
An Integration of 
Resolution and Natural Deduction 

Theorem Proving 

Dale Miller and Amy Felty 
Computer and Information Science 

University of Pennsylvania 
Philadelphia, PA 19104 

Abstract: We present a high-level approach to the integra- 
tion of such different theorem proving technologies as resolution 
and natural deduction. This system represents natural deduc- 
tion proofs as X-terms and resolution refutations as the types of 
such X-terms. These type structures, called ezpansion trees, are 
essentially formulas in which substitution terms are attached to 
quantifiers. As such, this approach to proofs and their types ex- 
tends the formulas-as-type notion found in proof theory. The 
LCF notion of tactics and tacticals can also be extended to in- 
corporate proofs as typed X-terms. Such extended tacticals can 
be used to program different interactive and automatic natural 
deduction theorem provers. Explicit representation of proofs 
as typed values within a programming language provides sev- 
eral capabilities not generally found in other theorem proving 
systems. For example, it is possible to write a tactic which 
can take the type specified by a resolution refutation and auto- 
matically construct a complete natural deduction proof. Such 
a capability can be of use in the development of user oriented 
explanation facilities. 

1. Introduction 
Theorem provers built on resolution and natural deduction 

have very different characteristics. For example, a search for a 
resolution refutation starts by taking a proposed theorem and 
putting its negation into skolem normal and conjunctive nor- 
mal form. AS a result of using such normal forms, the search 
space of refutations is very homogeneous, and automatic thee- 
rem provers using this paradigm are rather easy to build. On 
the other hand, since the search in such a theorem prover is 
carried out in a space which is rather remote from a useJs orig- 
inal input, it is difficult to get the user to interact with the 
search process. On these accounts, natural deduction theorem 
proving is just the opposite. For example, no normal forms 
are generally used and only subformulas or instances of sub- 
formulas of the proposed theorem are used during the search 
for a proof. AS a result, it is very easy to involve a user in the 
search for a proof since the state of the search at any moment is 
easily understood. On the other hand, natural deduction often 
leaves too many unimportant features in the search space which 
the preprocessing done by normal forms would have removed. 
Thus, resolution is often the core of automatic theorem provers 
while natural deduction is often the core of interactive theorem 
provers. 

Clearly it is desirable to find some way to smoothly in- 
tegrate these two very different paradigms. In this paper, we 
propose just such an integration. This integration is not a merg- 
ing of the two different search spaces. It is, instead, an inte- 
gration of the two kinds of proofs. We shall present a system 
which explicitly represents proofs in both systems and is capa- 

This work has been supported by NSF grants MCS8219196 
CER, MCS-82-07294, and DARPA NOOO- 14-85-K-0018. 

ble of translating between them. In order to achieve this goal, 
we have designed a programming language which permits proof 
structures as values and types. This approach builds on and ex- 
tends the LCF approach to natural deduction theorem provers 
by replacing the LCF notion of a uakfation with explicit term 
representation of proofs. The terms which represent proofs are 
given types which generalize the formulas-as-type notion found 
in proof theory [Howard, 19691. Resolution refutations are seen 
aa specifying the type of a natural deduction proofs. This high 
level view of proofs as typed terms can be easily combined with 
more standard aspects of LCF to yield the integration for which 
we are looking. 

In Section 2 we describe a representation of natural deduc- 
tion proofs as X-terms, and in Section 3 we show how the LCF 
notion of tactics and tacticals can be used to specify an inter- 
active theorem prover based on such a term representation of 
natural deduction proofs. In Section 4 we describe how resolu- 
tion refutations can be converted to generalized type structures 
called expansion trees. In Section 5 we show how tactics can 
make use of the information stored in these generalized types. 
Also in Section 5, we present a program in the language of tat- 
tics which is capable of automatically converting a resolution 
refutation to a natural deduction proof. 

