Observations about using logic as a
specification language

Dale Miller *
200 S. 33rd Street, Computer Science Department
Unwversity of Pennsylvania, Philadelphia, PA 191046389 USA

dale@saul.cis.upenn.edu

Phone: 41-215-898-1593, Fax: +1-215-898-0587

Abstract

This extended abstract contains some non-technical observations about
the roles that logic can play in the specification of computational systems. In
particular, computation-as-deduction, meta-programming, and higher-order
abstract syntax are briefly discussed.

1 Two approaches to specifications

In the specification of computational systems, logics are generally used in one of two
approaches. In one approach, computations are mathematical structures, containing
such items as nodes, transitions, and state, and logic is used in an external sense to
make statements about those structures. That is, computations are used as models
for logical expressions. Intensional operators, such as the modals of temporal and
dynamic logics or the triples of Hoare logic, are often employed to express proposi-
tions about the change in state. For example, next-time modal operators are used
to describe the possible evolution of state; expressions in the Hennessey-Milner are
evaluated against the transitions made by a process; and Hoare logic uses formulas
to express pre- and post-conditions on a computation’s state. We shall refer to this
approach to using logic as computation-as-model. In such approaches, the fact that
some identifier x has value 5 is represented as, say a pair (z,5), within some larger
mathematical structure, and logic is used to express propositions about such pairs:
for example, z > 3 Az < 10.

A second approach uses logical deduction to model computation. In this ap-
proach the fact that the identifier x has value 5 can be encoded as the proposition

*The work reported here has been funded in part by ONR N00014-93-1-1324, NSF CCR-91-
02753, and NSF CCR-92-09224.



“r has value 5.” Changes in state can then be modeled by changes in propositions
within a derivation. Of course, changing state may require that a proposition no
longer holds while a proposition that did not hold (such as “x has value 6”) may
hold in a new state. It is a common observation that such changes are naturally sup-
ported by linear logic and that deduction (in particular, backchaining in the sense
of logic programming) can encode the evolution of a computation. As a result, it is
possible to see the state of a computation as a logical formula and transitions be-
tween states as steps in the construction of a proof. We shall refer to this approach
to using logic as computation-as-deduction.

There are many ways to contrast these two approaches to specification using
logic. For example, consider their different approaches to the “frame problem.”
Assume that we are given a computation state described as a model, say Mj, in
which it is encoded that the identifier x is bound to value 5. If we want to increment
the value of x, we may need to characterize all those models M, in which = has
value 6 and nothing else has changed. Specifying the precise formal meaning of this
last clause is difficult computationally and conceptually. On the other hand, when
derivations are used to represent computations directly, the frame problem is not
solved but simply avoided: for example, backchaining over the clause

z has value n —o z has value n + 1

might simply change the representation of state in the required fashion.

In the first approach to specification, there is a great deal of richness available for
modeling computation, since, in principle, such disciplines as set theory, category
theory, functional analysis, algebras, etc., can be employed. This approach has had,
of course, a great deal of success within the theory of computation.

In contrast, the second approach seems thin and feeble: the syntax of logical
formulas and proofs contains only the most simple structures for representing com-
putational state. What this approach lacks in expressiveness, however, is amelio-
rated by the fact that it is more intimately connected to computation. Deductions,
for example, seldom make reference to infinity (something commonly done in the
other approach) and steps within the construction of proofs are generally simple
and effective computations. Recent developments in proof theory and logic pro-
gramming have also provided us with logics that are surprisingly flexible and rich
in their expressiveness. In particular, linear logic [6] provides flexible ways to model
state, state transitions, and some simple concurrency primitives, and higher-order
quantification over typed A-terms provides for flexible notions of abstraction and en-
codings of object-level languages. Also, since specifications are written using logical
formulas, specifications can be subjected to rich forms of analysis and transforma-
tions.

To design logics (or presentations of logics) for use in the computation-as-de-
duction setting, it has proved useful to provide a direct and natural operational
interpretation of logical connective. To this end, the formalization of goal-directed
search using uniform proofs [14, 16] associates a fixed, “search semantics” to logical



connectives. When restricting to uniform proofs does not cause a loss of complete-
ness, logical connectives can be interpreted as fixed search primitives. In this way,
specifier can write declarative specifications that map directly to descriptions of com-
putations. This analysis of goal-directed proof search has lead to the design of the
logic programming languages AProlog, Lolli, LO, and Forum. Some simple examples
with using these languages for specifications can be found in [1, 10, 14]. The recent
thesis [2] provides two modest-sized Forum specifications: one being the operational
semantics of a functional programming language containing references, exceptions,
and continuation passing, and the other being a specification of a pipe-lined, RISC
Processor.

