to compare
this DCG with the one in Prolog that is presented in
[10]. The first thing to note is that the two will parse a
sentence in nearly identical fashions. In the first-order
version, however, there is a need to explicitly encode
the process of substitution, and considerable ingenuity
must be exercised in devising grammar rules that take
care of this process. In contrast in λProlog the process
of substitution and the process of parsing are handled by
two distinct mechanisms, and consequently the resulting
DCG is more perspicuous and so also easier to extend.

The DCG presented above may also be used to solve
the inverse problem, namely that of obtaining a sen-
tence given a logical form, and this illustrates the use
of higher-order unification. Consider the task of obtain-
ing a sentence from the logical form (all X\(man X =>

(some Y\(woman Y & loves X Y)))). This involves
unifying the above form with the expression (P1 P2).
One of the unifiers for this is

P1 --> P\(all X\(man X => P X))

P2 --> X\(some Y\(woman Y & loves X Y).

Once this unifier is picked, the task then breaks into
that of obtaining a noun phrase from P\(all X\(man X

=> P X)) and a verb phrase from X\(some Y\(woman

Y & loves X Y). The use of higher-order unification
thus seems to provide a top-down decomposition in the
search for a solution. This view turns out to be a little
simplistic however, since unification permits more struc-

tural decompositions than are warranted in this context.
Thus, another unifier for the pair considered above is

P1 --> Z\(all Z)

P2 --> X\(man X =>

(some Y\(woman Y & loves X Y)))

which does not correspond to a meaningful decomposi-
tion in the context of the rest of the rules. It is possi-
ble to prevent such decompositions by anticipating the
rest of the grammar rules. Alternatively decomposi-
tions may be eschewed altogether; a logical form may
be constructed bottom-up and compared with the given
one. The first alternative detracts from the clarity, or
the specificational nature, of the solution. The latter
involves an exhaustive search over the space of all sen-
tences. The DCG considered here, together with higher-
order unification, seems to provide a balance between
clarity and efficiency.

The final point to be noted is that the terms that
are produced at intermediate stages in the parsing pro-
cess are logically meaningful terms, and computations
on such terms may be encoded in other clauses in our
language. In Section 7, we show how some of these terms
can be directly interpreted as frame-like objects.

6. Knowledge Representation
We now consider the question of how a higher-order

logic might be used for the task of representing knowl-
edge. Traditionally, certain network based formalisms,
such as KL-ONE [4], have been described for this pur-
pose. Such formalisms use nodes and arcs in a network
to encode knowledge, and provide algorithms that oper-
ate on this network in order to perform inferences on the
knowledge so represented. The nature of the informa-
tion represented in the network may be clarified with ref-
erence to a logic, and the correctness of the algorithms is
often proved by showing that they perform certain kinds
of logical inference on the underlying information. Our
approach here is to encode the relevant notions by using
λ-terms that directly correspond to their logical nature,
and to use definite clauses to specify logical inferences
on these notions. We demonstrate this approach below
through a few examples.

A key notion in knowledge representation is that of
a concept. KL-ONE provides the ability to define prim-
itive roles and concepts and a mechanism to put these
together to define more complex concepts. The intended

8

interpretation of a role is a two place relation, and of a
concept is a set of objects characterized by some defin-
ing property. An appropriate logical view of a concept,
therefore, is to identify it with a one-place predicate.
A particularly apt way of modeling the connection be-
tween a concept and a predicate is to use λ-terms of a
certain kind to denote concepts. The following set of
clauses that are used to define concepts modelled after
examples in [4] serves to make this clear.

prim_role recipient.

prim_role sender.

prim_role supervisor.

prim_concept person.

prim_concept crew.

prim_concept commander.

prim_concept message.

prim_concept important_message.

role R :- prim_role R.

concept C :- prim_concept C.

concept (X\(C1 X & C2 X)) :-

concept C1, concept C2.

concept (X\(all Y\(R X Y => C1 Y))) :-

concept C1, role R.

The type of prim_role and role in the above example is
(i -> i -> b) -> o and of prim_concept and concept

is (i -> b) -> o. Any term that can be substituted for
R so as to make (role R) provable from these clauses
is considered a role. Similarly, any term that can be
substituted for C so as to make (concept C) provable
is considered a concept. The first three clauses serve
to define primitive roles in this sense, and the next five
clauses define primitive concepts. The remaining clauses
describe a mechanism for constructing further roles and
concepts. As can be readily seen, all roles are primitive
roles. An example of a complex concept is provided by
the term

(X\(message X &(all Y\(sender X Y => crew Y))))

which may be described by the noun phrase “messages
all of whose senders are crew members.”