2. Natural Deduction Proofs 
Although much of what we describe here is applicable to 

most forms of natural deduction, the form we present in this pa- 
per is essentially the sequent system LK presented in [Gentzen, 
19351 but without the cut rule. More modern presentations of 
similar systems can be found in [Gallier, 19861 and [Prawitz, 
19651. Proofs in the LK system are finite, ordered trees in 
which nodes are labeled with sequents. A sequent, written as 
l? --) 8, will represent the proposition “from all the formulas 
in the set P, some formula in the set 0 can be proved.” Notice 
that the proposition connected to the sequent A -----* A is triv- 
ially true. Sequents of this simple kind are called axioms. The 
non-terminal nodes of an LK proof are called inference rules 
and are listed below. 

I’ - Q,A r - e,c and-r A,C,I‘ - e 
r - Q,Ar\C 

and-l 
AAC,l? - 0 

A,r - 8 c,r - 8 or-l 
AvC,r - 8 

I’ - @,A,C or-r 
r - Q,AvC 

r - 8,A not -1 A,r - 0 
-A,lY - 8 

not-r 
r - Q,-A 

r - Q,A C,A - A imp- 1 A,l? - Q,C 
A> C,r,A - Q,A 

imp-r 
I’ - Q,A>C 

lc)s / SCIENCE 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



WIPJ - 63 all-l r - QMYIP all-r 
vxp,r - 8 r - Q,Vz P 

WYW - 43 some-l r - 0, [x/tlP 803110-r 
jxp,r - 8 r - e,jx P 

r-43 thin- 1 r-8 thin-r 
A,r - 8 r - O,A 

All but the last two rules are introduction rules and are responsi- 
ble for introducing into sequents the variouslogical connectives. 
The proviso that the variable y is not free in any formula of the 
lower sequent must be added to the rules all-r and some-l. A 
derivation tree is an LK proof of A if the root of the tree is the 
sequent - A and its leaves are axioms. 

Example 1. Figure 1 is an LK proof of the formula 

[P(4 v ml A vx [P(X) 1 c&N 1 3x d4. 
These proof trees can be represented more manageably as 

term structures. For example, let axiom(A) represent the proof 
tree which contains just the sequent A - A. The inference 
rules can be represented by function symbols of 1 or 2 argu- 
ments. For example, if 2’1 and 2’2 are proofs of l?,A + 8 
and I’, B - 9, respectively, we would write or-l(Ti, Ti) to 
represent the proof 

Tl 7’2 or-l 
I’,AvB - 8 

where T: and Ti are the terms representing the proofs Tl and 
Tz, respectively. Many inference rules require more information 

(- k(a) v d~)l AV’z b(4 1 !+>I ’ SC q(4)- 
Remember that the typed X-calculus has the following restric- 
tion on application: a term g can be applied to a term h if and 
only if the type of g is of the form Q + ,8 and the type of h is 
of the form cy. This restriction thus enforces the restriction of 
combining partial proofs with completed subproofs. We shall 
assume that the reader is familiar with the basic properties of 
X-conversion. 

some-r 
PC4 - PM q(a) - 3x dz) 

imp-l 
q(b) - m 

some-r 

These free variables are also abstracted with X-bindings. Thus 
a partial proof is represented as a function from subproofs to a 
completed proof. 

Example 3. A partial proof of the formula in Example 1 is 
given in Figure 2 and by the term 

lambda X lambda Y. imp-r(and-l(or-l(X,thin-l(Y)))). 

In order for the mechanism of X-conversion to correctly 
represent the operation of supplying a partial proof with a sub- 
proof, we must type these X-terms. For example, XxXy T(x, y) 
represents a partial proof of some sequent in which two sub- 
proofs must be supplied. However, before this term can be 
applied to some actual proof, say S, one must check that the 
abstracted variable x is a place holder for proofs of the sequent 
for which S is a proof. Thus, we should make sequents and 
functions among sequents be the types of X-terms. For exam- 
ple, if x and y are place holders for proofs of the sequents 01 
and 02, respectively, and if XxXy T (2, y) is a partial proof of the 
sequent cr, then we attach to this X-term the type 01 + 02 + cr. 
The type of the X-term representing the partial proof in Figure 
2 is, therefore, 