Observation 1. Logic can be used to make statements about compu-
tation by encoding states and transitions directly using formulas and
proof. This use of logic fits naturally in a logic programming setting
where backchaining can denote state transition. Both linear logic and
higher-order quantification can add greatly to the expressiveness of this
paradigm.

2 An example

The following specification of reversing a list and the proof of its symmetry illus-
trates how the expressiveness of higher-order linear logic can provide for natural
specifications and convenient forms of reasoning.

reverse L K :- pi rv\(
pi X\(pi M\(pi N\(rv (X::M) N :- rv M (X::N)))) => rv nil K -:
rv L nil).

Here we use a variant of AProlog syntax: in particular, lists are constructed from
the infix :: and nil; pi X\ denotes universal quantification of the variable X; =>
denotes intuitionistic implication; and, -: and :- denote linear implication and
its converse. This one example combines some elements of both linear logic and
higher-order quantification.

To illustrate this specification, consider proving the query

?- reverse (a::b::c::nil) Q.

Backchaining on the definition of reverse above yields a goal universally quantified
by pi rv\. Proving such a goal can be done by instantiating that quantifier with a
new constant, say rev, and proving the result, namely, the goal

pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))) => rev nil Q -:
rev (a::b::c::nil) nil).

Thus, an attempt will be made to prove the goal (rev (a::b::c::nil) nil) from
the two clauses



pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))).
rev nil Q.

(Note that the variable Q in the last clause is free and not implicitly universally
quantified.) Given the use of intuitionistic and linear implications, the first of these
clauses can be used any number of times while the second must be used once (natural
characterizations of inductive and initial cases for this example). Backchaining now
leads to the following progression of goals:

rev (a::b::c::nil) nil.

rev (b::c::nil) (a::nil).
rev (c::nil) (b::a::nil).
rev nil (c::b::a::nil).

and the last goal will be proved by backchaining against the initial clause and binding
Q with (c::b::a::nil).

It is clear from this specification of reverse that it is a symmetric relation: the
informal proof simply notes that if the table of rev goals above is flipped horizontally
and vertically, the result is the core of a computation of the symmetric version of
reverse. (Given the expressiveness of this logic, the formal proof of this fact directly
incorporates this main idea.

Proposition. Let 1 and k be two lists and let P be a collection of clauses in
which the only clause that contains an occurrence of reverse in its head is the
one displayed above. If the goal (reverse 1 k) is provable from P then the goal
(reverse k 1) is provable from P.

Proof. Assume that the goal (reverse 1 k) is provable from P. Given the re-
striction on occurrences of reverse in P, this goal is provable if and only if it is
proved by backchaining with the above clause for reverse. Thus, the goal

pi rv\(
pi X\(pi M\(pi N\(rv (X::M) N :- rv M (X::N)))) =>
rv nil k -: rv 1 nil)

is provable from P. Since this universally quantified formulais provable, any instance
of it is provable. Let rev be a new constant not free in P of the same type as the
variable rv. The formula that results from instantiating this quantified goal with
the A-term x\y\(not (rev y x)) (where \ is the infix symbol for A-abstraction
and not is the logical negation, often written in linear logic using the superscript
1). The resulting formula,

pi X\(pi M\(pi N\(not (rev N (X::M)) :- not (rev (X::N) M)))) =>
not (rev k nil) -: not (rev nil 1),

is thus provable from P. This formula is logically equivalent to the following formula
(linear implications and their contrapositives are equivalent in linear logic).



pi X\(pi M\(pi N\(rev (X::N) M :- rev N (X::M)))) =>
rev nil 1 -: rev k nil

Since this code is provable and since the constant rev is not free in P, we can
universally generalize over it; that is, the following formula is also provable.

pi rev\(
pi X\(pi M\(pi N\(rev (X::N) M :- rev N (X::M)))) =>
rev nil 1 -: rev k nil)

From this goal and the definition of reverse (and a-conversion) we can prove
(reverse k 1). Hence, reverse is symmetric. |

This proof should be considered elementary since it involves only simple linear
logic identities and facts. Notice that there is no direct use of induction. The two
symmetries mentioned above in the informal proof are captured in the higher-order
substitution x\y\(not (rev y x)): the switching of the order of bound variables
captures the vertical flip and linear logic negation (via contrapositives) captures the
the horizontal flip.

3 Meta-programming and meta-logic

An exciting area of specification is that of specifying the meaning and behavior of
programs and programming languages. In such cases, the code of a programming
language must be represented and manipulated, and it is valuable to introduce the
terms meta-language to denote the specification language and object-language to
denote the language being specified.

Given the existence of two languages, it is natural to investigate the relationship
that they may have to one another. That is, how can the meaning of object-language
expressions be related to the meaning of meta-level expressions. One of the major
accomplishments in mathematical logic in the first part of this century was achieved
by K. Godel by probing this kind of reflection, in this case, encoding meta-level
formulas and proofs at the the object-level [7].

