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1 Introduction

It is now common place to recognize the important role of logic in the founda-
tions of computer science in general and programming languages more specifi-
cally. For this reason, when a major new advance is made in our understanding
of logic, we can expect to see that advance ripple into other areas of computer
science. Such rippling has been observed during the past eight years since the
first introduction of linear logic [Girard 1987]. This exciting advance in logic
provides new ways of embracing aspects of computation directly in a rich logical
framework. Since this development extends and enriches our understanding of
classical and intuitionistic logic, it provides new insights into the many compu-
tational systems built on those two logics.

2 Applications of Linear Logic to Programming
Languages

Both functional and logic programming have made extensive use of classical and
intuitionistic logic to motivate language designs and to analyze programs and
specifications.

One inspiration for the design of functional programming languages is the
Curry-Howard Isomorphism. This isomorphism states that programs and proofs
can be equated and that the normalization of proofs (say, by beta-conversion or
cut-elimination) can be seen as computation. Linear logic supplies new proof
structures, called proof nets, and the dynamics of their normalization can be
used to express some aspects of concurrency [Abramsky 1993, Bellin & Scott
1992, Lafont 1989, Lafont 1990]. The Curry-Howard Isomorphism also states
that the types of programs can be seen as formulas, and the richer formulas
of linear logic allow for more expressive types. Such stronger types have been
used to help provide static analysis of such things as run-time garbage, aliases,
reference counters, and single-threadedness [Guzmán & Hudak 1990, O’Hearn
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1991, Maraist et. al. 95, Wadler 90, Chirimar et.al.].
Linear Logic has also shown promise in helping with the analysis of con-

ventional logic programs. See, for example, the work of Cerrito on specifying
the semantics of various aspects of Prolog using linear logic [Cerrito 1990, Cer-
rito 1992b, Cerrito 1992a] and of Reddy in specifying modes using linear logic
[Reddy 1993]. The most active work on using linear logic in logic programming,
however, has been in the area of designing and using new logic programming
languages.

3 New Logic Programming Languages

In the field of logic programming there does not seem to be a principle, like
that of the Curry Howard Isomorphism, that is at once simple, natural, deep,
and generally accepted as a design principle. Although most early work on logic
programming had been fixed on a particular logic, namely that of first-order,
classical Horn clauses, many researchers have recently adopted proof search
in sequent calculi as a setting for designing and exploring the dynamics and
properties of logic programs. In this setting, sequents are used to denote the
state of a computation and the transformations that occur to sequents as cut-
free proofs are incrementally constructed are used to model the dynamics of
computation.

When few logical connectives are needed, it is often straightforward to define
a logic that has a natural operational semantics (meaning that it is easy for a
programmer to understand how proofs are attempted). The following three
designs are examples of such linear logic programming languages.

• LO (Linear Objects) [Andreoli & Pareschi 1990, Andreoli & Pareschi 1991]
was designed by Andreoli and Pareschi as an extension to the Horn clause
paradigm in which atomic formulas are generalized to be multisets of
atomic formulas connected by multiplicative disjunctions (”pars”). In LO,
backchaining becomes multiset rewriting. This language has been used to
specify object-oriented programming and the coordination of processes.

• ACL by Kobayashi and Yonezawa is an asynchronous calculus in which
the send and read primitives were essentially identified to two complemen-
tary linear logic connectives [Kobayashi & Yonezawa 1993, Kobayashi &
Yonezawa 1994].

• Lincoln and Saraswat, in unpublished reports, developed a linear version
of concurrent constraint programming and used linear logic connectives
to extend previous languages in this paradigm [Lincoln & Saraswat 1993,
Saraswat 1993].

Each of these languages incorporate small subsets of linear logic and use
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multisets of formulas to capture object structure or collections of processes and
messages, and use multiset rewriting to capture inheritance and synchronization.

One design principle that has been used in recent years states that goal-
directed search should be complete for logic programs. Within intuitionistic
logic, this was first formalized using the the proof theoretic notion of uniform
proofs [Miller et.al 1991]. Horn clause logic and hereditary Harrop formu-
las (the logic underlying λProlog) are both examples of settings where goal-
directed search is complete for intuitionistic provability. This definition of
goal-directed search depends on the fact that sequents in intuitionistic logic
are single-conclusion; that is, they contain a single conclusion (the goal) to be
proved. It was therefore straightforward to extend the definition of uniform
proofs to intuitionistic linear logic (where sequents again have a single conclu-
sion), and Hodas and Miller have used that extension to design the linear logic
programming language Lolli [Hodas 1994, Hodas & Miller 1994]. Lolli can be
seen as a modular extension to λProlog that allows items in the program to be
use either once or an unlimited number of times. Linear logic’s connectives can
be used to provide elegant and flexible management of both kinds of program
clauses.