l+),P@) ’ Cd4 - 32 44 
all-l q(b) - 32 44 

thin-l 
p(a), v's Ip(x) ' q(x)1 - 32 q(x) q(b),VJz [P(Z) ’ +)I - ckc d4 or-l 

p(a) ’ q(b),Vx [Pb) ’ q(‘)l - 3x ‘(‘) and-l 
[p(a) V q(b)] A v’z b(x) ’ q(x)] - 32 dz> 

imp-r 
- [p(a) V q(b)] A ‘4~ [P(X) 3 Q(x)] ’ 32 q(X) 

Figure 1. 

than just subproofs in order to put those subproofs together 
into larger proofs. For example, a term representing a proof 
which contains any of the quantifier introduction rules must 
contain the substitution term used to instantiate the quantifiers. 
Although such information is necessary, we avoid presenting it 
in this paper to simplify the presentation of examples. 

Example 2. The (simplified) term which represents the proof 
in Example 1 is written as: 

imp-r(and-l(or-l(all-l(imp-l(axiom(p(a)), 
some-r(axiom(q(a>>)), 

thin-l(some-r(axiom(q(b)))))))). 

3. Using Tactics to Build Proof Trees 
The LCF system [Gorden, Milner, and Wadsworth, 19791 

of tactics and tacticals can be easily extended to use the notion 
of proofs as typed X-terms. In particular, tactics are functions 
which, when given a sequent (i.e. a type), either returns a par- 
tial proof for that sequent or fails. The main extension to LCF 
is that explicit representations of partial proofs are maintained 
through the use of X-terms. In LCF, proofs and partial proofs 
are discarded as they are discovered. 

Tactics are either primitive or compound. Primitive tactics 
attempt to prove a given sequent by using a particular inference 
rule. For example, the or-l-tat attempts to prove a sequent 

To build interactive proof systems, it is important to rep- by using the or-l inference rule. A primitive tactic will fail if 
resent not only completed proofs but also incomplete or partial its own special inference rule is not applicable. If it succeeds, 
proofs. We represent these by introducing into proof terms free it returns a X-term representing the partial proof which simply 
variables which act as place holders for the actual subproofs. encodes that inference rule. If the tactic or-1-tat is applied 

TheoremProving: AUTOMATEDREASONING / 199 



to a sequent of the 
return the X-term 

thin- 1 
p(a),Vx &) 1 &)I - 32 44 q@),Vz [p(z) 2 q(z)1 - 3x d4 

or-l 
p(g v q@),Vx [P(X) ’ d41 - 32 q(x) 

and- 1 
[p(a) v q(b)] /f vx [p(x) 1 q(x)1 - SC q(z) . 

- [P(a) v q(b)] A vz [p(x) 3 q(x)] 1 3x q(x) Imp-= 

Figure 2. 

formA,Av c,r - Q it will succeed and 

lambda X lambda Y. or-l(X,Y). 

This term is typed as 

(A,AJ - e) --) (A,C,r - e) -+ (A,AVC,~ -0). 

This X-term is a partial proof that stores a description of one 
step of the proof and represents the function which when given 
proofs of the types A,A,I’ - 8 and A,C,I’ - 8, would 
return a proof of the type A, A v C, I’ - 8. 

Compound tactics are built from primitive tactics by us- 
ing tacticals. As in LCF, the then tactical is responsible for 
combining partial proofs. If we have a partial proof of type 
61 --+ 62 4 . ’ * 4 CT, + 00, we need to compute proofs for each 
of Ql,.. . ,bn in order to have a complete proof of 00. Suppose 
we have decided to find a proof of the type ai, and some tac- 
tic or combination of tactics returns a partial proof of the type 

r1 + ‘*a ---, 7, --) ui. This is also a partial proof with m missing 
subproofs. The then tactical combines these two partial proofs 
into a single one of type 

which is a more refined partial proof of ~0, 

Example 4. Suppose that some combination of tactics returns 
the following partial proof: 

P(4 - da) q(a) - 3% q(x) 

P@),P(4 ’ d4 - 3J Q(4 
imp-l 

p(a),Vz [p(x) 1 q(x)] - 32 q(x) a11-1 
where the term representing this partial proof is 

lambda Z. all-l(imp-l(axiom(p(a)),Z)). 