Although much of the work on meta-level programming in logic programming has
also been focused on reflection, this focus is rather narrow and limiting: there are
many other ways to judge the success of a meta-programming language apart from its
ability to handle reflection. While a given meta-programming language might not be
successful at providing novel encodings of itself, it might provide valuable and flexible
encodings of other programming languages. For example, the 7-calculus provides a
revealing encoding of evaluation in the A-calculus [17], evaluation in object-oriented
programming [28], and interpretation of Prolog programs [12]. Even the semantic
theory of the 7-calculus can be fruitfully exploited to probe the semantics of encoded
object-languages [27]. While it has been useful as a meta-language, it does not seem
that the m-calculus would yield an interesting encoding of itself.



Similarly, AProlog has been successful in providing powerful and flexible speci-
fications of functional programming languages [8, 21| and natural deduction proof
systems [5]. Forum has similarly been used to specify sequent calculi and various
features of programming languages [2, 14]. It is not clear, however, that AProlog or
Forum would be particularly good for representing their own operational semantics.

Observation 2. A meta-programming language does not need to cap-
ture its own semantics to be useful. More importantly, it should be
able to capture the semantics of a large variety of languages and the
resulting encoding should be direct enough that the semantics of the
meta-language can provide semantically meaningful information about
the encoded object-language.

A particularly important aspect of meta-programming is the choice of encod-
ings for object-level expressions. Godel used natural numbers and the prime fac-
torization theorem to encode syntactic values: an encoding that does not yield a
transparent nor declarative approach to object-level syntax. Because variables in
logic programming range over expressions, representing object-level syntax can be
a particularly simple, at least for certain expressions of the object language. For
example, the meaning of a type in logic programming, particularly types as they
are used in AProlog, is a set of expressions of a given type. In contrast, types in
functional programming (say, in SML) generally denote sets of values. While the
distinction between expressions and values can be cumbersome at times in logic pro-
gramming (2 + 3 is different than 5), it can be useful in meta-programming. This
is particularly true when dealing with expressions of functional type. For example,
the type int -> int in functional programming denotes functions from integers to
integers: checking equality between two such functions is not possible, in general.
In logic programming, particularly in AProlog, this same type contains the code of
expressions (not functions) of that type: thus it is possible to represent the syn-
tax of higher-order operations in the meta-programming language and meaningfully
compare and compute on these codes. More generally, meta-level types are most
naturally used to represent object-level syntactic categories. When using such an
encoding of object-level languages, meta-level unification and meta-level variables
can be used naturally to probe the structure of object-level syntax.

Observation 3. Since types and variables in logic programming range
over expressions, the problem of naming object-level expressions is often
easy to achieve and the resulting specifications are natural and declara-
tive.

4 Higher-order abstract syntax

In the last observation, we used the phrase “often easy to achieve.” In fact, if
object-level expressions contain bound variables, it is a common observation that



representing such variables using only first-order expressions is problematic since
notions of bound variable names, equality up to a-conversion, substitution, etc.,
are not addressed naturally by the structure of first-order terms. From a logic
programming point-of-view this is particularly embarrassing since all of these notions
are part of the meta-theory of quantification logic: since these issues exist in logic
generally, it seems natural to expect a logical treatment of them for object-languages
that are encoded into logic. Fortunately, the notion of higher-order abstract syntax
is capable of declaratively dealing with these aspects of object-level syntax.

Higher-order abstract syntax involves two concepts. First, A-terms and their
equational theory should be used uniformly to represent syntax containing bound
variables. Already in [3], Church was doing this to encode the universal and exis-
tential quantifiers and the definite description operator. Following this approach,
instantiation of quantifiers, for example, can be specified using #-reduction.

The second concept behind higher-order abstract syntax is that operations for
composing and decomposing syntax must respect at least a-conversion of terms.
This appears to have first been done by Huet and Lang in [11]: they discussed the
advantages of representing object-level syntax using simply typed A-terms and ma-
nipulating such terms using matching modulo the equational rules for A-conversion.
Their approach, however, was rather weak since it only used matching (not unifi-
cation more generally). That restrictions made it impossible to express all but the
simplest operations on syntax. Their approach was extended by Miller and Nadathur
in [15] by moving to a logic programming setting that contained Bn-unification of
simply typed A-terms. In that paper the central ideas and advantages behind higher-
order abstract syntax are discussed. In the context of theorem proving, Paulson also
independently proposed similar ideas [20].

In [23] Pfenning and Elliot extended the observations in [15] by producing ex-
amples where the meta-language that incorporated M-abstractions contained not
just simple types but also product types. In that paper they coined the expression
“higher-order abstract syntax.” At about this time, Harper, Honsell, and Plotkin
in [9] proposed representing logics in a dependent typed A-calculus. While they did
not deal with the computational treatment of syntax directly, that treatment was
addressed later by considering the unification of dependent typed A-expressions by
Elliott [4] and Pym [25].