One of the purposes for providing a representation
for concepts is so that inferences that involve them can
be described. One kind of inference that is of particular
interest is that of determining subsumption. A concept
C1 is said to subsume another concept C2 if every ele-
ment of the set described by C2 is a member of the set

described by C1. Given our representation of concepts,
the question of whether C1 subsumes C2 reduces to the
question of whether ∀x(C2(x) ⊃ C1(x)) is valid (i.e.
provable). Such an inference may be based either on
certain primitive containment relations, or on an analy-
sis of the structure of the terms used to denote concepts.
The following set of clauses make these ideas precise:

subsume person crew.

subsume (X\(all Y\(sender X Y => person Y)))

message.

subsume (X\(all Y\(recipient X Y => crew Y)))

message.

subsume message important_message.

subsume (X\(all Y\(sender X Y => commander Y)))

important_message.

subsume C C.

subsume A B :- subsume A C, subsume C B.

subsume (Z\(A Z & B Z)) C :-

subsume A C, subsume B C.

subsume A (Z\(B Z & C Z)) :- subsume A B.

subsume A (Z\(B Z & C Z)) :- subsume A C.

subsume (Z\(all (Y\(R Z Y => A Y))))

(Z\(all (Y\(R Z Y => B Y)))) :-

subsume A B.

The first few clauses specify certain primitive contain-
ment relations; thus the first clause states that the set
described by crew is contained in the set described by
person. The later clauses specify subsumption relations
based on these primitive ones and on the logical struc-
ture of the terms describing the concepts. One of the
virtues of our representation now becomes clear: It is
easy to see that the above set of clauses correctly spec-
ifies the relation of subsumption. If A and B are two
terms that represent concepts, then rather elementary
proof-theoretic arguments may be employed to show
that (subsumes A B) is provable from the above clauses
if and only if the first-order term (all X\(B X => A X))

is logically entailed by the primitive subsumption rela-
tions. Furthermore, any sound and complete interpreter
for λProlog (such as one searching breath-first) may be
used together with these clauses to provide a sound and
complete subsumption algorithm.

Another kind of inference that is often of interest is
that of determining whether an object a is in the set of
objects denoted by a concept C. This question reduces
to whether (C a) is a theorem. This inference may

9

be encoded in definite clauses in the manner illustrated
below:

fact (important_message m1).

fact (sender m1 kirk).

fact (recipient m1 scotty).

interp A :- fact A.

interp (A & B) :- interp A, interp B.

interp (C U) :-

subsume (X\(all Y\ (R X Y => C Y))) D,

fact (R V U), interp (D V).

interp (C U) :- subsume C D, interp (D U).

In the clauses above, fact and interp are predicates of
type b -> o. The first few clauses state which formulas
of type b should be considered true; (fact X) may be
read as an assertion that X is true. The last few clauses
define interp to be a theorem-prover that uses subsume
and fact to deduce additional formulas of type b. The
only clause that may need to be explained here is the
third one pertaining to interp. This clause may be
explained as follows. Let (D V) and (subsume (X\(all

Y\ (R X Y => C Y))) D) be true. By virtue of the
meaning of subsumption, ((X\(all Y\ (R X Y => C

Y))) V), i.e. (all Y\ (R V Y => C Y)), is true. From
this it follows that for any U if (R V U) is true then
so is (C U). Given the clauses in this section, some of
the inferences that are possible are the following: kirk

is a person and a commander, and scotty is a crew

and a person. That is, (interp (person kirk)), for
example, is provable from these definite clauses.

7. Syntax and Semantics in Parsing
In Section 5, we showed how sentences and phrases

could be translated into logical forms that correspond
to their meaning. Such logical forms are well defined
objects in our language and in Section 6 we illustrated
the possibility of defining logical inferences on such ob-
jects. There are parsing problems which require se-
mantical analysis as well as syntactic analysis and our
language provides the ability to combine such analy-
ses in one computational framework. A common ap-
proach in natural language understanding systems is to
use one computational paradigm for syntactic analysis
(e.g. DCGs, ATNs) and another one for semantic analy-
sis (e.g. frames, semantic nets). An integration of these
two paradigms is often difficult to explain in a formal
sense. Using the approach that we suggest here also

results in the syntactic and semantic processing being
done at two different levels: one is first-order and the
other is higher-order. Bridging these two levels, how-
ever, can be very natural. For example, the query (see
Section 4)

rel R, R john mary

mixes both aspects. The process of determining a suit-
able instantiation for R is second-order, while the pro-
cess of determining whether or not (R john mary) is
provable is first-order.