When this term is combined with the partial proof in Example 
2, the combined proof can be written as 

lambda Z lambda Y. 
imp-r(and-l(or-l(all-l(imp-l(axiom(p(a)),Z)), 

thin-l(Y)))) 

and is of type 

(q(a) -j+ 32 P(4) + (q(b) - 3x q(4) + 
- [p(a) v q(b)] A vx [P(x) 1 q(x)1 ’ 3x q(4). 

ber 
Although the number of abstracted variables (i.e. the num- 

of subproofs) may grow in size as we combine partial proofs, 

the amount of the proof that still must be completed gener- 
ally decreases because as each rule is applied, the resulting se- 
quent(s) generally contain fewer connectives. The number of 
subproofs decreases when one of them is recognized as an ax- 
iom. 

In general, there are many terms (proofs) of a given type 
(sequent). Thus many choices can be made at each step in 
building a proof, and different choices can result in different 
proofs. These choices fall into two categories. The first choice at 
any given point in processing a partial proof is which abstracted 
variable (i.e. which subproof) should be analyzed. The second 
choice is which tactic to use in filling in this subproof. Tacti- 
cals allow the programmer to specify the order in which tac- 
tics are tried, i.e. control the order in which proof rules within 
the natural deduction system are attempted. For example, if 
we want to prove a set of theorems that we know all have the 
form - (Al AA2 A . . . A As) 3 B we may want to automate 
the part of the proof tree that breaks these connectives to get 

Al,Az,- - -,A, - B, then apply all non-branching proposi- 
tional rules before continuing in interactive mode. A procedure 
to do this can be written as follows: 

(then (then imp-r-tat (repeat and-1-tat)) 
(repeat 

(orelse imp-r-tat neg-r-tat neg-1-tat 
and-1-tat or-r-tat))) 

where then, repeat, and orelse are names of high level tacti- 
cals similar to those found in LCF. By writing compound tac- 
tics, the programmer is directly involved in how choices are 
made during the search for a proof. The ability to express 
proof strategies as small programs allows great flexibility in 
customizing proof search and building proof heuristics. 

Tactics look at the top-level connectives in sequents to de- 
termine which inference rules can be applied. We, however, 
have not discussed what happens when a top-level quantifier is 
encountered. The sequent itself does not have enough informa- 
tion to describe how that quantifer is to be introduced. Substi- 
tution information is required at this point. This information is 
not given by the sequent, and so the sequent by itself does not 
contain enough type information to adequately specify a proof. 
This type information is much harder to determine, and here 
we turn to an automatic theorem prover, such as resolution, for 
help. 

4. Expansion Trees and Resolution Refutations 
The substitution information which is lacking for this proof 

building process to continue could be supplied in a couple of 
ways. The search process could stop and ask the user for a 
substitution term. A more interesting possiblity, however, is 

200 / SCIENCE 



to use a resolution theorem prover to supply this information 
since one of their strengths is the computation of substitutions 
via unification. The main question is how this information can 
be captured and used in the natural deduction setting. The 
problem of relating the substitution information in refutations 
to the building of natural deduction proofs is described in this 
section. 