In the sequent characterization of full linear logic, sequents can have multiple
formulas in the conclusion: that is, the goal to be proved may be a multiset of
formulas whose provability cannot be isolated from each other and where each
formula can assist each other in some (hopefully, programmable) sense. Given
this structure of goals, the notion of goal directed search and uniform proof
needed to be extended. There appear to be two ways to make this extension. In
one approach a goal with multiple parts is required to have some component goal
that can be reduced. This approach, used by Harland and Pym, is the weaker
approach and goal-directed search would be complete for many subsets of linear
logic [Pym & Harland 1994], some of which have complex operational semantics
[Harland & Pym 1992]. See their Lygon language [Harland & Winikoff 1995],
for example. Another approach requires that in a goal with multiple component
goals, all components must be simultaneously reducible. Miller first used this
definition in [Miller 1992] to provide a linear logic encoding of the pi-calculus.
He later showed that by selecting a suitable and complete set of connectives, all
of linear logic can be seen as logic programming. This particular presentation
of linear logic, called Forum [Miller 1994], can be seen (and motivated) as an
extension of LO, λProlog, and Lolli (but not of Lygon). Hodas is currently
developing a prototype implementation of Forum based on techniques used in
the implementation of Lolli.

4 Applications for new languages

Not all of these designs have been undertaken as purely technical exercises
involving the structure of sequent calculus proofs. In fact, mnay of these designs
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have been motivated by the need to make logic specifications more expressive.
Some of the resulting systems have supplied new and useful specifications in
various domains.

Concurrency Many of these programming languages were designed, at least
in part, to allow concurrent specifications [Kobayashi & Yonezawa 1993,
Kobayashi & Yonezawa 1994, Lincoln & Saraswat 1993, Miller 1992, Saraswat
1993]. See also [Bruscoli & Guglielmi 1995].

Object-oriented programming Capturing state and inheritance was an early
goal of the LO system [Andreoli & Pareschi 1991] and a motivation for
the design of Lolli. Another approach to state encapsulation can be found
in [Miller 1994] and in [Delzanno & Martelli 1995].

Operational semantics Forum has been successfully used to specify the op-
erational semantics of imperative and concurrent features such as those
in Algol and ML [Chirimar 1995, Miller 1994]. Chirimar has also speci-
fied in Forum the operational semantics of a pipe-lined, RISC processor
[Chirimar 1995].

Natural language parsing Lolli has provided a declarative approach to gap
threading within English relative clauses [Hodas 1992].

Object-logic proof systems Lolli has been used to refine the usual, intu-
itionistic specifications of object-level natural deduction systems [Hodas
& Miller 1994] and Forum has been used to provide specifications of object-
level sequent systems [Miller 1994].

5 Research in Sequent Calculus Proof Search

Since the majority of linear logic programming are described using sequent cal-
culus proof systems, a great deal of work in understanding and implementing
these languages has focused on properties of proofs, rather than on model theo-
retic considerations. In recent years, results in proof theory have been developed
specifically to support this foundation of the logic programming paradigm. An-
dreoli developed some deep results about proof search in linear logic in his PhD
thesis [Andreoli 1990a] (see also [Andreoli 1990b]). There is also related work
by Galmiche, Boudinet, and Perrier [Galmiche & Boudinet 1994, Galmiche &
Perrier 1994], Tammet [Tammet 1994], and others. A problem specific to proof
search in linear logic is how to effectively split resources between conjunctive
branches of a computation. For Lolli, Hodas and Miller developed a lazy split-
ting approach, called the input-output model of resource consumption [Hodas &
Miller 1994, Hodas 1994]: various researchers are actively refining and extending
that model (see, for example, [Cervesato et. al.]).
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Possible future projects include exploring how to exploit Girard’s LU proof
system [Girard 1993] and definitional reflection [Schroeder-Heister 1993]. Also,
since linear logic is a rich and expressive logic, finding interesting subsets of it
that can be given effective implementations is currently an open problem.
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