The problem of determining referents for pronouns
provides an example where such an intermixing of levels
is necessary, since possible referents for a pronoun must
be checked for membership in the male or female con-
cepts. For example, consider the following sentences:
“John likes Mary. She loves him.” The problem here
is that of identifying “she” with Mary and “him” with
John. This processing could be done in the following
fashion: First, a DCG similar to the one in Section 5
could be written which returns not only the logical form
corresponding to a sentence but also a list of possible
referents for pronouns that occur later. In this exam-
ple, the list of proper nouns [john, mary] would be
returned. When pronouns are encountered, the DCG
would substitute some male or female elements from this
list, depending on the gender of the pronoun. The pro-
cess of selecting an appropriate referent may be accom-
plished with the following clauses:

prim_concept male.

prim_concept female.

fact (female mary).

fact (male john).

select G X [X|L] :- interp (G X).

select G X [Y|L] :- select G X L.

A call to the goal (select female X [john, mary])

would result in picking mary as a female from the set of
proper nouns. This is, of course, a very simple exam-
ple. This framework, however, supports the following
extension.

Let sentences contain definite descriptions. Con-
sider the following sentences: “The uncle whose children
are all doctors likes Mary. She loves him.” Here, “him”
clearly refers to the uncle whose children are all doctors.
In order to modify our above program we need to make
only a few additions. First, we need to be able to take a

10

concept, such as “uncle whose children are all doctors”
and encode the (unique) individual within it. To do
this, we use the definite description operator described
in Section 5. Hence, after parsing the first sentence, the
list

[(iota (X\(uncle X &

(all Y\(child X Y => doctor Y))))),

mary]

would be returned as the list of possible pronoun refer-
ences. Consider the following additional definite clauses.

prim_concept man.

prim_concept uncle.

prim_concept doctor.

prim_relation child.

subsume male man.

subsume man uncle.

interp (P (iota Q)) :- subsume P Q.

The first six clauses give properties to some of the lexical
items in this sentence. Only the last clause is an addition
to our actual program. This clause, however, is very
important since it is one of those simple and elegant
ways in which the different logical levels can be related.
A term of the form (iota Q) represents a first-order
individual (i.e. some object), but it does so by carrying
with it a description of that object (the concept Q). This
description can be invoked by the following inference:
the Q is a P if all Qs are Ps. Hence, checking membership
in a concept is transformed into a check for subsumption.

To find a referent for “him” in our example sen-
tences, the goal

(select male X

[(iota (X\(uncle X &

(all Y\(child X Y => doctor Y))))),

mary])

would be used to pick the male from the list of possible
pronoun references. (Notice here that X occurs both free
and bound in this query.) In attempting to satisfy this
goal, the goal

(interp

(male (iota (X\(uncle X &

(all Y\(child X Y => doctor Y)))))))

and then the goal

(subsume male

(X\(uncle X &

(all Y\(child X Y => doctor Y)))))

would be attempted. This last goal is clearly satisfied
providing a suitable referent for the pronoun “him.”

8. Compiling into First-Order Logic
We have suggested that higher-order logic can be

used to provide a formal specification and justification
of certain computations involving meanings and pars-
ing. We have been concerned with explaining a logic
programming approach to integrating syntactic and se-
mantic processing. Higher-order logic is, of course, not
needed to perform such computations. In fact, once
we have specified algorithms in this higher-order set-
ting, it is occasionally the case that a first-order re-
implementation is possible. For example, all the speci-
fications in Section 6 can be transformed or “compiled”
into first-order definite clauses. One way of performing
such a compilation is to define the following constants
to be the corresponding λ-terms:

and C\D\X\(C X & D X)

restr R\C\X\(all Y\(R X Y => C Y))

Using these definitions, the clauses for role, concept,
and subsume may be rewritten as the following:

role R :- prim_role R.

concept C :- prim_concept C.

concept (and C1 C2) :- concept C1, concept C2.

concept (restr R C1) :- concept C1, role R.

subsume C C.

subsume A B :-

subsume A C, subsume C B.

subsume (and A B) C :-

subsume A C, subsume B C.

subsume A (and B C) :- subsume A B.

subsume A (and B C) :- subsume A C.

subsume (restr R A) (restr R B) :-

subsume A B.