For concreteness, we first present a definition of resolution 
refutations. If B is a formula, let p denote its skolem normal 
form, i.e. essentially existential quantifiers are instantiated with 
Skolem terms and all essentially universal variables are deleted. 
We shall use cnf(B) to denote the set of sets of literals which 
comprises the conjunctive normal form of B. Let Ug denote 
the set of first-order terms which are composed only of functions 
and constants of B, plus an additional constant added to ensure 
that ?ig is non-empty. A re8oZution refutation of B is a list of 
clauses (i.e. a set of literals) Cl,. . . ,C,, such that C, is the 
empty clause and for each i = 1,. . . ,m, one of the following is 
true: 

(a) Ci E cnf((wB)*), or 
(b) there are positive integersj, k: less than i and sets of literals 

Sr and S2 such that Ci = Sr U S2, Cj = Sr U {A}, and 
Ck = S1 u {-A}, for some atomic formula A, or 

(c) there is a substitution p built using only terms in U, and 
a positive integer j < i such that Ci = PCj. 

Example 5. The following is a refutation of the formula in 
Example 1. 

P(4 9 q(b) 

da) 

-q(a) 

by (b) from 5 and 6 
by (c) from 3 
by (b) from 7 and 8 

Notice that refutations use substitutions in a very distributed 
fashion. Given a quantifier in the theorem it is not obvious 
what substitution terms were substituted for it. In contrast to 
refutations, we present another proof structure called expansion 
tree8 which store substitution information much more locally. 

The tactics, as we described above, could not process a 
universal quantifier on the left or an existential quantifier on 
the right. This is because the sequents did not specify the 
instance of these expressions that should be used. We solve 
this problem by simply attaching to quantifiers in a formula 
what substitution instances are to be used during a proof. To - - 
this end, we define expansion trees and dual expansion trees in 
the following fashion. 

(1) Let B be a formula. Then B is both an expansion tree 
and dual expansion tree for B. 

(2) If Qr and 92 are expansion trees and Qa is a dual expan- 
sion tree for B1, B2, Bs, respectively, then the following 
are expansion trees for B1 A B2, B1 V B2, Bs > B2, and 
-BS, respectively: QrAQ2,QrVQ2,Qe 3 Q2, and -Qe. 
This statement remains true if the role of expansion trees 
and dual expansion trees is switched. 

(3) If y is a variable and Q is an expansion tree for [x/y] B 
then (Vx 4 (Y,Q)) is an expansion tree for Vx B. If Q 
is a dual expansion tree for [z/y] B then (3x B, (y, Q)) is 
a dual expansion tree for 3x B. 

(4) Iftl,-*-, n t are first-order terms and for i = 1, . . . , n, Qi 
is an expansion tree for [x/ti]B, then 

(3% B,(tl,Ql),...,(tn,Qn)) 

is an expansion tree for 3x B. If, however, for i = 
1 >“‘, n, Qi is a dual expansion tree for [x/ti]B, then 

(V~B,(tl,Ql),...,(tn,Qn)) 

is a dual expansion tree for Vx B. 

Example 6. An expansion tree for the formula in Example 1 
1s 

[p(a) V q(b)] A (vx (P(X) ’ q(x))> (%P(a) ’ q(a))) ’ 
(3x !?(4 6% 464, (h q(W). 

There are, of course, many other expansion trees for this for- 
mula. 

We classify certaih expansion trees as fzpansion tree proof8 
or simply ET-proof8 if they satisfy two properties one requires 
that a certain relation on the substitution terms in the tree 
be acyclic and the other requires that the “deep formula” rep- 
resented by the tree be tautologous. For the definitions, the 
reader is referred to [Miller, 19841. Roughly speaking, the deep 
formula of an expansion tree is simply a formula whose subfor- 
mulas are taken from the terminal nodes of the tree. The deep 
formula of the expansion tree in Example 6 is 

[p(a) V q(b)] A b(a) ’ +)I ’ k?(a) V q(b)]. . 

Since this is tautologous, this expansion tree is in fact an ET- 
proof. 

We now introduce a more general notion of type. A gen- 
eralized sequent, written P - 4, contains a set of dual ex- 
pansion trees P and a set of expansion trees 4, such that the 
single expansion tree [API > [vQ] is an ET-proof. 