The treatment of higher-order abstract syntax in the above mentioned papers
had a couple of unfortunate aspects. First, those treatments involved unification
with respect to the full gn-theory of the A-calculus, and this general theory is com-
putational expensive. In [11], only second-order matching was used, an operation
that is NP-complete; later papers used full, undecidable unification. Second, various
different type systems were used with higher-order abstract syntax, namely simple
types, product types, and dependent types. However, if abstract syntax is essen-
tially about a treatment of bound variables in syntax, it should have a presentation
that is independent from typing.

The introduction of L, in [13] provided solutions to both of these problems.



First, L, provides a setting where the unification of A-terms is decidable and has
most general unifiers: it was shown by Qian [26] that L,-unification can be done
in linear time and space (as with first-order unification). Nipkow showed that the
exponential unification algorithm presented in [13] can be effectively used within
theorem provers [19]. Second, it was also shown in [13] that L,-unification can be
described for untyped A-terms: that is, typing may impose additional constraints
on unification but L,-unification can be defined without types. Thus, it is possible
then to define Ly-like unification for various typed calculi [22].

Observation 4. L, appears to be one of the weakest settings in which
higher-order abstract syntax can be supported. The main features of L
can be merged with various logical systems (say, AProlog and Forum),
with various type systems (say, simple types and dependent types) [21],
and with equational reasoning systems [18, 24].

While existing implementations of AProlog, Isabelle, Elf, and NuPRL all make
use of results about L, there is currently no direct implementation of L,. It should
be a small and flexible meta-logic specification language.

References

[1] J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in
inheritance. New Generation Computing, 9(3-4):445-473, 1991.

[2] Jawahar Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, February 1995.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[4] Conal Elliott. Higher-order unification with dependent types. In Rewrit-
ing Techniques and Applications, volume 355, pages 121-136. Springer-Verlag
LNCS, April 1989.

[5] Amy Felty. Implementing tactics and tacticals in a higher-order logic program-
ming language. Journal of Automated Reasoning, 11(1):43-81, August 1993.

[6] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[7] Kurt Godel. On formally undecidable propositions of the principia mathematica
and related systems. I. In Martin Davis, The Undecidable. Raven Press, 1965.

[8] John Hannan. Extended natural semantics. Journal of Functional Program-

ming, 3(2):123-152, April 1993.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Second Annual Symposium on Logic in Computer Science, pages

194-204, Tthaca, NY, June 1987.

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-
istic linear logic. Information and Computation, 110(2):327-365, 1994.

Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

Benjamin Li. A m-calculus specification of Prolog. In Proc. ESOP 199/, 1994.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497-

536, 1991.

Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth
Annual Symposium on Logic in Computer Science, pages 272281, Paris, July
1994.

Dale Miller and Gopalan Nadathur. A logic programming approach to manip-
ulating formulas and programs. In Seif Haridi, editor, IEEE Symposium on
Logic Programming, pages 379-388, San Francisco, September 1987.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied

Logie, 51:125-157, 1991.

Robin Milner. Functions as processes. 17th Int. Coll. Automata, Languages
and Programming Warwick University, UK, LNCS 443, pp. 167-180, Springer
Verlag July 1990.

Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sizth Annual
Symposium on Logic in Computer Science, pages 342-349. IEEE. July 1991.

Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Fighth Annual Symposium on Logic in Computer Science, pages 64—T74.
IEEE, June 1993.

Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of

Logic Programming, 3:237-258, 1986.

Frank Pfenning. Elf: A language for logic definition and verified metapro-
gramming. In Fourth Annual Symposium on Logic in Computer Science, pages

313-321, Monterey, CA, June 1989.



[22]

23]

[24]

[25]

[26]

[27]

28]

Frank Pfenning. Unification and anti-unification in the Calculus of Construc-
tions. In G. Kahn, editor, Sizth Annual Symposium on Logic in Computer
Science, pages 74-85. IEEE, July 1991.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM-SIGPLAN Conference on Programming Language Design and
Implementation, pages 199-208. ACM Press, June 1988.

Christian Prehofer. Solving Higher-Order Fquations: From Logic to Program-
ming. PhD thesis, Technische Universitat Minchen, 1995.

David Pym. Proofs, Search and Computation in General Logic. PhD thesis,
LFCS, University of Edinburgh, 1990.

Zhenyu Qian. Linear unification of higher-order patterns. In J.-P. Jouannaud,
editor, Proc. 1993 Coll. Trees in Algebra and Programming. Springer Verlag
LNCS, 1993.

Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Infor-
mation and Computation, 111(1):120-153, May 1994.

David Walker. 7-calculus semantics of object-oriented programming languages.

LFCS Report Series ECS-LFCS-90-122, University of Edinburgh, October 1990.