Introducing the notion of an element of a concept is less
straightforward. In order to do this, we need to first
differentiate between a fact that states membership in a
concept and a fact that states a relationship between two
elements. We do this by making the following additional
definitions:

is_a C\X\(fact (C X))

related R\X\Y\(fact (R X Y))

If we assume that interp is only used to decide mem-
bership in concepts, then we may replace (interp (C

11

X)) by (is_a C X). The remaining clauses in Section 6
can be translated into the following:

is_a important_message m1.

related sender m1 kirk.

related recipient m1 scotty.

is_a (and A B) X :- is_a A X, is_a B X.

is_a C U :- subsume (restr R C) D,

related R V U, is_a D V.

is_a C U :- subsume C D, is_a D U.

The resulting first-order program is isomorphic to the
original, higher-order program. The subsumption algo-
rithm in [3] is essentially the one specified by the clauses
that define subsume. There are two important points to
make regarding this program, however. First, to cor-
rectly specify its meaning, one needs to develop the ma-
chinery of the higher-order program which we first pre-
sented. Second, this latter program represents a com-
pilation of the first program. This compilation relys on
simplifing the representation of concepts and roles to a
point where their logical structure is no longer apparent.
As a result, it would be harder to extend this program
with new forms of concepts, roles and inferences that
involves them. The original program, however, is easy
to extend.

Another way to see this comparison is to say that
the higher-order program is the formal semantics of the
first-order program. This way of looking at semantics is
very similar to the denotational approach to specifying
program language semantics. There, the correct under-
standing of very simple, low level programming features
might involve constructions which are higher-order and
functional in nature.

9. Conclusions
Our goal in this paper was to argue that higher-

order logic has a meaningful role to play in computa-
tional linguistics. Towards this end, we have described
a version of definite clauses based on higher-order logic
and presented several examples that illustrate their pos-
sible use in a natural language understanding system.
We have built an experimental, depth-first interpreter
for λProlog on which we have tested all the programs
that appear in this paper (and many others). We are
currently working on the design and implemention of an
efficient interpreter for this programming language.

References
[1] Peter B. Andrews, “Resolution in Type Theory,”

Journal of Symbolic Logic 36 (1971), 414 – 432.
[2] Peter B. Andrews, Dale A. Miller, Eve Longini Co-

hen, Frank Pfenning, “Automating Higher-Order
Logic” in Automated Theorem Proving: After 25
Years, AMS Contemporary Mathematics Series 29
(1984).

[3] Ronald J. Brachman, Hector J. Levesque, “The
Tractability of Subsumption in Frame-based De-
scription Languages” in the Proceedings of the Na-
tional Conference on Artificial Intelligence, AAAI
1984, 34 – 37.

[4] Ronald J. Brachman, James G. Schmolze, “An
Overview of the KL-ONE Knowledge Representa-
tion System,” Cognitive Science 9 (1985), 171 – 216.

[5] Alonzo Church, “A Formulation of the Simple The-
ory of Types,” Journal of Symbolic Logic 5 (1940),
56 – 68.

[6] David R. Dowty, Robert E. Wall, Stanley Pe-
ters, Introduction to Montague Semantics, D. Rei-
del Publishing Co., 1981.

[7] Michael J. Gordon, Arthur J. Milner, Christopher
P. Wadsworth, Edinburgh LCF, Springer-Verlag
Lecture Notes in Computer Science No. 78, 1979.

[8] Gérard P. Huet, “A Unification Algorithm for
Typed λ-calculus,” Theoretical Computer Science
1 (1975), 27 – 57.

[9] Dale A. Miller, Gopalan Nadathur, “Higher-order
Logic Programming,” in the Proceedings of the
Third International Logic Programming Confer-
ence, Imperial College, London England, July 1986.

[10] F. C. N. Pereira, D. H. D. Warren, “Definite Clause
Grammars for Language Analysis – A Survey of
the Formalism and a Comparison with Augmented
Transition Networks” in Artificial Intelligence 13
(1980).

[11] David Scott Warren, “Using λ-Calculus to Repre-
sent Meaning in Logic Grammars” in the Proceed-
ings of the 21st Annual Meeting of the Association
for Computational Linguistics, June 1983, 51 – 56.

12