The significance of expansion trees in the integration of 
natural deduction and resolution comes from the following two 
facts. First, a resolution refutation of a formula B can be con- 
verted to an ET-proof of B. Such an algorithm is presented 
in [Pfenning, 19841. Here, skolem terms introduced by the 
refutation process must be removed. This, however, is very 
straightforward [Miller, 19831. The refutation in Example 5 
is converted by this procedure to the ET-proof in Example 6. 
Second, as shown in the next section, a generalized sequent can 
automatically be converted by a compound tactical to a natural 
deduction proof of the given type. There are, in general, many 
possible natural deduction proofs which could have this gener- 
alized sequent as their type, so such a conversion involves some 
searching. Here the search is concerned not with the existence 
of a proof but with the preeentation of the proof. The search 
for different presentations can also be governed by compound 
tactics. 

5. Expansions Trees-as-Types 
Expansion trees can be viewed as types of LK proofs in the 

following sense. The sense in which formulas were types still 
applies since expansion trees generalize formulas. In addition, 
the substitution information in an expansion tree indicates how 
quantifiers within an LK proof get instantiated. For example, 
let Q be an ET-proof for A. An LK proof 2’ of A is of type 
Q if the quantifier occurrences in T are introduced using the 
substitution terms attached to them in Q. 

Theorem Proving: AUTOMATED REASONING / 20 1 



We now return to the description of building natural de- 
duction proofs. Remember that tactics work by examining a 
type and suggesting a part of the proof which would build an 
element of that type. We have now introduced a more informa- 
tive type structure. Hence, when theall-l-tat is called, there 
would be substitution terms attached to universal quantifiers on 
the left of the sequent. Such terms can, therefore, be used to 
do the required universal instantiation. The same is true for 
the other three quantifier rules. Hence, this new notion of type 
contains enough information to completely specify how to build 
a complete natural deduction proof. The following compound 
tactic performs exactly that operation. 

(repeat 
(orelse (then thin-to-axiom axiomatize) 

and-1-tat imp-r-tat some-1-tat all-r-tat 
neg-1-tat neg-r-tat or-1-tat and-r-tat 
imp-1-tat or-r-tat some-r-tat all-1-tat)) 

There are many other compound tactics for building LK proofs 
of a generalized sequent. If this one is applied to the generalized 
sequent - Q where Q is the expansion tree in Example 6 it 
would yield the natural deduction proof in Example 1, except 
that the thin-l rule would be swapped with the some-r rule. 

It is possible to pair with expansion trees even more in- 
formation to make for a richer type structure. For example, 
a type can be the triple P - Q; M, where P - Q is a 
generalized sequent, and M is a mating for the deep formula of 
[AP] 3 [VQ]. H ere, a mating is a graph of the literals of this for- 
mula which shows how various literals in it are connected. See 
[Andrews, 19801, [Andrews, 19811, [Bibel, 19811, and [Miller, 
19841 for more on matings. By using matings, it is possible 
to make various tactics smarter. For example, it is possible to 
write a thinning tactic which can look “ahead” using the mat- 
ing to determine that a certain formula in a sequent will never 
be needed in a certain subproof. The ability to throw away 
such formulas is very important for building coherent proofs. 
See [Miller, 19841 f or more on using matings in this fashion. 

6. Conclusions 
Explicit representations of proofs provides this system with 

some capabilities not generally found in other theorem proving 
systems. Expansion trees can be used to store complete proofs 
in a very compact form. Proofs stored in such a form are also 
very flexible since they only represent a type of a natural de- 
duction proof. Hence, when one wants to browse through or 
use such a proof in natural deduction form, there are many 
different presentations of it that can be made. Representing 
partial proofs as first-class values provides the ability to stop 
at any point in the proof process, and resume at a later time. 
The calculus of X-conversion describes how partial proofs can 
be composed and the typing system is all that is needed for such 
compositions to be done soundly. This representation of proofs 
should also make it possible to implement many different kinds 
of algorithms on proofs which have been studied in proof the- 
ory. For example, one particularly exciting item to implement 
is the automatic conversion of proofs of a certain (constructive) 
kind to executable programs, such as is done in the PRL system 
[Bates and Constable, 19851. 

There is very little about the LK proof system that is cen- 
tral to the development of this system. In fact, many different 
and less formal notions of natural deduction, such as natural 
language oriented explanations (see [Webber, Joshi, Mays, and 
McKeown, 19831) could also be supported in many of the same 

ways we have discussed here. 
Our current implementation of this system is built in a 

combination of Common Lisp and Prolog code. Besides being 
strongly related to LCF, much of the spirit of this implementa- 
tion derives from the TPS system described in [Miller, Cohen, 
and Andrews, 19821. 

7. References 

PI 

PI 

PI 

bl 

Fl 

PI 

PI 

PI 

PI 

Peter B. Andrews, “Transforming Matings into Natural 
Deduction Proofs,” Fifth Conference on Automated Deduc- 
tion, Le8 Arc8, France, edited by W. Bibel and R. Kowal- 
ski, Lecture Notes in Computer Science, No. 87, Springer- 
Verlag, 1980, 281 - 292. 
Peter B. Andrews, “Theorem Proving Via General Mat- 
ings,” Journal of the Association for Computing Machinery 
28 (1981), 193 - 214. 
Joseph L. Bates and Robert L. Constable, “Proofs as Pro 
grams,” ACM Transactions on Programming Language8 
and Systeme, Vol. 7, No. 1 (January 1985) 113 - 136. 
Wolfgang Bibel, “Matrices with Connections,” Journal of 
the Association of Computing Machinery 28 (1981), 633 - 
645. 
Jean H. Gallier, Logic for Computer Science: Foundation8 
of Automatic Theorem Proving, Harper & Row, 1986. 
Gerhard Gentzen, Investigations into Logical Deduction8 in 
The Collected Paper8 of Gerhard Gentzen edited by M. E. 
Szabo, North-Holland Publishing Co., Amsterdam, 1969, 
68 - 131. 
Michael J. Gorden, Arthur J. Milner, and Christopher P. 
Wadsworth, ‘Edinburgh LCF,” Lecture Notes in Computer 
Science, No. 78, Springer-Verlag, 1979. 
W. A. Howard, “The formulae-as-type notion of construc- 
tion,” 1969. Published in J. P. Seldin and R. Hindley, ed. 
To H. B. Curry: Eseaye in Combinatory Logic, Lambda 
Calculus, and Formal&m, 479 - 490, Academic Press, New 
York, 1980. 
Dale A. Miller, Eve Longini Cohen, and Peter B. Andrews, 
“A Look at TPS,” 6th Conference on Automated Deduc- 
tion, New York, edited by Donald W. Loveland, Lecture 
Notes in Computer Science, No. 138, Springer-Verlag, 
1982, 50 - 69. 

(lo] Dale A. Miller, “Proofs in Higher-order Logic,” Ph. D. 
Dissertation, Carnegie-Mellon University, August 1983. 

[ll] Dale A. Miller, “Expansion Trees and Their Conversion 
to Natural Deduction Proofs,” 7th Conference on Auto- 
mated Deduction, Napa CA, edited by R. E. Shostak, Lec- 
ture Notes in Computer Science, No. 170, Springer-Verlag, 
1984, 375 - 393. 

121 Frank Pfenning, ‘Analytic and Non-analytic Proofs,” 7th 
Conference on Automated Deduction, Napa CA, edited by 
R. E. Shostak, Lecture Notes in Computer Science, No. 
170, Springer-Verlag, 1984, 394 - 413. 

131 Dag Prawitz, Natural Deduction, Almqvist & Wiksell, Up 
psala, 1965. 

[14] Bonnie Webber, Aravind Joshi, Eric Mays, and Kathleen 
McKeown, “Extended Natural Language Data Base Inter- 
actions,” Computers and Mathematic with Applications 9 
(1983), 233 - 244. 

201 / SCIENCE 


